
OpenEdge Revealed:
Mastering the OpenEdge Database with
Fathom™ Management

Adam Backman Expert Series

©2004 Progress Software Corporation. All rights reserved.

Progress® software products are copyrighted and all rights are reserved by Progress Software Corporation. This manual is also copyrighted and
all rights are reserved. This manual may not, in whole or in part, be copied, photocopied, translated, or reduced to any electronic medium or
machine-readable form without prior consent, in writing, from Progress Software Corporation.

The information in this manual is subject to change without notice, and Progress Software Corporation assumes no responsibility for any errors
that may appear in this document. The references in this manual to specific platforms supported are subject to change.

Allegrix, A [Stylized], ObjectStore, Progress, Powered by Progress, Progress Fast Track, Progress Profiles, Partners in Progress, Partners en
Progress, Progress en Partners, Progress in Progress, P.I.P., Progress Results, ProVision, ProCare, ProtoSpeed, SmartBeans, SpeedScript, and
WebSpeed are registered trademarks of Progress Software Corporation or one of its subsidiaries or affiliates in the U.S. and/or other countries.
AccelEvent, A Data Center of Your Very Own, Allegrix & Design, AppsAlive, AppServer, ASPen, ASP-in-a-Box, BusinessEdge, Business
Empowerment, Empowerment Center, eXcelon, Fathom, Future Proof, IntelliStream, ObjectCache, OpenEdge, PeerDirect, POSSE, POSSENET,
Progress Business Empowerment, Progress Dynamics, Progress Empowerment Center, Progress Empowerment Program, Progress for Partners,
Progress OpenEdge, Progress Software Developers Network, PSE Pro, PS Select, SectorAlliance, SmartBrowser, SmartComponent,
SmartDataBrowser, SmartDataObjects, SmartDataView, SmartDialog, SmartFolder, SmartFrame, SmartObjects, SmartPanel, SmartQuery,
SmartViewer, SmartWindow, Technical Empowerment, WebClient, and Who Makes Progress are trademarks or service marks of Progress
Software Corporation or one of its subsidiaries or affiliates in the U.S. and other countries.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

Any other trademarks or service marks contained herein are the property of their respective owners.

Fathom Management includes software developed by the Apache Software Foundation (http://www.apache.org/). Copyright © 1999 The Apache
Software Foundation. All rights reserved (Xalan XSLT Processor) and Copyright © 2000-2002 The Apache Software Foundation. All rights
reserved (Jakarta-Oro). The names “Apache,” “Xerces,” “Jakarta-Oro,” and “Apache Software Foundation” must not be used to endorse or
promote products derived from this software without prior written permission. Products derived from this software may not be called “Apache” or
“Jakarta-Oro,” nor may “Apache” or “Jakarta-Oro” appear in their name, without prior written permission of the Apache Software Foundation. For
written permission, please contact apache@apache.org. Software distributed on an “AS IS” basis, WITHOUT WARRANTY OF ANY KIND,
either express or implied. See the License for the specific language governing rights and limitations under the License agreement that accompanies
the product.

Fathom Management includes software developed by ACME Labs. Copyright © 2000 by Jef Poskanzer <jef@acme.com>. All rights reserved.
Software distributed on an “AS IS” basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License for the specific
language governing rights and limitations under the License agreement that accompanies the product.

Fathom Management includes software developed by Sun Microsystems, Inc. Copyright © 2003 Sun Microsystems, Inc. All Rights Reserved.
Software distributed on an “AS IS” basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License for the specific
language governing rights and limitations under the License agreement that accompanies the product.

Fathom Management includes the Jetty Package Copyright © 1998 Mort Bay Consulting Pty. Ltd. (Australia).

Fathom Management includes software developed by the ModelObjectsGroup (http://www.modelobjects.com). Copyright © 2000-2001
ModelObjects Group. All rights reserved. The name “ModelObjects” must not be used to endorse or promote products derived from the SSC
Software without prior written permission. Products derived from the SSC Software may not be called “ModelObjects”, nor may “ModelObjects”
appear in their name, without prior written permission. For written permission, please contact djacobs@modelobjects.com.

Fathom Management includes files that are subject to the Netscape Public License Version 1.1 (the “License”); you may not use this file except in
compliance with the License. You may obtain a copy of the License at (http://www.mozilla.org/NPL). Software distributed under the License is
distributed on an “AS IS” basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License for the specific language
governing rights and limitations under the License. The Original Code is Mozilla Communicator client code, released March 31, 1998. The Initial
Developer of the Original Code is Netscape Communications Corporation. Portions created by Netscape are Copyright © 1998-1999 Netscape
Communications Corporation. All Rights Reserved.

Fathom Management contains copyright material licensed fromAdventNet, Inc. http://www.adventnet.com. All rights to such copyright material
rest with AdventNet.

Fathom Management includes the RSA Data Security, Inc. MD5 Message-Digest Algorithm. Copyright © 1991-2, RSA Data Security, Inc.
Created 1991. All rights reserved.

Product Code: 4009

Item Number: 101211

Release: V3.0A

August 2004

mailto: jef@acme.com
http://www.apache.org/
http://www.mozilla.org/NPL
http://www.modelobjects.com
http://www.adventnet.com
mailto: apache@apache.org
mailto: jef@acme.com
mailto: djacobs@modelobjects.com

Contents
Preface . Preface–1

1. Managing System Resources . 1–1
Managing disk capacity . 1–2

Ensuring adequate disk storage . 1–2
Determining data storage requirements . 1–4
Examining your growth pattern . 1–5
Comparing expensive and inexpensive disks . 1–8
Determining the location of data on disks . 1–8
Understanding cache utilization . 1–9
Increasing disk reliability with RAID. 1–9
OpenEdge in a network storage environment . 1–17
Summary . 1–17

Managing memory usage . 1–18
How much paging is too much? . 1–19
Estimating memory requirements . 1–20
OpenEdge-specific memory estimates . 1–21

Managing CPU activity . 1–24
Understanding CPU activity. 1–24
Tuning your system . 1–25
Understanding idle time. 1–26
Monitoring your system . 1–27
Fast CPUs versus many CPUs . 1–28

Summary . 1–28

2. Managing OpenEdge Database Resources . 2–1
OpenEdge database internals . 2–2

Understanding database blocks . 2–2
Other block types. 2–4

Contents

iv
Understanding memory internals . 2–8
Understanding shared memory resources . 2–10

Understanding how blocks are manipulated . 2–16
Record block manipulation . 2–16
Index block manipulation . 2–19

Optimizing data layout . 2–20
Sizing your database areas . 2–21
Distributing tables across storage areas . 2–22

Optimizing database areas . 2–32
Data area optimization . 2–33
Choosing an appropriate block size . 2–33
Primary recovery (before-image) information. 2–35
After-image information . 2–37

Optimizing memory usage . 2–39
Why is buffer hit percentage important?. 2–39
Increasing memory usage . 2–40
Decreasing memory . 2–40

Optimizing CPU usage . 2–41
Understanding the -spin parameter . 2–42
CPU bottleneck: Look at your disk drives. 2–43

3. Performing System Administration . 3–1
Understanding the database administrator’s role . 3–2
Ensuring system availability with trending . 3–3

Trending database areas . 3–3
Trending application load . 3–5
Trending operating system information . 3–6
Trending system memory . 3–7
Trending system disks . 3–8
Setting alerts for variable extent growth . 3–10
Additional factors to consider in trending . 3–10
Process monitoring. 3–10
Testing to avoid problems . 3–11

Ensuring system resiliency . 3–12
Why do backups?. 3–12
Creating a complete backup-and-recovery strategy. 3–13
Using PROBKUP versus operating system utilities 3–16
After-imaging implementation and maintenance 3–20
Testing your recovery strategy . 3–22

Maintaining your system . 3–23
Daily monitoring tasks . 3–24
Monitoring the database log file . 3–24
Monitoring area fill . 3–25
Monitoring buffer hit rate . 3–27

Contents
Monitoring buffers flushed at checkpoint . 3–28
Monitoring system resources (disks, memory, and CPU) 3–28
Periodic monitoring tasks . 3–33
Database analysis utility . 3–33
Index rebuild utility . 3–34
Index compact utility . 3–35
Index fix utility . 3–35
Table move utility . 3–36
Index move utility . 3–36
Running the utilities. 3–36
Truncate BI and BIGROW . 3–39
Understanding dump and load . 3–39

Profiling your system performance . 3–41
Establishing a performance baseline . 3–41
Performance tuning methodology . 3–42

Advantages and disadvantages of monitoring tools . 3–44
Common performance problems . 3–46

Disk bottleneck causes and solutions . 3–46
Memory bottleneck causes and solutions . 3–50
CPU bottleneck causes and solutions . 3–52

Other performance considerations . 3–54
Conclusion . 3–57

Periodic event administration . 3–57
Annual backups . 3–58
Archiving . 3–58
Application modifications . 3–59

4. Guidelines for Applying Fathom. 4–1
Introduction . 4–3
Making practical resource monitoring decisions . 4–3

Before you install . 4–4
Initial installation settings . 4–5
Post installation configuration tasks . 4–6

Configuring Fathom for your environment . 4–17
Determining the location and number of FathomTrendDatabases 4–18
Isolating the FathomTrendDatabase. 4–19

Remote monitoring . 4–20
What resources can be managed? . 4–20
Limitations of remote monitoring . 4–21
Remote database monitoring . 4–21
OpenEdge server support . 4–21
System management support . 4–21
Setup for remote monitoring . 4–21

Performance considerations . 4–22
v

Contents

vi
Configuration Advisor . 4–23
What is the Configuration Advisor? . 4–23
Who is it for? . 4–23
How does it work? . 4–23

The File Monitor . 4–25
File Age . 4–27
File Exists . 4–28
File Growth Rate . 4–28
File Modified . 4–28
File Size . 4–29

Creating custom reports using 4GL . 4–29
Viewing archived data . 4–32

Creating custom jobs . 4–33
Extending usefulness of existing Fathom functions . 4–35

After-image administration . 4–35
Uses beyond monitoring. 4–37
Fathom for system sizing . 4–38

Troubleshooting your Fathom installation . 4–40
Frequently asked questions and answers . 4–41

Conclusion . 4–45

Glossary . Glossary–1

Index . Index–1

Contents

vii

Figures

Figure 1–1: RAID 0: Striping . 1–11
Figure 1–2: RAID 1: Mirroring . 1–12
Figure 1–3: RAID 10 . 1–14
Figure 1–4: RAID 5 . 1–16
Figure 1–5: Windows XP Performance Monitor . 1–26
Figure 1–6: Monitoring CPU activity in Fathom . 1–27
Figure 2–1: RM block . 2–3
Figure 2–2: Viewing raw VST data in Fathom Management 2–6
Figure 2–3: Displaying storage area utilization in Fathom Management 2–8
Figure 2–4: Viewing locks and latches activity in Fathom Management 2–9
Figure 2–5: Shared memory resources . 2–11
Figure 2–6: Shared memory resource—adding remote clients 2–12
Figure 2–7: RM block allocation decision tree . 2–17
Figure 2–8: Extents . 2–27
Figure 2–9: Primary recovery area . 2–30
Figure 2–10: Checkpoint summary . 2–31
Figure 2–11: Latch summary in Fathom Management . 2–43
Figure 3–1: Trending a CPU resource . 3–6
Figure 3–2: Monitoring buffer hit rate in Fathom . 3–27
Figure 3–3: Windows Task Manager . 3–30
Figure 3–4: CPU Summary Report . 3–31
Figure 3–5: File System Operations view . 3–32
Figure 3–6: Viewing buffers flushed in Fathom . 3–56
Figure 3–7: Monitoring user requests in Fathom . 3–60
Figure 4–1: Job Create view . 4–8
Figure 4–2: Enabling trending . 4–10
Figure 4–3: Advanced trending settings . 4–11
Figure 4–4: Customized My Fathom page . 4–15
Figure 4–5: Configuration Advisor . 4–24
Figure 4–6: Create File Monitor . 4–26
Figure 4–7: Available File Monitor Rules . 4–27
Figure 4–8: Job Completion Actions and Alerts . 4–36
Figure 4–9: Historical data . 4–39

Contents

viii

Tables

Table 3–1: Advantages and disadvantages of PROBKUP 3–19
Table 3–2: Advantages and disadvantages of operating system utilities 3–20
Table 3–3: Advantages and disadvantages of After-imaging replication 3–22
Table 3–4: Advantages and disadvantages of Fathom Replication 3–22
Table 3–5: Advantages and disadvantages of system tools 3–44
Table 3–6: Advantages and disadvantages of PROMON . 3–44
Table 3–7: Advantages and disadvantages of VSTs . 3–45
Table 3–8: Monitoring with Fathom Management . 3–45

Contents
Examples

Example 3–1: sar command and output . 3–7
Example 3–2: Using sar to monitor system resources . 3–29
Example 3–3: PROMON Block Access screen . 3–43
Example 3–4: Viewing disk variance using sar . 3–47
Example 3–5: PROMON Activity screen . 3–55
Example 4–1: Typical view . 4–29
Example 4–2: 4GL program to display database activity summary 4–30
Example 4–3: 4GL program to display resource information 4–31
Example 4–4: Code to display archived database summary information 4–32
Example 4–5: Korn shell example . 4–34
Example 4–6: Perl example . 4–34
ix

Contents

x

Preface
This Preface contains the following sections:

• Overview

• Purpose

• Fathom Management with OpenEdge or Progress

• Audience

• How to use this manual

• Organization

• Typographical conventions

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
Overview

This manual documents some of the best practices for maintaining your Progress®
OpenEdge™-based application. An application is composed of many distinct pieces that
interact with each other. In very general terms, an application contains the following elements:

• Hardware:

– Disks — The physical storage of the system.

– Memory — The link between the disks and the CPU.

– CPU — The computing engine of the system.

• Operating system

• Software

Purpose

This manual begins by discussing the internals of the system, such as disks and memory, and
builds on this information to explain the OpenEdge database and how it uses these resources.
This manual then focuses on to how to best manage your system as a whole. First is the heart of
the system, with a discussion of hardware best practices. Then, the internal database resources
are detailed, emphasizing the administration of the system and the application as a whole,
including the applicability of using Fathom™ Management as a solution to these issues. Finally,
installation options and best practices for Fathom Management, as well as some basic
troubleshooting hints, are discussed.
Preface–2

Preface
Fathom Management with OpenEdge or Progress
Fathom Management Version 3.0A runs against the following:

• OpenEdge 10.0B.

• Progress Version 9.1D and the 9.1D09 service pack.

For the sake of simplicity, the procedures and screen shots provided in this manual refer to
running Fathom against OpenEdge 10.0B. However, be assured that unless indicated otherwise,
the procedures are the same for both Progress Version 9.1D with the 9.1D09 service pack and
OpenEdge 10.0B. For example, if a procedure refers to an OpenEdge database, the procedure
applies to a Progress database as well.

Audience

This manual is a guide for both database and system administrators.

How to use this manual
The elements of your system need to be treated as a whole rather than a sum of the individual
parts; a modification in one area often affects other areas. This manual discusses each
component individually, and then discusses each component’s interaction with the system as a
whole. You should read this manual from cover to cover before making any changes to your
system.The techniques discussed in this manual could cause problems instead of fixing them if
the tools are used in isolation from the bigger picture. Some details have been included to
provide a greater understanding of the inner workings of the OpenEdge database; however, the
goal is not to document OpenEdge internals, but rather to provide information that can aid in
making design decisions and avoiding pitfalls.
Preface–3

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
Organization
This manual contains the following chapters:

Chapter 1, “Managing System Resources”

Details the pertinent issues regarding the hardware resources of a typical system. It
provides configuration recommendations and information concerning what to look for to
anticipate problems before they occur.

Chapter 2, “Managing OpenEdge Database Resources”

Discusses in detail database internals and configuration considerations.

Chapter 3, “Performing System Administration”

Ties together concepts learned in the previous chapters. It details how to provide database
availability, resiliency, and performance, and consideration for periodic maintenance tasks
such as annual backups, data archiving, and schema changes.

Chapter 4, “Guidelines for Applying Fathom”

Discusses various install and configuration issues and provides best practices for Fathom
Management.

“Glossary”

Contains definitions of database and Fathom Management terms.
Preface–4

Preface
Typographical conventions

This manual uses the following typographical conventions:

Convention Description

Bold Bold typeface indicates commands or characters the user types, or
the names of user interface elements.

Italic Italic typeface indicates the title of a document, provides
emphasis, or signifies new terms.

SMALL, BOLD
CAPITAL LETTERS

Small, bold capital letters indicate OpenEdge™ key functions and
generic keyboard keys; for example, GET and CTRL.

KEY1-KEY2 A hyphen between key names indicates a simultaneous key
sequence: you press and hold down the first key while pressing the
second key. For example, CTRL-X.

KEY1 KEY2 A space between key names indicates a sequential key sequence:
you press and release the first key, then press another key. For
example, ESCAPE H.

Syntax:

Fixed width A fixed-width font is used in syntax statements, code examples,
and for system output and filenames.

Fixed-width italics Fixed-width italics indicate variables in syntax statements.

Fixed-width bold Fixed-width bold indicates variables with special emphasis.

UPPERCASE
fixed width

Uppercase words are Progress® 4GL language keywords.
Although these always are shown in uppercase, you can type them
in either uppercase or lowercase in a procedure.

This icon (three arrows) introduces a multi-step procedure.

This icon (one arrow) introduces a single-step procedure.
Preface–5

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
Preface–6

1
Managing System Resources

This chapter describes the various resources used by the Progress® OpenEdge™ database, as
well as other applications on your system, and it gives you a greater understanding of each
resource’s importance in meeting your needs. Each resource is described individually, and
various methods for monitoring are discussed. You will also learn about the importance of
resource trend analysis. Tracking resource use and availability over time is the only way to
obtain a long-term picture of the health of the system and allows the system administrator to
plan accordingly.

This chapter discusses the resources in reverse performance order, from slowest (disk) to fastest
(CPU):

• Managing disk capacity

• Managing memory usage

• Managing CPU activity

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
Managing disk capacity

The disk system is the most important resource for a database. Since it is the only moving part
in a computer, it is also the most prone to failure. Reliability aside, a disk is the slowest resource
on a host-based system, and it is the point where all data resides.

There are three overall goals for a database administrator in terms of disk resources. They are:

• Quantity — Have enough disk space to store what you need.

• Reliability — Have reliable disks so your data will remain available to the users.

• Performance — Have the correct number of disks running at the maximum speed to meet
your throughput needs.

These goals sound simple, but it is not always easy to plan for growth or to know what hardware
is both reliable and appropriate to meet your needs. With these goals in mind, this section
examines the problems that might present roadblocks to fulfilling each of these goals. (For
example, it is essential to have enough disk space to meet your storage needs.) The individual
portions of the database are described in detail later in this manual.

Ensuring adequate disk storage

The following sections describe how to determine if you have adequate disk storage:

• Understanding data storage.

• Determining data storage requirements.
1–2

Managing System Resources
Understanding data storage

The following is a minimum list of the critical data stored on your system. Used in this context,
the term “data” is a more inclusive term than one that defines simple application data. Data can
include:

• Databases.

• Before-image files.

• After-image files.

• Application files (OpenEdge, 4GL or SQL code, third-party applications).

• Temporary files.

• Operating systems.

• Swap or paging files.

• Client files.

The term “data” also references other possible data storage requirements, which include:

• A backup copy of the database.

• Input or output files.

• A development copy of the database.

• A test copy of the database.

If this information is already stored on your system, you know (or can determine) the amount
of data you are storing.

If you are putting together a new system, planning for these data storage elements can be a
daunting task. You will need to have a deep understanding of the application and its potential
hardware requirements with little or no data points from which to work. One of the first things
you need to know is how many data records you will be storing in each table of your database.
Database storage calculations are discussed in Chapter 2, “Managing OpenEdge Database
Resources.” However, it is essential to review with the users (or inspect existing databases) to
estimate the initial number of records in each table of the database.
1–3

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
Determining data storage requirements

In existing database environments, the first step in determining data storage requirements is to
to take an inventory of your storage needs. The types of storage are:

• Performance oriented — Database or portions of databases, before-image (BI),
after-image (AI).

• Archival — Historical data, backups.

• Sequential or random — Various RAID types as discussed in the “Increasing disk
reliability with RAID” section on page 1–9.

You perform a detailed analysis of your current needs and projected growth to estimate storage
requirements. The following sections describe this analysis process.

Determining current storage using operating system commands

To use the operating system to determine current storage usage, use one of the following
options:

• df to determine the amount of free space available on most UNIX systems. There are
switches (-k to give the result in kilobytes and –s to give summary information) that will
make the information easier to read.

• bdf on HPUX to report the amount of free space available.

• The disk properties option on Windows to provide a graphical display of disk storage
information.
1–4

Managing System Resources
Determining current storage using Fathom

Fathom™ Management provides a quick method for determining current storage usage.

To determine current storage usage with Fathom:

1. From the Fathom Management console, select Resources from the menu bar.

2. Expand the File Systems category in the detail frame (the right-hand frame).

3. Select the file system you want more information about. The File System page appears.
The File system space used section provides a detailed, graphical representation of your
current file system usage:

Examining your growth pattern

Many companies experience exponential growth in their data storage needs. The business might
grow to meet demand or might absorb additional data due to acquisition. The database
administrator needs to be “in the loop” when business decisions are being made to be able to
plan for growth. Some growth is warranted, but in most cases, a great deal of data is stored that
should be archived out of the database and put on backup media. For information that is not
directly related to current production requirements, one option is to use a secondary machine
with available disk space. This machine can serve as both secondary storage for archival data
and as a development or replication server. By moving data that is not mission-critical off the
production machine to another location, you can employ less expensive disks on the archival
side and more expensive disks for production use.
1–5

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
Moving archival data off the production machine

It is important to fully understand how archived data will be used, if at all, before making any
plans to move it off the production system. Some users might want to purge the data, but you
should first archive the data so it can be easily recovered, if necessary. Your archive method can
be as simple as a tape; however, it is important to remember that you might need to read this
tape in the future. It will do you no good if it contains data in a format you can no longer use.
You should archive the information to ACSII or some other format that will not depend on
third-party software. In particular, if it is OpenEdge data, it is always advisable to archive the
data in a standard OpenEdge format.

Examining system storage information trends

Viewing system storage information and keeping track of it over a period of time can help to
determine growth patterns. You can write your own application to track storage information by
taking the output from the operating system and placing it in a file or in a database. Or, instead
of writing and maintaining your own application, you can use Fathom Management to gather
this information. Fathom also allows you to track and report on your collected data.

Before you can begin to collect storage information within Fathom, you need to create a
monitoring plan with trending options setup for system disks. See the Resource Monitoring
Guide for detailed instructions on creating a resource monitoring plan.
1–6

Managing System Resources
Once you have created a monitoring plan, you can view activity in Fathom.

To view activity in Fathom:

1. From the Fathom Management console, select Resources from menu bar.

2. Select Disks from the detail frame to display all of the available disks on your system:

3. Select the disk that you want to monitor. The monitoring plan that you have defined for
the selected disk appears, as shown in this example:

Note: If the resource is not defined you can define the resource properties and associated
monitoring plan now.

4. Repeat Step 1 through Step 3 for each disk you want to monitor.
1–7

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
Comparing expensive and inexpensive disks

Disks are disks are disks, aren’t they? No, of course not. When you buy a disk, you are really
buying two things: storage capacity and throughput capacity. For example, if you want to buy
72 gigabytes (GB) of capacity, you can purchase either a single 72GB unit or four 18GB units.
The storage capacities of these disks are exactly the same, but the four-drive configuration has
potentially four times greater throughput capacity. Each drive is capable of doing approximately
100 input/output (I/O) operations per second regardless of its size. The four-drive system has
the potential to perform 400 I/O operations per second.

It is generally less expensive to purchase fewer larger disks to get to your desired capacity for
a number of reasons. First, the 72GB drive is only marginally more expensive than a single
18GB drive, but buying four 18GB drives to obtain the same capacity as a 72GB drive will
substantially increase your cost. Second, you need to have the rack space to hold these
drives—more rack space, more cost. Third, you might need more controllers to efficiently run
additional disks—adding to the cost.

However, if performance is important, you should have a greater number of physical disk drives
to give you the greatest throughput potential. The additional cost of the multi-disk solution is
offset by increases in performance (user efficiency, programmer time, customer loyalty, and so
on) over time. If you are only using the database as archival storage and you do not care about
the performance of the database, fewer large disks are recommended to decrease cost. This
approach allows you to store the greatest amount of data on the fewest number of disks.

Determining the location of data on disks

The outer 25 percent of the disk is approximately 10 percent to 15 percent faster than the inner
25 percent. Use this point to your advantage when configuring your disks. Some operating
system and disk manufacturers allow you to select which portion of the disk to use for each
allocation; others place the first disk partition on the outer portion of the disk and the last on the
inner portion. In either case, using the outer portion of the disk provides the greatest
performance potential. In large, high-volume environments, production data should only fill the
outer 75 percent to 80 percent of each disk. This leaves the innermost portion for static storage,
such as backups or maintenance areas.
1–8

Managing System Resources
Understanding cache utilization

Disk vendors provide for caching on their disk arrays to increase performance. However, there
is a limit to how effective this cache can be. If your system is doing hundreds of thousands of
reads per hour on your system, the cache becomes saturated after a short period of time. Under
these conditions, the system quickly degrades to conventional disk speeds. It is important to
consider all disks, regardless of manufacturer’s published guidelines, as performing at
conventional speeds. Otherwise, you will experience a larger problem than you would expect
when the cache is saturated.

For example, an index rebuild is a process that saturates the disk cache quickly. This process
performs many modifications in a short time frame. The ability of OpenEdge to saturate the disk
cache has been demonstrated on disk arrays costing millions of dollars. The cache is nice to have
and will provide a benefit, but don't let the benefit sway you from regarding the layout of these
disks as identical to any other disk.

Increasing disk reliability with RAID

It is important to understand the terms reliability and performance as they pertain to disks.
Reliability is the ability of the disk system to accommodate a single- or multi-disk failure and
still remain available to the users. Performance is the ability of the disks to present information
to the users in an efficient manner.

Adding redundancy almost always increases the reliability of the disk system. The most
common way to add redundancy is to implement a redundant array of inexpensive disks
(RAID).

There are two types of RAID:

• Software

Software RAID can be less expensive. However, it is almost always much slower than
hardware RAID, since it places a burden on the main system CPU to manage the extra disk
I/O.

• Hardware

The most commonly used hardware RAID levels are: RAID 0, RAID 1, RAID 5, and
RAID 10. The main differences between these RAID levels focus on reliability and
performance as defined earlier in this section.
1–9

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
The following sections discuss the different RAID types:

• RAID 0: Striping

• RAID 1: Mirroring

• RAID 10 Or 1 + 0

• RAID 5

It is possible to have both high reliability and high performance. However, the cost of a system
that delivers both of these characteristics will be higher than a system that is only reliable or
only efficient.

RAID 0: Striping

RAID 0: Striping has the following characteristics:

• High performance — Performance benefit for randomized reads and writes.

• Low reliability — No failure protection.

• Increased risk — If one disk fails, the entire set fails.
1–10

Managing System Resources
Figure 1–1 illustrates how striping works.

Figure 1–1: RAID 0: Striping

In Figure 1–1 there are three disks. The information that is stored by the user is distributed
across all three drives. The amount of information stored on a single device is called a chunk or
stripe. As the figure shows, the stripes are distributed across the RAID array.

Note: The stripe size is generally tunable, from a small size (8K) to a large size (several
megabytes). The ability to tune stripe size varies from vendor to vendor. Reference your
vendor’s product documentation for details on how to tune this setting.

Testing has shown that 128K and larger stripes are generally the optimal size for performance
with an OpenEdge database that has an 8K-block size. (An 8K-block size is generally the most
efficient block size for an OpenEdge database). In Windows, these stripes appear to the
operating system or to the user as one file system or “drive.” In Figure 1–1, each of these disks
is assumed to be 128K stripes. Therefore, if a file of 384K crosses all three disks, the disks work
together to send information to the user. While this arrangement helps performance, it can cause
a potential problem. If one disk fails, the entire file system is corrupted.

1
2
3
.
.
.

1
4
.
.
.

2
5
.
.
.

3
6
.
.
.

1–11

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
RAID 1: Mirroring

RAID 1: Mirroring has the following characteristics:

• Medium performance — Superior to conventional disks due to “optimistic read.”

• Expensive — Requires twice as many disks to achieve the same storage and twice as many
controllers if you want redundancy at that level.

• High reliability — Loses a disk without an outage.

• Good for sequential reads and writes — The layout of the disk and the layout of the data
is sequential, promoting a performance benefit, provided that you can isolate a sequential
file to a mirror pair.

Figure 1–2 shows a simple example of mirroring.

Figure 1–2: RAID 1: Mirroring

1
2
3
.
.
.

1
2
3
.
.

P1
P2
P3
.
.

1–12

Managing System Resources
In Figure 1–2, the first disk is the primary disk and the second disk acts as the parity or mirror
disk. The role of the parity disk is to keep an exact synchronous copy of all of the information
stored on the primary disk. If the primary disk fails, the information can be retrieved from the
parity disk.

Ensure that you have “hot swappable” disks so repairs can be made without bringing down the
system. Most RAID 1 disks are “hot swappable.” Note that there is a performance penalty
during the resynchronization period.

Both disks are actually primary, and store parity and data. On a read, the disk that has its
read/write heads positioned closer to the data will retrieve information. This data retrieval
technique is known as an optimistic read. An optimistic read can provide a maximum of 15
percent improvement in performance over a conventional disk. When setting up mirrors, it is
important to look at which physical disks are being used for primary and parity information, and
to balance the I/O across physical disks rather than logical disks.

RAID 10 Or 1 + 0

RAID 1 + 0, more commonly referred to as RAID 10, has the following characteristics:

• High reliability. Provides mirroring and striping.

• High performance. Good for randomized reads and writes.

• No more expensive than RAID 1 Mirroring.

RAID 10 resolves the reliability problem of striping by adding mirroring to the equation.
1–13

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
Figure 1–3 shows the disks on the left-hand side as primary disks. The primary disks are striped
together and then mirrored to the disks on the right-hand side. All four disks are acting as both
primary and parity disks.

The performance of this setup is an improvement over most other configurations because RAID
10 supports striping and optimistic reads. This is the preferred configuration for most
applications because it provides the highest performance and availability with the lowest
maintenance in terms of load balancing.

Figure 1–3: RAID 10

1
2
3
.
.
.

1
3
.
.
.

P1
P3
.
.
.

2
4
.
.
.

P2
P3
.
.
.

1–14

Managing System Resources
RAID 5

RAID 5 has the following characteristics:

• High reliability—provides good failure protection.

• Less expensive than RAID 1.

• Low performance—performance is poor for writes due to the parity’s construction.

• Running in an “absorbed” state will provides diminished performance throughout the
application because the information must be reconstructed from parity.

RAID 5 is less expensive to install than other RAID types. Also, there is only a 20 percent
reduction in storage capacity to store the parity information as compared to a 50 percent
reduction for either RAID 1 or RAID 10. However, this initial cost savings will be consumed
over the life of the array in lost performance.

The drawback of RAID 5 is magnified during disk writes, which On-Line Transaction
Processing (OLTP) does quite often. For every write, the primary information is written and
then the parity is calculated and stored. This is generally done through the same controller, so
writes are three times as costly as on conventional disk: write primary, calculate parity, and
write parity.

A mirrored system is commonly configured with two controllers to enable dual writes to occur
in parallel. If your application is 100 percent read, you might want to consider RAID 5.
Otherwise, RAID 1 or RAID 10 would be the better way to protect your data.

Claims that the RAID 5 are “just as fast” as RAID 1 or RAID 10 should be closely evaluated.
In benchmarks or low-volume situations that might not adequately test a RAID 5 type, the
performance wall is generally not encountered. However, with actual production usage, when
you exceed the ability of cache to meet your needs, you will hit this wall very hard.

Note: Progress Software Corporation recommends against using RAID 5 with OpenEdge
databases when performing updates during online transaction processing.
1–15

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
Figure 1–4 shows a five-disk RAID 5 array. Notice how the parity information, preceded by the
letter “P,” is interleaved with the primary data throughout all the disk. If you experience a disk
failure, you will not lose data. However, your performance will be severely degraded because
information from the lost disk will have to be extracted from calculated parity.

Figure 1–4: RAID 5

1
2
3
.
.
.

1
6
11
16

P17–20
.
.
.

2
7
12

P13–16
17
.
.
.

3
8

P9–12
13
18
.
.
.

4
P5–8

9
14
19
.
.
.

P1–4
5
10
15
20
.
.
.

1–16

Managing System Resources
OpenEdge in a network storage environment

OpenEdge supports reliable storage of data across the network, provided your operating system
complies with the rules of NFS Protocol Version 3.0. Though this environment is supported, it
is not recommended because there can be significant performance issues with this
configuration.

Storage Area Networks (SANs) are becoming more popular than NFS Protocol. You can
purchase one storage device and attach it to several hosts through a switching device. The same
rules apply in a SAN environment as they do in a conventional or RAID environment. The SAN
maintains database integrity. Multiple machines have access to the disks in a SAN. Therefore,
you need to be very aware of the drive/controller usage and activity of other hosts using the
SAN. This heightened awareness is due to the SAN’s multi-machine support.

See your SAN vendor’s documentation regarding monitoring to see if they provide an interface
into the activity levels of the disks in the array.

Summary

Disks are your most important resources. Begin by purchasing reliable disk array systems,
configure them properly to allow consistent, fast access to data, and monitor them for
performance and fill rate. Remember to monitor them and keep track of their fill rate so you do
not run out of space. Additionally, you should trend the consumption of storage space to allow
planning time for system expansion.
1–17

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
Managing memory usage

The primary function of system memory is to reduce disk I/O. Memory speed is orders of
magnitude faster than disk speed. From a performance perspective, reading and writing to
memory is much more efficient than to disk. Memory is not a durable storage medium.
Long-term storage on memory is not an option. There are RAM disks that do provide durable
data storage; however, they are cost prohibitive for most uses.

While memory is fairly reliable, it is not infallible. Normally, if one memory chip is bad, it will
not compromise the system.

One way to improve memory reliability is to configure your system without interleaved
memory. Interleaved memory is like disk striping. It is good for performance but bad for
reliability. If one chip fails, all of interleaved memory is compromised. Therefore, for high
availability systems, it is best to avoid interleaved memory. The trade off of performance versus
high availability is not a good choice for any business activity that requires high system
availability. There will be exceptions to this rule as vendors devise ways of adding redundancy
at the memory level.

Maximizing memory management includes:

• Allocating memory for the right tasks.

• Having enough memory to support your needs.

OpenEdge-specific memory allocation is covered later in this manual.

How memory works

To understand how to allocate memory, you need to understand how memory works. There are
older and newer memory models.

Older systems employ the concept of swapping to manage memory. Swapping is the process of
taking an entire process out of memory, placing it on a disk in the “swap area” and replacing it
with another process from disk. Newer systems swap only in extreme, memory-lean situations.
Swapping is very performance-intensive and should be avoided at all costs.
1–18

Managing System Resources
New systems manage memory with paging. There are two types of paging:

• Physical

Physical paging identifies when information is needed in memory. Information is retrieved
from disk (paging space).

• Virtual

Virtual paging occurs when information is moved from one place in memory to another.

Both kinds of paging occur on all systems. Under normal circumstances, virtual paging does not
degrade system performance to any significant degree. However, too much physical paging can
quickly lead to poor performance.

How much paging is too much?

The answer to this question varies according to these elements: hardware platforms, operating
systems, and system configurations. Because virtual paging is fairly inexpensive, a significant
amount can be done with no adverse affect on performance. Physical paging will usually be high
immediately after booting the system, and it should level off at a much lower rate than virtual
paging. Most systems can sustain logical paging levels of thousands of page requests per second
with no adverse effect on performance. Physical paging levels in the thousands of requests
would be too high in most cases. Physical paging should level into the hundreds of page requests
per second on most systems.

If physical paging continues at a high rate, then you need to adjust memory allocation or install
more memory. It is important to remember that these numbers should only be used as guidelines
because your system might be able to handle significantly more requests in both logical and
physical page requests with no effect on performance. This underscores the need to baseline
your system, as outlined in Chapter 3, “Performing System Administration,” to establish the
right levels of activity for your system.
1–19

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
Estimating memory requirements

To determine memory usage needs, perform an inventory of all of the applications and resources
on your system that use memory. For OpenEdge-based systems, these processes include:

• Operating system memory.

• Operating system required processes.

• Operating system buffers.

• OpenEdge-specific memory.

• OpenEdge executables.

• Database broker.

• Remote client servers.

• Other OpenEdge servers.

• Client processes (batch, self-service, and remote).

Operating system memory estimates

Operating system memory usage varies from machine to machine. However, the following list
identifies reasonable memory estimates:

• Small systems—range from 32MB to 64MB.

• Large systems—range from 128MB and higher.

Generally, a small system has fewer than 100 users and a large system has hundreds of users.
This number varies because there are systems that have few users, but many processes that
require a large system to run the application.

Operating system buffers are generally a product of how much memory is in the machine. Most
systems will reserve 10 to 15 percent of RAM for operating system buffers. Operating system
buffers are tunable on most systems. Review your operating systems vendor’s product
documentation for details.
1–20

Managing System Resources
OpenEdge-specific memory estimates

OpenEdge uses demand-paged executables. Demand-paged executables, also known as shared
executables, reserve text or static portions of an executable that is placed in memory and shared
by every user of that executable. For brokers and servers, the dynamic or data portion of the
executable is stored in memory (or swap/paging files) for every user or instance of the
executable.

Other OpenEdge memory allocation is estimated based on the number of users and a some of
the startup parameters for the brokers.

Broker parameters

To estimate the amount of memory used by the database broker, add 10 percent to the database
buffers parameter (-B). However, if you have a high value for lock table entries (-L) or index
cursors (-c) you will need to increase this estimate. Record locks consume 14 to 18 bytes each
and index cursors consume 64 bytes each. Also, if you have a very low setting for database
buffers (less than 2000), the overhead for the other parameters will be greater than 10 percent.

For example, if database buffers (-B) are set to 20,000 on an 8KB-block-size database, you
allocate 160,000KB in database buffers. If you add 10 percent to this amount, your total
allocation will be approximately 176,000KB, or 176MB for the database broker.

Remote client servers are fairly straightforward to estimate, as each server will use
approximately 3MB to 5MB. The number of remote client servers is limited by the -Mm
parameter. The default number is 4.

Client or user parameters

Client processes will vary, depending on the startup options chosen. However, with fairly
average settings for –mmax and –Bt, the new memory allocated per process will be 5MB to
10MB. This range applies to application server processes, too. Remote users generally use more
memory (10MB to 20MB per process) because they require larger settings for –mmax and –Bt to
provide acceptable performance across the network. The memory requirements for a remote
user (that is, –mmax and –Bt settings) do not impact the memory requirements on the host.
1–21

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
Creating a budget for memory

Here is an example of a machine with 1GB of RAM, 50 local users, and one 8KB-block-size
database using 10,000 database buffers.

Operating system memory:

• 28MB OS.

• 100MB OS buffers.

OpenEdge memory:

• 16MB executable.

• 88MB database broker ((8KB * 10000) * 1.1).

• 250MB to 500MB for users.

Total memory requirement: 582MB to 832MB.

The system can run without significant paging or swapping, allowing you to use the additional
memory for other applications or to further increase the memory utilization for OpenEdge by
increasing database broker parameters, like –B. Once the broker is as efficient as possible, you
can look into increasing local user parameters like –mmax.

In many cases there will be third-party applications running on the system, too. Consider the
memory used by these additional applications to accurately determine memory estimates.
1–22

Managing System Resources
Trending analysis

The key to good capacity planning is conscientious, well-structured trending analysis. You need
to look at your system throughout the day and throughout the week to see when you are hitting
peak memory usage. Once this peak is established, watch the system more closely at this peak
time to determine specifically where memory is being used.

There are several ways to write your own trending application and several applications that will
allow you to look at memory over time to ensure that you have enough memory to run your
business now and in the future. Various operating system utilities allow you to examine, in real
time, how much memory the system is using. For example, the UNIX sar command allows you
to accumulate this information over time. On Windows, the Performance Monitor utility
displays current information about various system resources including memory. To run the
Performance Monitor utility, type perfmon at the command prompt.

The amount of “free memory” available is not a helpful statistic. Most operating systems will
not reclaim memory until there is little or no free memory. The absence of free memory does
not indicate a problem. It is important to look at other metrics like reclaims, scan rate, physical
page faulting, and swapping to understand the true memory situation.

It is common to see spikes in the readouts. However, if those spikes are short-lived—less than
1 minute—you can disregard them. Most monitoring utilities provide short sampling periods (5
to 10 seconds) because the screen is more interesting to look at if it is actively moving. It is
better to look at samples that span 1 to 5 minutes to give yourself a more accurate picture of
performance.

On UNIX systems you can also look at the process size from the process status (ps) command.
However, this does not yield accurate results because the size of the process will include both
local and shared memory. This will cause you to believe that you have allocated more memory
for these processes than is actually in use. Therefore, the number of physical pages per second
is a much better indicator of your memory usage status.
1–23

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
Managing CPU activity

All resources affect CPU activity. Slow disks increase CPU activity by increasing the waits on
I/O. If there is significant context switching, system delay time will increases.

Understanding CPU activity

To understand the meaning of a busy CPU, you have to understand the components of CPU
activity. CPU activity is broken into four categories:

• User time — The amount of time spent performing user tasks. This is the main component
that you paid for when you bought the CPU capacity for the system.

• System time — The amount of time devoted to system overhead like paging, context
switches, scheduling, and various other system tasks. You can never completely eliminate
this overhead, but you can keep it to a minimum. Refer to Chapter 3, “Performing System
Administration,” for details.

• Wait on I/O time — The amount of time the CPU is waiting for another resource (such
as disk I/O).

• Idle time — The amount of unallocated time for the CPU. If there are no jobs in the
process queue and the CPU is not waiting on a response from some other resource, then
the time is logged as idle. On some systems, wait on I/O is logged as idle. This is because
the CPU is idle and waiting for a response. However, this time does not accurately reflect
the state of performance on the system.

On Windows, CPU activity is broken into the following categories:

• User time — The amount of time spent doing user tasks.

• Privileged time —The amount of time devoted to system overhead like paging, context
switches, scheduling, and various other system tasks.

• Idle time — The amount of unallocated time for the CPU. Note that Windows does not
track wait on I/O time. On Windows, wait time is logged as idle time.

• Processor time — An accumulation of other processor metrics. You can think of
100 – processor time = idle time.
1–24

Managing System Resources
Tuning your system

To the inexperienced administrator, time spent waiting on I/O seems highly undesirable. If I/O
wait is having a noticeable impact on performance, it is clearly an issue. However, not all wait
on I/O is cause for concern. Time is reported to this statistic whenever the CPU has completed
a task and is waiting on some other system resource, such as disk or memory. Given that CPUs
are much faster than other resources, the CPU needs to wait on these slower resources some
percentage of the time.

In tuning a system, it is desirable to have some idle time available, but this is not a necessity. It
is possible to use 100 percent of the CPU time on a two-CPU system with two processes. This
would not mean that the system was performing poorly; this means the system is running as fast
as it can run. In performance tuning, you are trying to push the bottleneck to the fastest resource
(CPU). If your processors were 100 percent busy on user time, you would have the system tuned
perfectly. At this point, the only way to improve performance would be to purchase faster or
more CPUs. Similarly, if wait on I/O time increases, this does not necessarily mean that you
have an I/O bottleneck. You need to look at the numbers as ratios of each other. Given ideal
circumstances, it is best to have 70 percent user time, 20 percent system time, 0 percent wait on
I/O, and 10 percent idle time.

The ratio of user time to system time should be approximately 3 to 1. This ratio varies widely
when user time is below 20 percent of total CPU usage, as system time tends to consume a much
larger portion. In some cases, system time is greater than user time due to poor allocation of
resources. However, as you increase user time through performance tuning, system time should
level off at around one-third or less of user time. This can be determined by looking at your CPU
resources from any monitoring tool of your choice.
1–25

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
Figure 1–5 shows an example of the information displayed in the Performance Monitor.

Figure 1–5: Windows XP Performance Monitor

Understanding idle time

Idle time can be positive because it means that the CPUs have capacity to support growth. It is
not necessary for idle time to always be greater than zero. If idle time is zero for prolonged
periods, and there is no significant amount of time logged to wait, you need to look deeper into
CPU activity to determine the correct course of action.

For example, look at the CPU queue depths. CPU queue depth is the number of processes
waiting to use the CPU. If there are always several processes in the queue, you need to either:

• Increase CPU capacity or increase CPU efficiency. (See the “Optimizing CPU usage”
section on page 2–41.)

• Reduce demand by fixing code or moving processing to slow periods of the day.
1–26

Managing System Resources
If wait on I/O is high and there is no idle time, you need to increase disk efficiency (see Chapter
2, “Managing OpenEdge Database Resources”), reduce I/O throughput, eliminate disk variance,
or modify your processing schedule. If wait on I/O is 10 percent or less and you still have idle
time, you do not need to urgently work on the problem. You might want to look at those items
outlined in the previous paragraph, but there might be nothing you can do to resolve the issue.

Monitoring your system

Monitoring your system throughout the day can help you to determine how to increase
efficiency. Your system might look fine throughout the business day while you are there to see
what is happening, but at night there might be significant bottlenecks. There are some
applications that do over 70 percent of the total processing in the evening hours. Most
environments have significantly different application makeup in the evening than in the day. A
typical system might do On-Line Transaction Processing (OLTP) from 9 to 5, some end of day
processing from 7 to 12, and decision support after midnight.

There might be things you can modify to take better advantage of system resources. There might
be times of the day where more page writers are needed or you might need to change the times
when things are run.

For example, consider when your organization schedules system backups. If the backup occurs
at the same time you are doing decision support or running your end-of-day programs, you run
the risk of exacerbating any disk bottleneck issues, which in turn might slow performance and
increase waiting on I/O time on your CPU statistics. Sampling your data throughout the day
brings visibility to problems. Tracking this information over time helps you plan new hardware
purchases before the bottleneck becomes a significant problem.

Monitoring CPU performance in Fathom

CPU information is a good item to put on your My Fathom page so you have a visual clue to
CPU performance on your system. When defining your private My Fathom page, you can
select CPU on the Other system resources to show viewlet to have the viewlet shown in Figure
1–6 displayed on your My Fathom page.

Figure 1–6: Monitoring CPU activity in Fathom
1–27

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
Fast CPUs versus many CPUs

In a best-case scenario, you would have a large number of fast CPUs in your system. However
in most cases, you can only afford one or the other: multiple, slower CPUs, or a single, faster
CPU. The benefit of fast CPUs is that they run single-threaded operations very quickly. An
example of a single-threaded OpenEdge operation is an index rebuild. This process scans the
entire database and rebuilds indexes. A machine with one fast CPU will run this process faster
than a machine with multiple slower CPUs, given that all other resources are equal. The index
rebuild process is only run on a periodic basis, so why should you consider this when making
CPU choices? The primary reason is that during an index rebuild your users do not have access
to the database, therefore you want this rebuild to complete as quickly as possible.

However, in most businesses, there are other examples of single-threaded operations that will
be addressed by this architecture decision. End-of-day processing is a good example; you might
need to apply all of your payments prior to being able to run your general ledger trial balance.
On the other hand, multiple CPUs allow you to do two different operations simultaneously. One
user can be entering orders while the other is shipping products. This has obvious benefits to the
business in terms of efficiency.

So, how do you decide? The best way to decide is to look at your options and your application
to determine the best solution. For example, an application that does a significant amount of
single-threaded operations will benefit from a design that has fast CPUs, even at the expense of
having fewer total CPUs in the system. An application that is mostly data entry with little or no
single-threaded operations will benefit from a design that has more CPUs, even at the expense
of each CPU being slower. This is another case where having a deep understanding of your
application and workload will allow you to make intelligent decisions in the system area.

Summary

In this chapter we learned that to effectively manage your system resources, you need to:

• Analyze the requirements for your business.

• Configure the system from those business requirements.

• Measure your resources to ensure system availability.

• Trend resource usage over time to allow for advanced planning.
1–28

2
Managing OpenEdge Database
Resources

Managing resources includes the process of moving potential processing conflicts, or
bottlenecks, to the fastest resource. OpenEdge attempts to make this process transparent, but
there are still some areas that require tuning.

This chapter discusses OpenEdge database internals and various ways to optimize
OpenEdge-based resources to best take advantage of system resources, as outlined in the
following sections:

• OpenEdge database internals

• Understanding how blocks are manipulated

• Optimizing data layout

• Optimizing database areas

• Optimizing memory usage

• Optimizing CPU usage

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
OpenEdge database internals

OpenEdge database internals are presented in this section to help you to better understand how
data is managed by the RDBMS. This topic is not directly related to system management or best
practices. However, you can use the information in this section to help you design your system.
Topics discussed include how the database is laid out on disk and database broker memory
allocation.

Understanding database blocks

Many types of database blocks are stored inside the OpenEdge database manager, and most of
the work to store these database blocks happens behind the scenes. However, it is helpful to
know how blocks are stored so that you can create the best database layout.

The most common database blocks can be divided into three groups:

• Data blocks

• Index blocks

• Other block types

Data blocks

Data blocks are the most common blocks in the database. There are two types of data blocks:
RM blocks and RM chain blocks. The only difference between the two is that RM blocks are
considered full and RM chain blocks are not full. The internal structure of the blocks is the same.
Both types of RM blocks are social. Social blocks contain records from different tables. In other
words, RM blocks allow table information (records) from multiple tables to be stored in a single
block. In contrast, index blocks only contain index data from one index in a single table.

The number of records that can be stored per block is tunable per storage area. See the
“Optimizing data layout” section on page 2–20 for more information.

Each RM block contains four types of information:

• Block header

• Records

• Fields

• Free space
2–2

Managing OpenEdge Database Resources
The block header contains the address of the block (dbkey), the block type, the chain type, a
backup counter, the address of the next block, an update counter (used for schema changes), free
space pointers, and record pointers. The block header is 16 bytes in length. Each record contains
a fragment pointer, which is used by record pointers in individual fields, the Length of the
Record field, and the Skip Table field (used to increase field search performance). Each record
needs a minimum of 15 bytes for overhead storage and contains a Length field, a Miscellaneous
Information field, and data.

Figure 2–1 shows the layout of an RM block.

Figure 2–1: RM block

Block Header

Expansion Space

Records

DB
Key

Block
Type

Chain
Type

Backup
Counter

DB Key
of Next
Block

Update
Counter

Free
Space

Pointers

Record
Pointers

Fragment
Pointer Length Skip

Table Field 1 Field 2 Etc . . .

Length Misc.
Info. Data

RM Block
Header

Single Record

Single Field
2–3

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
Index blocks

Index blocks have the same 16 bytes of header information as data blocks. Index blocks can
store the amount of information that can fit within the block, and that information is compressed
for efficiency. As stated earlier, index blocks can only contain information referring to a single
index.

Indexes are used to find records in the database quickly. All indexes in the OpenEdge RDBMS
are structured as B-trees, and are always in a compressed format. This improves performance
by reducing key comparisons.

There are several key points to consider when discussing the structure of multiple indexes:

• A database can have up to 32,767 indexes.

• There is always one B-tree per index.

• Each B-tree starts at the root.

• The root is stored in an _storageobject record.

For the sake of efficiency, indexes are multi-threaded, allowing concurrent access to indexes.
Rather than locking the whole B-tree, only those nodes that are required by a process are locked.

Other block types

There are several other types of blocks, but only a few that are valuable to understand. These
include:

• Master block

• Storage object block

• Free blocks

• Empty blocks
2–4

Managing OpenEdge Database Resources
Master block

The master block contains the same 16-byte header as other blocks, but this block is used to
store status information about the entire database. It is always the first block in the database and
is found in Area 6. This block contains the “tainted” flags for OpenEdge. Tainted flags tell
OpenEdge there is a problem or abnormality with the database. You can retrieve additional
information from this block using the Virtual System Table (VST) _mstrblk from the
OpenEdge procedure editor:

You can also view this information in the Fathom Management console by viewing raw VST
data.

To view raw VST data for a particular database in Fathom Management:

1. Select Resources from the menu bar.

2. Select the database that contains the data you want to view in the list frame.

3. Select Raw VST Data in the detail frame. A drop-down list of the available VST data for
the selected database appears.

4. Select the VST and format you want to view.

FIND _mstrblk.
DISPLAY _mstrblk WITH SIDE-LABELS.
2–5

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
Figure 2–2 shows an example of the HTML display of the _MstrBlk VST.

Figure 2–2: Viewing raw VST data in Fathom Management
2–6

Managing OpenEdge Database Resources
Storage object block

Storage object blocks contain the addresses of the first and last records in every table by each
index. If a user runs a program that does a find first or find last, it is not necessary to traverse
the index. The find command obtains the information from the storage object block and goes
directly to the record. Storage object blocks are frequently used, so these blocks are pinned in
memory. This availability further increases the efficiency of the request.

Free blocks

Free blocks have a header, but no data is stored in the blocks. These blocks can become any
other valid block type. These blocks are below the high-water mark. The high-water mark is a
pointer to the last formatted block within the database storage area. Free blocks can be created
by extending the high-water mark of the database, extending the database, or reformatting
blocks during an index rebuild. If the user deletes many records, the RM blocks are put on the
RM Chain. However, index blocks can be reclaimed only through an index rebuild or an index
compress.

Empty blocks

Empty blocks do not contain header information. These blocks need to be formatted prior to use.
These blocks are above the high-water mark but below the total number of blocks in the area.
The total blocks are the total number of allocated blocks for the storage area.

To display a storage area utilization page in Fathom Management:

1. Select Resources from the menu bar of the Fathom Management Console.

2. From the list frame, browse to the applicable database and select it.

3. Select Storage Areas in the Operation Views section of the detail frame.
2–7

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
Figure 2–3 shows a database with no free space available. The percentage used and high-water
mark are both at 99 to 100 percent, which means that the database is extending into the variable
extent. If this database did not contain a variable-length extent, the database would crash if a
user tried to extend the database.

Figure 2–3: Displaying storage area utilization in Fathom Management

Understanding memory internals

The primary broker process allocates shared memory for users to access data within the
database. The users also use structures within memory to allow for concurrent access to
information without corrupting this information. For example, if two users are able to update
the same portion of memory with different updates, then only one user’s updates would be
reflected in the database. This type of situation would lead to the incomplete updating of
memory.
2–8

Managing OpenEdge Database Resources
It is important to understand the concept of locking and how it applies to this situation. A locked
record allows an update to complete without interference from other users. A latch is a lock in
shared memory that allows a user to make modification to a memory block without being
affected by other users. This latching approach has been evolutionary since its inception in
Progress Version 6.3. The original latches were crude and heavy handed. A latch was taken for
the entire shared memory pool making other users wait to make their modifications. As of
Progress Version 8, there are multiple latches per resource.

Viewing locks and latches activity in Fathom Management

As shown in Figure 2–4, you can view these latches using Fathom.

Figure 2–4: Viewing locks and latches activity in Fathom Management
2–9

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
To view locks and latches in Fathom Management:

1. Choose Resources from the menu bar of the Fathom Management console.

2. From list frame, browse to the desired database.

3. Select Locks and Latches in the Operation Views section from the database’s detail
frame.

Understanding shared memory resources

Figure 2–5 shows an example of shared memory resources. Note that it does not include all
resources and is only used as an example. Also, this illustration is not to scale because database
buffers account for more than 90 percent of shared memory, and the various latch control
structures account for less than 1 percent.
2–10

Managing OpenEdge Database Resources
Figure 2–5: Shared memory resources

The database buffers are vitally important. They provide a caching area for frequently accessed
portions of the database so that information can be accessed from disk once and from memory
several times. Because memory is so much faster than disk, this provides an excellent
performance improvement to the user if tuned properly. The concept of database buffer tuning
is explored further in the “Profiling your system performance” section on page 3–41.

As Figure 2–5 illustrates, there are many resources inside of shared memory. Local users (both
end-user processes and batch processes) update these structures. If two users access this
database simultaneously and both users want to make an update to the lock table (-L), the first
user requests the resource by looking into the latch control table. If the resource is available, the
user establishes a latch on the resource using an operating system call to ensure that no other
process is doing the same operation. Once the latch is enabled, the user makes the modification
to the resource and releases the latch. If other users request the same resource, they retry the
operation until the resource latch is available. For more information on latching, see the
“Optimizing CPU usage” section on page 2–41.

Latch
control
table

Server
control
table

User
control
table

 . . .

– L

– C

– hash

BI
buffers

AI
buffers

– B

BIW

AIW

APW

APW
2–11

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
The other processes shown in Figure 2–5 are page writers. These Asynchronous Page Writer
(APW) processes write modified database buffers to disk. You can have more than one APW
per database. The other writers, After-image Writer (AIW) and Before-image Writer (BIW),
write after-image and before-image buffers to disk. There can only be a single BIW and a single
AIW per database.

Adding remote clients

Figure 2–6 illustrates how the process of adding remote clients adds a TCP/IP listen socket and
server processes.

Figure 2–6: Shared memory resource—adding remote clients

Latch
control
table

Server
control
table

User
control
table

 . . .

– L

– C

– hash

BI
buffers

AI
buffers

– B

BIW

AIW

APW

APW

Listen
socket

Servers
2–12

Managing OpenEdge Database Resources
The remote clients send a message to the listen socket, which in turn alerts the broker process.
The broker process references the user control table and the server control table to determine if
the user can log in and to which server the user can attach. If the servers are not active, a server
is started, depending on the server parameters for this broker (parameters such as -Mn, -Mi, -Ma,
and so forth). See OpenEdge Data Management: Database Administration for details. Once the
proper server has been determined, a bidirectional link opens between that server and the remote
client. This link remains open until the user disconnects or the broker is shut down.

You can use Fathom Management to monitor the user-to-server relationship.

To monitor the user-to-server relationship:

1. Select Resources from the menu bar.

2. From list frame, browse to the desired database and select it.

3. Select User Activity in the Operation Views section from the detail frame. The Users
page appears:
2–13

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
4. Select the user you are concerned about to display information about the user and the
server to which the user is attached:
2–14

Managing OpenEdge Database Resources
5. Select the server to which the user is attached to determine if there are other users attached
to the same server. Details for the selected server are displayed, as shown:

This detail is particularly helpful when you are seeing performance problems that are only
impacting a subset of clients. If those clients are sharing a server with a report process or
some other read-intensive operation, you can determine the problem and take corrective
action.
2–15

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
Understanding how blocks are manipulated

There are some operations that take place behind-the-scenes for which you have limited control
except during the setup of a database. These are internal database functions such as block
manipulations. Although you do not have direct control over how these operations are
accomplished, you can set up your database to take advantage of their behavior.

Record block manipulation

The process of adding a new record to the database is important because you want to balance
the compaction of data while avoiding data fragmentation. High compaction rates allow you to
read more records from disk in a single operation, and this process allows you to increase
efficiency. If you have many fragmented records, efficiency will decrease because each
fragmented record will require multiple block reads.

Adding new records to a database

Figure 2–7 illustrates that when records are added to the database for the first time, space is
allocated for these records using a specific decision process.
2–16

Managing OpenEdge Database Resources
Figure 2–7: RM block allocation decision tree

Are there
slots

available?

Is there
space

available?

Enough
space to hold
the record?

Use block.

Remove block
from

RM Chain.

Next block
available?

Free block
available?

Extend database.

Yes

Yes

Yes

No

Yes

No

No

Yes

Empty block
available?

No

No

No

Top of
RM Chain
2–17

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
To add new records to a database:

1. If the block is neither on an RM Chain block nor on the RM Chain, look at the next block.
This can be repeated 20 times.

2. If the block from the RM Chain is full or contains no open slots to accept the record,
remove the block from the RM chain. This can be repeated 100 times.

3. If the block from the RM Chain has available space but not enough to store the record,
move the block to the end of the RM Chain and test the next block. This can be repeated
three times.

4. If no RM chain blocks are available, allocate a free block.

5. If no free blocks are available, allocate several empty blocks and update the high-water
mark.

6. If there are no empty blocks available, the last extent of the database area is variable
length, and there is available space at the operating system level, then extend the database.

Updating existing records

The process to update an existing record is much simpler than adding new records. Keep in mind
that you can cause record fragmentation by extensive record extension. There are documented
cases of sequential searches of records taking three to four times longer due to record
fragmentation. If some care is taken during setup and application design, you can minimize
record fragmentation.

Consider the following when updating an existing record:

• If the new record is the same size as the original record, replace the original record.

• If the new record is smaller than the original record, replace original record and adjust the
free space in the block.

• If the new record is larger than the original record and there is enough free space to store
the new record, replace the original record and use the available free space.

• If the new record is larger than the original record and there is not enough free space to
store the additional information in the existing block, the new record is divided among two
or more blocks. This is called fragmenting the record.
2–18

Managing OpenEdge Database Resources
Deleting records

Within the OpenEdge database engine, changes have been implemented to improve the
efficiency of resource-intensive operations. Deleting a record is one of these types of operations.
The key to efficiency is to postpone the deletion until the space is reused for storage, thus
eliminating an unnecessary write.

Consider the following when deleting records:

• A placeholder record replaces the record to support transaction rollback.

• The placeholder record can be removed once the transaction is complete.

• The actual removal is done later for performance reasons.

Index block manipulation

Until this point, only record (RM) blocks have been discussed. We will now discuss index
blocks.

Index blocks are easier to deal with at a high level and are not as structured as record blocks.
Index blocks can store a variable number of entries per block, and this number does not need to
be determined at database creation as do record blocks.

Index information is tightly packed. When information is put in the middle of an index, it is
sometimes necessary to make additional space for the inserted index entry. This process is
called an index block split. This can occur when, for example, you have an index block that
contains entries 1, 2, 4, and 5 and contains no free space. If you insert entry 3 into this index,
the information causes the block to split into two blocks, with half going into each block. In this
example, the original block contains entries 1 and 2, while the new block (retrieved from the
free chain, an empty block, or by extending the database) contains entries 4 and 5. Once the split
is complete, entry 3 is added to the original block.

One issue you might encounter when indexes perform a significant number of block splits is that
the index can become fragmented and need reorganization. Doing an index compress
accomplishes this while the database is running. The user experiences only minimal impact. An
offline index rebuild deletes all of the entries and inserts them back into the database to yield
the most efficient index structure. However, this operation must be done when the database is
offline.
2–19

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
The key thing to remember about blocks is to avoid fragmentation. This can be done through
database setup and application design on the record block side and through the use of utilities
on the index side.

The importance of understanding the internal structure cannot be overemphasized. By
understanding the basics of OpenEdge database internals, you can make better decisions
regarding the setup and tuning of your system.

Optimizing data layout

This section presents a general review of the elements that comprise a database to discuss the
importance of database design. A database is made up of storage areas. Each storage area can
contain one or more objects. A database object is a table or an index. There are other objects,
such as sequences and schema. At this point, you have no control over the storage location of
these objects.

Each storage area can contain one or more extents or volumes on disk. The extents are the
physical files stored at the operating system level. Each extent is made up of blocks, and you
can determine the block size for your database. The block sizes that you can choose from are:
1KB, 2KB, 4KB, and 8KB. You can only have one block size per database, but each area can
have differing numbers of records per block.

Proper database design is essential because all data originates from a storage area. There are
several items to consider when determining the layout of a database. The first is your mean
record size. This is easy if you have an existing OpenEdge database. When you run a database
analysis, this information is included in the output. The other information is generally not as
easy to obtain for the database administrator because it requires knowledge of how the
application is used. Even the designers of an application might not know how the users are
taking advantage of the design. For example, it is important to know if a table is generally
accessed sequentially or randomly. Is the table frequently used, or is it historical and thus used
infrequently? Do the users access the table throughout the day or only for reporting? Are the
individual records growing once inserted or are they mostly static in size? The answers to these
questions will help determine the size and layout of a database and allow you to take best
advantage of your disks.
2–20

Managing OpenEdge Database Resources
Sizing your database areas

When trying to determine the size of an area, you need to look at the makeup of the information
being stored in that area. As stated before, an area can contain one or more tables or indexes.
The default area should generally be reserved for schema and sequence definitions, as this will
make conversions easier in the future. The first step in this process, if you already have a
OpenEdge database, is to do a table analysis. See OpenEdge Data Management: Database
Administration for details.

The following shows a portion of sample output for a table analysis:

After doing a table analysis, you need to focus on record count (Records) and mean record size
(Mean). Look at every table and split them according to mean record size. In the vast majority
of cases, use an 8KB-block size to better conform to the operating system; the major exception
to this rule is on Windows where a 4KB-block size is more appropriate. Each record contains
approximately 20 bytes of record overhead, so 20 is added to the mean record size of each record
prior to doing any calculations. These 20 bytes of overhead take into account the record and the
RM block header overhead, as outlined in the “OpenEdge database internals” section on
page 2–2.

Block sizes

Why is an 8KB-block better on one system than another? The answer is how the operating
system handles files and memory. On Windows, the operating system assumes that files and
memory are handled in 4KB chunks. This means that all transfers from disk to memory are 4KB
in size.

It is good practice to match or be a multiple of the operating system block size, if possible. This
means that an 8KB block would work fine too, right? Well, not really. The Windows operating
system has been highly optimized for 4KB and performs worse at an 8KB setting in the majority
of cases. On UNIX operating systems the block size is generally 8KB or a multiple of 8K. The
block size is tunable. Generally, an 8K-block size is best on UNIX systems. There are
exceptions to every rule. The intention is to make a best estimate concerning that which will aid
performance and assist OpenEdge in meshing with your operating system better. In most cases,
it has been proven that 8KB works best, with the exception of Windows.

---Record--- ---Fragment--- ---Scatter---

Table Records Bytes Min Max Mean Count Factor Factor

Work Orders 12,383 6,109,746 60 10,518 493 21,131 1.6 4.0
2–21

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
The only way to prove this is to benchmark performance on your system. You can obtain hard
data about block sizes using settings with the best performance characteristics.

Method to determine the number of records per block

Use the following formula to determine the number of records per block:

1. Take the mean record size.

2. Add 20 to the record size.

3. Divide 8192 (8KB-block size) or 4096 (4KB-block size) by the number in step 2.

OpenEdge allows you to have anywhere from 1 to 256 records per block per area. The number
of records per block must be a binary number (1, 2, 4, 8..., 256).

Most of the time, the record length will not divide into this number evenly so you need to make
a best estimate. If your estimate includes too many records per block, you run the risk of
fragmentation (records spanning multiple blocks). If your estimate includes too few records per
block, you waste space in the blocks. The goal is to be as accurate as possible without making
your database structure too complex.

Distributing tables across storage areas

Now that you know how many records can fit in each block optimally, you can review how to
distribute the tables across storage areas. Some of the more common reasons to split information
across areas include:

• Controlled distribution of I/O across areas.

• Application segmentation.

• Speed offline utilities.

The last reason—to speed offline utilities—is valid until all utilities are brought online. There
is no reason to perform application segmentation now. However, in the future having your data
segmented might allow you greater flexibility in maintenance. The cost to do this work now is
fairly low if you are already splitting some data, or moving from a previous version of Progress
to OpenEdge.
2–22

Managing OpenEdge Database Resources
Another reason to break out a table to its own area concerns how the table is populated and
accessed. In those cases where records are added to a table in primary index order, most of the
accesses to these records are done in sequential order via the primary index. There might be a
performance benefit in isolating the table. If this is a large table, the performance benefit gained
through isolation can be significant.

There are two reasons for the performance improvement:

• The first reason is that one database read will extract multiple records from the database,
and the other records that are retrieved are likely to be used. This approach improves your
buffer hit percentage.

• The second reason is that many disk drive systems have a feature that reads ahead and
places in memory items that it believes are likely to be read. Sequential reads take best
advantage of this feature.

Finally, databases can contain different types of data in terms of performance requirements.
Some data, such as inventory records, is accessed frequently, while other data, such as
comments, is stored and only read as necessary. By using storage areas you can place frequently
accessed data on a “fast disk.” However, this approach does require knowledge of the
application. You can determine the activity per table using either Fathom or Virtual System
Tables (VSTs). Fathom Management allows you to trend the table usage over time to better
determine the true activity level of a table.

The overall goal in obtaining this information is to provide enough areas to achieve the
following:

• Greater control of information.

• Speed for offline utilities.

• Maximum record efficiency without sacrificing ease of maintenance.

The calculations previously made are used to determine the number of records per block. In
some cases you must make a borderline decision when choosing to store a table in an area. For
example, what should you do if a table has records per block set to a lower number than the
mean record size required to fill the block, or a greater number of records per block that might
cause record fragmentation? The following example shows that the decision is fairly easy to
make.
2–23

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
Example

Assume there is a table in a database with 1 million records and a mean record size of 41 bytes.

To distribute a table across storage areas:

1. Add the record overhead (approximately 20 bytes) to determine the number of the actual
size of the stored record:

2. Divide that number into your database block size to determine the optimal records per
block:

Here is your decision point. You must choose a power of 2 from 1 to 256 for the records per
block. This leaves you with two choices: 128 and 256. If you choose 128, you will run out of
record slots before you run out of space in the block. If you choose 256, you run the risk of
record fragmentation. Make your choice according to the nature of the records. If the records
grow dynamically, then you should choose the lower number (128) to avoid fragmentation. If
the records are inserted and are static in size, you should choose the higher number (256) of
records per block because generally OpenEdge will not fragment a record on insert. Most
fragmentation happens on update; be careful with records that are updated frequently and are
likely to increase in size.

Also, if you choose the lower value, you can determine this cost in terms of disk space. To do
this, take the number of records in the table and divide by the number of records per block to
determine the number of blocks that will be allocated for record storage:

Mean record size (41) + record overhead (20) = actual storage size (61)

Database block size (8192) / actual storage size (61) = optimal records
per block (134)

Number of records (1,000,000) / records per block (128) = allocated blocks
(7813)
2–24

Managing OpenEdge Database Resources
Next, calculate the number of bytes wasted per block by multiplying the actual storage size of
the record by the number of records per block and subtracting this number from the database
block size:

Take the number of allocated blocks and multiply them by the wasted space per block to
determine the total wasted space:

In this case, the total wasted space that would result in choosing the lower records per blocks is
less than 3MB. In terms of disk space, the cost is fairly low to virtually eliminate fragmentation.
However, you should still choose the higher number for static records, as you will be able to
fully populate your blocks and get more records per read into the buffer pool.

Considering wasted slots

Another issue to consider when choosing to use 256 records per block is that you will be wasting
slots in the block. Since the number of records determines the number of blocks for an area, it
might be important to have all of the entries used to obtain the maximum number of records for
the table.

The following table shows the maximum number of blocks for an area by the records-per-block
setting:

In the case of small tables, put the indexes with their associated tables for ease of maintenance.
For large tables (tables with many rows) isolating an index or a subset of indexes to their own
location will generally improve performance.

Database block size (8192) – (Actual storage size (61) * records per block
(128) = Wasted space per block (384)

Allocated blocks (7813) * wasted space per block (384) = total wasted space
(3000192)

Records per block Maximum number of blocks for area

4 536,870,911

64 33,554,432

256 8,338,607
2–25

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
Determining space to allocate per area

You must determine the quantity of space to allocate per area. OpenEdge is fairly good about
keeping data and index storage at good compaction levels. Most data areas are kept from 90 to
95 percent full and indexes are generally maintained at 95 percent efficiency in the best case. It
is generally advisable to use an 85 percent ratio. This is a reasonable ratio. Using the
1-million-record example previously discussed, you can see that the records plus overhead
would take 61 million bytes of storage:

This is only actual record storage. Now, take this value and divide it by the expected fill ratio.
The lower the ratio, the more conservative the estimate:

To determine the size in blocks, divide this number by 1KB (1024 bytes). This step is necessary
because the amount of space needed will be expressed in the structure description file
(dbname.st) in kilobytes regardless of the block size of the database:

If there are other objects to be stored with this table in a storage area, you should do the same
calculations for each object to determine the total amount of storage necessary. If this is the only
object to store in this area, consider future growth requirements.

(41 bytes (Mean record size) + 20 bytes (overhead)) * 1,000,000 (Number of
records) = 61 million bytes

61,000,000 /.85 = 71,764,706 bytes (total storage needed)

71,764,706 / 1024 = 70083 (1KB blocks)
2–26

Managing OpenEdge Database Resources
Using extents

Most users prefer binary numbers for their extent sizes because these numbers are easier to
monitor from the operating system level and see if problems occur, such as growing into a
variable extent. In this case, you can choose one 102,400KB extent to store the data, with room
for expansion, and one variable extent. Each area should have a variable extent as the last area
to allow for growth. Monitoring and trending should keep you from needing this last extent, but
it is preferable to have it available if you need it.

Extents allow you to distribute your data over multiple physical volumes if you do not have
striping on your system. For example, you could split the 70MB of data in the previous example
across several physical volumes by reducing the size of each volume. You could have eight
fixed 10MB extents and one variable extent and “stripe” your information across three drives.

As shown in Figure 2–8, you could put the first, forth, and seventh extents on the first drive, the
second, fifth, and eighth extents on the second drive, and the third, sixth, and variable extents
on the third drive. OpenEdge fills these extents in order, so the first 10MB of data goes into the
first extent, the second 10MB of data goes into the second extent, and so on. By striping the
extents, you will have a mix of old and new data. While this is probably not as good as a
hardware stripe of 128KB stripes, it does help you eliminate variance on your drives.

Figure 2–8: Extents

1

4

7

2

5

8

3

6

9

variable extent
2–27

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
Even if you do have striping, you might want to have multiple extents. In Version 9.1C,
Progress introduced large file support to Progress databases. This allows the user to allocate
extents up to 16GB in size. To turn on this feature, you need to run proutil on your database
with the enable large files parameter. (See OpenEdge Data Management: Database
Administration for details.) The old and default limit is 2GB per extent. If you want to store
more than this amount, you need to have multiple extents per area.

Another reason to have extents is indirection. Indirection occurs when a single inode table
cannot address all of the physical addresses in a file. An inode table is a table of contents on a
disk that is used to translate logical addresses to physical addresses. If a second inode table is
needed, you will do an extra I/O operation for every physical request into the database. This
activity is not good for performance. Most operating systems claim to be able to directly address
a 4GB file under best-case scenarios. Through testing, the real number varies across operating
systems, but 1GB seems to be a safe number across all operating systems with modern file
systems. On Windows NT, you want to use NTFS file systems for best performance.

Index storage

This chapter has only discussed record storage. The reason for this is that record storage is fairly
easy to calculate while index storage is not. Index compression makes calculation difficult. The
fact that the compression algorithm has been modified over the years makes the calculation even
harder. In an effort to make things easier, you can look at a database analysis and use the
information from that activity to make your decisions. Again, remember to add room for growth
and general overhead, just like with data storage.

If you have an existing database, you can take statistics to determine index storage size. Without
a database, you have to estimate the size. The number and nature of indexes can vary greatly
between applications. Word indexes and indexes on character fields tend to use more space,
while numeric indexes are significantly more efficient in terms of storage. There are databases
where indexes use more storage than data, but these are the exception and not the rule.

In general, indexes account for approximately 30 percent of total storage. Therefore, you can
take 50 percent of your data storage as an estimate of index storage. Remember that this percent
might vary greatly, depending on your schema definition. Consider this estimate as a starting
point and adjust and monitor accordingly.
2–28

Managing OpenEdge Database Resources
The following example highlights a portion of a database analysis report that shows the
proportion of data storage to index storage within an existing database. Use this information to
determine the allocation of disk resources to the areas that are going to contain the data:

Primary recovery area

The size of the primary recovery area, also known as the before-image file, is another area for
concern. This area is responsible for the recoverability of your database on an ongoing basis.
This area is very important to the system. The primary recovery area is written to frequently,
and if it is on a slow disk your update performance will be affected. The size of this area varies
depending on the length of transactions and the activity on your system.

The primary recovery area is made up of clusters, which are tunable in size. When records are
modified, notes are written to this area. If a problem occurs or if the user decides to “undo” the
changes, this area can be used to ensure that no partial updates occur.

For example, assume you want to modify all of the records in a table to increase a value by 10
percent. You would want this to happen in an all-or-nothing fashion because you could not
determine which records were modified if the process terminated abnormally. In this case, you
would have one large transaction that would modify all of the records. If a problem occurs
during the transaction, all of the modifications would be rolled back to the original values. Why
is this important? If you have several of these processes running simultaneously, the primary
recovery area could grow quite large.

SUMMARY FOR AREA “Student Area”: 8

Records Indexes Combined
Name Size Tot percent Size Tot percent S
ize Tot percent
PUB.stuact 18.9M 12.6 9.7M 6.4 28.6M 19.0
PUB.student 30.3M 20.1 20.1M 13.4 50.5M 33.5

Total 115.3M 76.4 35.6M 23.6 150.8M 100.0
2–29

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
Let us review the structure of this area and how it is used and reused. The structure of the area
is a linked list of clusters. The cluster size can be modified from small (8KB) to large (greater
than 256 MB), as shown in Figure 2–9.

Figure 2–9: Primary recovery area

The smaller the cluster size the more frequent the checkpoints occur. A checkpoint is a
synchronization point between memory and disk. While there is a potential performance benefit
from infrequent checkpoints, this must be tempered with the amount of time it takes to recover
the database.

The best way to determine the before-image cluster size is to:

• Monitor the database at the time of the day when you make the most updates to the
database.

• Trend the data from the database with Fathom Management.

• Review the duration of your checkpoints throughout the week.

Cluster

Cluster

Cluster

Cluster

Checkpoint

Checkpoint

Checkpoint

Checkpoint & reuse decision point
2–30

Managing OpenEdge Database Resources
Ideally, checkpoints should happen no more than once every two minutes. If you are
checkpointing more often than necessary, you should increase your before-image cluster size.
This does not mean you should decrease the cluster size if it is happening less frequently. The
default of 512KB is fine for smaller systems with low update volume, while a value of 1024KB
to 4096KB is best for most other systems.

To view a checkpoint summary in Fathom Management:

1. Select Resources from the menu bar, and from the list frame browse to the database.

2. Select the Page Writers option from the Operations Views section of the database’s
Resource page.

Figure 2–10 shows an example Checkpoint summary section.

Figure 2–10: Checkpoint summary
2–31

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
As previously stated, the cluster size influences the frequency of the checkpoints for the
database. As users fill up a cluster with notes, they are also modifying shared memory. The page
writers (APWs) are constantly scanning memory, looking for modified buffers to write to disk.
At the first checkpoint, all of the modified buffers are put in a queue to be written prior to the
next checkpoint. The buffers on the modified buffer queue are written by the page writers at a
higher priority than other buffers. If all of the buffers on the queue are written prior to the next
checkpoint, it is time to schedule the current modified buffers. This is the goal. If all of the
buffers are not written, then you must write all of the previously scheduled buffers first and then
schedule the currently modified buffers. If you are checkpointing at the proper frequency and
you are still flushing buffers at checkpoint, you should add one more APW and monitor further.
If adding the APW helps, but does not eliminate the problem, add one more. If adding the APW
does not help, look for a bottleneck on the disks.

The format of the primary recovery area has been discussed, but not its size. There is no formula
for determining the proper size because the size of the area is so dependent on the application.
The recommendation is to isolate this area from other portions of the database for performance
reasons. If you only have one database, you can isolate this area to a single disk (mirrored pair),
as the writes to this area are sequential and would benefit from being placed on a single
nonstriped disk. If you have several databases, you might want to store your primary recovery
areas on a stripe set (RAID 10) to increase throughput.

Optimizing database areas

This section details database area optimization. Although some of the information presented in
this section might be found in other sections of this book or other manuals, it is repeated here to
present the most common solutions to area optimization in one place for easy reference. The
goal of area optimization is to take advantage of the OpenEdge architecture and the operating
system.
2–32

Managing OpenEdge Database Resources
Data area optimization

Following a few simple rules can make your data areas easy to maintain and provide optimal
performance for users.

Splitting off the schema

By splitting off the schema and sequences from other portions of your database, you can make
future upgrades to OpenEdge and your application more transparent to the user. One of the
operations that takes place during most major version changes of OpenEdge is a metaschema
change. The metaschema is a set of definitions for the internal structure of data. Your schema
definitions create the rules by which data can be added or modified within your application.
Metaschema serves the same purpose for the definition of your schema. By eliminating
information other than your schema definitions and sequences from the metaschema area, the
task of updating this information is reduced.

Choosing an appropriate block size

Matching the database block size to the operating system allows for a more efficient transfer of
data. If you have a block size that is too small, the operating system retrieves more blocks than
your request, and that transfer of additional information might or might not be useful. If the
additional information is not used by the application, then the transfer was wasted. Larger
blocks are generally better because of the way indexes behave. If each block contains more
information, then you will require fewer index blocks and fewer index levels to contain the data.
Index levels in a B-tree are important. If you can eliminate a level from an index, you can save
yourself one additional I/O operation per record request.

Keeping extents small to eliminate I/O indirection

I/O indirection happens when a single inode table cannot address all of the addresses within a
file. The inode is a mapping of logical to physical addresses in a file. Think of the inode table
as a table of contents for the file. In theory, a file can be large (more than 4GB) before
indirection occurs, but the conditions need to be perfect.

In the real world, it is possible to see indirection at a file size of 500MB, but on most systems
you do not see indirection until 1GB or higher. The penalty for smaller database area extents is
fairly low. Generally, you only need to increase the number of file descriptors (open files) at the
operating system.
2–33

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
Keeping areas small for offline utilities

Currently utilities for OpenEdge are available online; there are still some utilities that require
you to shut down the database prior to running them. For these utilities, limit the amount of
information per area to reduce the amount of downtime needed for the utility to run.

The best example of this is an index rebuild. If you do an index compact and an index fix, you
can achieve nearly the same thing. However, you might still want to do an index rebuild due to
index corruption or some other reason. If you only need to rebuild one index, you scan the entire
area where the records for that index are stored to ensure you have a pointer to every record. If
all of your records are in one area, this can take a significant amount of time. It is much faster
to scan a portion (only those records in the same area) of your records than the entire database.

Always have an overflow extent for each area

The last extent of every area, including the primary recovery area, but not the after-image areas,
should be variable length. Though monitoring, trending storage capacity, and growth should
eliminate the need to use the variable extent, it is preferable to have it there if you are going to
fill all of your fixed extents and cannot shut down to grow the database. The variable extent
allows the database to grow as needed until it is possible to extend the database.

Enabling large files

You should always have large files enabled for your database. However, just as you never want
to grow into the variable extend of your data areas, you want to avoid using the large files
feature. This feature should be viewed as a safety valve for unanticipated growth.

Enabling large files allows you to support extent sizes up to 1TeraByte (TB), which is 1000GB,
provided that the operating system supports large files. On UNIX, you need to enable each file
system where the database resides for this feature to work. On Windows a file can fill the entire
volume. By default, large files are disabled; this was done for compatibility reasons.

To enable large file support for a database, execute the following command:

proutil dbname -C enablelargefiles
2–34

Managing OpenEdge Database Resources
Partitioning data

Partitioning data by functional areas is a reasonable way to split your information into small
pieces to reduce the size of a given area. This activity allows you to track the expansion of each
portion of the application independent of other portions. At some future point, it might be
possible to manipulate areas independently of each other. When and if this time comes, you will
be well positioned if you partition your tables when you are doing the initial split of your data.

Another benefit of partitioning your data deals with a corrupted database. For example, you can
more easily identify data in a corrupted area of your database.

Primary recovery (before-image) information

On systems where updates are done frequently, it is important to make the read and write access
to this database area as efficient as possible. The write access is more important.

The following sections provide simple tips to create an efficient environment for the primary
recovery area.

Extent size rules

These rules apply to both the primary recovery area and the data areas:

• Do not make them too large.

• Always make the last extent variable length.

• Enable large files as a safety valve.

Enabling large files is particularly important on the primary recovery area because this is the
place you are most likely to experience issues. A large update program with poor transaction
scoping or a transaction held open by the application for a long period of time can cause
abnormal growth of this area. If the fixed portion of an area is 2GB in size, you start extending
your variable portion in that same transaction. Only then do you notice that you might need
more than 2GB of recovery area to undo the transaction. If you are large-file enabled, and have
enough disk space, there is no problem. If you are not large-file enabled the database might
crash and not be recoverable because there is no way to extend the amount of space for the
recovery area without going through a proper shutdown of the database.
2–35

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
Sequential access

The primary recovery area is sequentially accessed. Items are written to and read from this area
in a generally linear fashion. If you are able to isolate a database’s primary recovery area from
other database files and other databases, then it is a good idea to store the extents for this area
on a single disk (mirror).

While striping increases the throughput potential of a file system, it is particularly effective for
random I/O. The striping of the primary recovery area can cause additional disk head movement
if this area is isolated. If the area is not isolated from the database or you are storing the primary
recovery areas of several databases on the same disk, it makes more sense to use striped disks
because the I/O will be fairly randomized across the databases.

BI grow option

The BI grow qualifier of proutil allows you to preformat BI clusters before the user enters the
database. Preformatting allows you to write more recovery notes and to fill more clusters before
the database needs to make a reuse decision. If the reuse decision is made less often, then it is
more likely that the oldest cluster is ready for reuse and is reused. If the primary recovery area
does not experience any abnormal growth, you can keep a contiguous format to this area, which
is good for performance. Your database must be down for you to grow the BI file (primary
recovery area).

The command to execute is:

where # is the number of clusters you want to add to your primary recovery area. These are
additional clusters to the number of formatted clusters that you already have in the primary
recovery area. Generally, this command is run after a truncation of the bi file so there are zero
allocated clusters at that time.

proutil dbname -C bigrow #
2–36

Managing OpenEdge Database Resources
After-image information

To this point in this chapter, only the default portions of the database have been considered. The
after-image file is used to enable recovery to the last transaction or to a point in time in the case
of media loss. There are several other reasons to implement after-imaging, but its role in a
comprehensive recovery strategy is the largest.

The after-image file is like the before-image file in the sequential nature of its access. It does
not have automatic reuse like the before-image file because it requires intervention from the
administrator to reuse space. After-imaging is the only way to recover a database to the present
time in the case of a media failure (disk crash). It also provides protection from logical
corruption by its “point-in-time” recovery ability.

For example, assume a program accidentally runs and incorrectly updates every customer name
to “Frank Smith.” If you have mirroring, you now have two copies of bad data. With
after-imaging, you can restore last night’s backup and roll forward today’s after-image files to
a point in time just prior to running the program. After-image should be a part of every high
availability environment.

Always use multi-volume extents

OpenEdge supports one or more after-image extents per database when after-imaging is
enabled. Each extent of the after-image file is its own area with a unique area number, but it is
more common to refer to them as extents. You need more than one extent for each after-image
file to support a high availability environment.

Each extent has three possible states: empty, busy, or full:

• An empty extent is empty and ready for use.

• A busy extent is one that is currently active. There can be only one busy extent per
database.

• A full extent is a closed extent that contains notes and cannot be written to until the extent
is marked as empty and readied for reuse by the database administrator.

Multiple extents allow you to support an online backup of your database. When an online
backup is executed the following occurs:

• A latch is established in shared memory to ensure that no update activities take place.

• The modified buffers in memory are written (pseudo-checkpoint).

• An after-image extent switch occurs (if applicable).
2–37

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
• The busy after-image extent is marked as full and the next empty extent becomes the busy
extent.

• The primary recovery area is backed up.

• The latch that was established at the start of the process is released.

• The database blocks are backed up until complete.

Sequential access

The after-image file is sequential like the primary recovery area. See the “Primary recovery
(before-image) information” section on page 2–35 for recommendations.

Isolate (disaster recovery)

Isolate the primary recovery area from the other portions of your database for performance
reasons. Isolation is required with the after-image extents. The after-image files must be isolated
to provide maximum protection from media loss. If you lose a database or before-image drive,
you can replace the drive, restore your backup, and use the after-image file to restore your
database. If you lose an after-image drive, you can disable after-imaging and restart the
database. You will only lose active transactions if the after-image extents are isolated from the
rest of the database. Sometimes this is difficult to do because you might have several file
systems accessing the same physical drive, but the isolation needs to be at the device and file
system levels.

Sizing after-image extents

The after-image area differs from all other areas because each extent can be either fixed or
variable length. Each extent is treated as its own area. It is fairly common for people to define
several (more than 10) variable-length extents for the after-image file.

To choose a size, you must know how much activity occurs per day and how often you intend
to switch after-image extents. You can define all of your extents as variable length and see how
large they grow while running your application between switches. To accommodate
above-normal activity, you need extra extents. If they can all be variable length why would you
want to make them fixed length? If you are concerned about performance, you would want to
have the after-image extents fixed length so you are always writing to preformatted space.
2–38

Managing OpenEdge Database Resources
Preformatting allows you to gain:

• Performance by eliminating the formatting of blocks during the session.

• Use of a contiguous portion of the disk.

Most operating systems are fairly good at eliminating disk fragmentation. However, if you have
several files actively extending on the same file system, there is a high risk of fragmentation.

Optimizing memory usage

Optimizing memory usage can be best described as taking advantage of the memory that you
have. In most cases, a system benefits from additional memory. Sometimes, it is not possible to
purchase additional memory.

This section focuses on the trade-off between user and broker memory and how to use the
available memory to your best advantage.

Why is buffer hit percentage important?

A short explanation is that the greater the percentage of time that the buffer is utilized, the lower
the percentage of time the disks are utilized. Since memory is faster than disks, you will get
better performance with a better buffer hit percentage.

A longer explanation has to do with the meaning of the numbers. For example, a 90 percent
buffer hit percentage equates to 10 disk reads for every 100 requests to the database manager.
If you increase your buffer hit percentage to 95 percent, you are only doing 5 disk reads for the
same number of requests, which is a 50 percent reduction in requests to the disk. A small change
in buffer hit percentage can equate to a large reduction in disk I/O. This is especially noticeable
at the high end. Changing from 95 percent buffer hit percentage to 96 percent represents a 20
percent reduction in disk I/O, so it is important to read into the numbers, not just monitor the
numbers themselves.
2–39

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
Increasing memory usage

Memory is a limited resource. It is important to use it properly. In the case of a database
application, it is important to increase broker parameters first because the payback extends
across all users and the system as a whole. This fact is demonstrated with the previous database
buffer hit percentage example. This example shows how a small change on the broker side can
dramatically affect the entire system. The size of the change on the broker is usually smaller
relative to any self-service client changes you might make.

For example, a 1000 buffer increase for the –B parameter on the broker of an 8KB-block-size
database will cost you 8MB of RAM; an 80KB increase on the –mmax parameter for a 100 user
system will cost the same 8MB of RAM. In the majority of cases, a buffer increase has a greater
overall impact than the client change. This is a simple example, but it points out that you should
always tune your broker parameters first. Once that is complete and you still have RAM to
allocate, you can focus your attention on the self-service client parameters.

Decreasing memory

Determining where to cut back on memory is difficult. In the previous section, we discussed
increasing broker memory first and then looked at client parameters. However, when decreasing
memory you should look at client parameters before broker parameters.

Considering where you can reduce memory might or might not be obvious. First to consider are
operating system buffers. The database engine bypasses operating system buffers with the use
of –directio, so the need for operating system buffers is limited. Operating system buffers will
still be used for temporary file I/O for any client processes that reside on that machine. Most
operating system manufacturers allow you to modify the number of buffers that can be allocated
to the operating system. If you are using the -directio startup option, then you can reduce the
amount of operating system buffers to approximately 10 percent in most cases. One major
exception is systems with very limited memory (less than 256MB), where leaving the parameter
at its default value is the best practice.

Using OpenEdge memory-mapped procedure libraries also helps to reduce memory usage by
allowing the users to use a common version of the code rather that loading a copy into –mmax.
This reduces the amount of –mmax needed for each client. (See OpenEdge Deployment:
Managing 4GL Applications for details about memory-mapped procedure libraries).
2–40

Managing OpenEdge Database Resources
Private buffers (-Bp)

Private buffers allow a read-intensive user to isolate a portion of the buffer pool. Up to 25
percent of buffers can be allocated as private buffers. Private buffers work as follows:

1. The user requests a number of buffers to be allocated as private.

2. As the user reads records, if the corresponding buffers are not already in the buffer pool,
the records are read into these buffers.

3. Instead of following the rules for buffer eviction, the user only evicts buffers that are in
their private buffers. By default, the buffer that was least recently used is evicted. Private
buffers are maintained on their own chain and are evicted by the user who brought them
into memory.

4. If another user wants a buffer that is currently in another user’s private buffers, this buffer
is “transferred” from the private buffers to the general buffer pool. The transfer is a process
of removing the buffer from the user’s private buffer list and adding it to the general buffer
list. The buffer itself is not moved.

The general idea is to share memory where you can, use memory efficiently where possible,
increase memory on the broker side first, and then increase client memory usage.

Optimizing CPU usage

As a database or system administrator, there are only a few things you can do to more efficiently
use the CPU resources of your machine. The major consumer of CPU resource for your system
should be the application code. Therefore, the greatest impact on CPU consumption can be
made with application changes. Other resources are affected by application code as well, but
there are things that you can do as an administrator to minimize problems associated with other
resources. This is not the case with CPU resource.
2–41

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
Understanding the -spin parameter

The broker allocates shared memory, and each portion of memory can be updated
independently. This design is both positive and negative. It adds complexity to the database on
how to keep one portion of memory from being updated by two users simultaneously.

OpenEdge solves this problem through the use of spin locks. Each portion of memory contains
one or more locks to ensure that two updates cannot happen simultaneously. These locks are
called latches, to differentiate them from record locks. When a user modifies a portion of shared
memory, the user gets a latch for that resource and makes the change. Other users that need the
resource respect the latch. By default, if a latch is established on a resource and a user needs that
resource, that user tries for the resource once and then stops trying. On a single CPU system,
you want to try the operation only once because the resource cannot be freed until the resource
that has the latch can use the CPU. This is the reason for this default action.

The default action is not very efficient on a multiple CPU system because a significant amount
of resource time is used to activate the user on the CPU. Effort is wasted if the resource is not
available. Typically, the resource is only busy for a very short time. It is more efficient to ask
to obtain the resource many times rather than ask once, go to the end of the CPU queue, and
when arriving at the top of the CPU queue, ask a second time to get the resource. Using the
–spin parameter, you can ask for a resource thousands of times. The –spin parameter
determines the number of retries before giving up.

How to set –spin

Generally, a setting between 2,000 and 10,000 works for the majority of systems, but this varies
greatly. The best way to set -spin is to start with a setting of 2,000 and then monitor the number
of “naps per second” per resource. If the naps per second value for any given resource exceeds
30, try changing the value of –spin. You can do this while the system is running through
promon, provided the value of –spin is not 0 through the promon R&D option.

Note: The adjustment of –spin is generally an increase, but there are documented cases where
a decrease in –spin has had a positive effect on performance.
2–42

Managing OpenEdge Database Resources
Viewing latches in Fathom Management

The easiest way to view latches is to use Fathom Management. Figure 2–11 shows an example
of the Latches section within the Locks and Latches Operations view page for a selected
database resource. This page is cumulative; you need to note the number of latches for each
sample and the amount of time between samples. (You can change auto refresh frequency rate
in User Preferences.) You can calculate the values.

Figure 2–11: Latch summary in Fathom Management

Note: Naps are listed as Time Outs in Fathom Management.

CPU bottleneck: Look at your disk drives

Indications that you are out of CPU resources might only be masking an issue with another
resource. In most cases it is a disk issue. If you see a CPU bottleneck, first ensure that you do
not have a runaway process. Second, make sure that your other resources are working
efficiently.
2–43

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
2–44

3
Performing System Administration

This chapter covers the following system administration topics:

• Understanding the database administrator’s role

• Ensuring system availability with trending

• Ensuring system resiliency

• Maintaining your system

• Profiling your system performance

• Advantages and disadvantages of monitoring tools

• Common performance problems

• Other performance considerations

• Periodic event administration

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
Understanding the database administrator’s role

The specific tasks of the database administrator vary from company to company, but the role
includes the following common responsibilities:

• Providing predictable system availability — The administrator must understand the
state of the system at any given moment, and where it is going in terms of resource
utilization to provide reliable system availability to users. This involves more than just
knowing how the system works. It demands a deeper understanding of the trends in system
utilization over time. It also requires an understanding of the business as a whole, which
can only be provided by the management of the company. However, management will
need your help in translating business plans into technology choices.

• Providing a resilient system that can recover from disasters — The database
administrator must look at potential problems and determine if and how these problems
are addressed by the disaster recovery plan. It is important to document items that will not
be addressed and those that will be addressed in the disaster recovery plan. The focus of
the plan should be on recovery rather than the backup process; a backup is useless if you
cannot recover it.

• Providing reliable system performance — Users need to know how long a task is going
to take so they can plan around that expectation. The application plays a huge role in
overall performance. However, it is the administrator’s job to ensure that tasks take the
same time every day by taking advantage of system resources and eliminating bottlenecks.

• Performing periodic maintenance — This task might only be performed once a year, but
must also be taken into consideration in a complete administration plan. The small details
of each task might change at the time of execution, but the overall process should be laid
out in advance.
3–2

Performing System Administration
Ensuring system availability with trending

The primary goal of the database administrator is to make sure that data is available to users.
Most OpenEdge-based applications require multiple resources to function properly. This
section centers on trending of those resources.

Running out of resources is the second most likely cause of system failure. (Hardware failure is
the most common.) It takes persistence to ensure maximum system availability. Exercising this
persistence is precisely the role of the database administrator.

The OpenEdge database is very reliable and as we consider our options when making hardware
decisions, we will be covered there, too. Our focus shifts to trending, maintenance, and
contingency planning for the database.

When determining the source of a problem, the first question asked is: What has changed? If
you are trending your system, you can determine if there is a difference in the amount of work
(reads, writes, commits) being done, the number of users on the system, or if the system is
consuming more resources than usual.

The trending of resources is extremely important; if you know how fast you are using additional
resources, you can determine when you will run out. Trending also allows you to plan for
growth and avoid potential problems within the database and at the system level. On most
systems, disk capacity and database storage areas are the most dynamic areas in terms of
growth. These areas are the best places to consider trending.

Trending database areas

It is important to understand not only how much data is in the area today, but also how much
growth to expect. On existing databases, you should first consider the storage area high-water
mark. The high-water mark is established by the number of formatted blocks (RM, index, and
free) in an area. In an area with many empty (unformatted) blocks, data is allocated to the empty
blocks before the system extends the last extent of the area. As stated earlier in this chapter, it
is important to have the last extent of each area defined as variable length to accommodate
unanticipated growth. The goal is to never use the variable extent but to have it there if
necessary.

Each environment has a different amount of required uptime. Some systems can come down
every evening while others need only be shut down once a year for maintenance. With careful
planning you can leave your database up for long periods of time without the need for a
shutdown. In most cases, the OpenEdge database does not need to be shut down for
maintenance.
3–3

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
The operating system might need to be shut down periodically for maintenance or an upgrade.
Examples of this type of maintenance are: clearing memory, installing additional hardware, or
modifying the operating system kernel parameters. On Windows, it is generally necessary to
reboot the system every 30 to 90 days to avoid problems, while on most UNIX systems once a
year is more common. You need to plan for growth to cover the period of uptime that is
appropriate for your system.

Enabling trending for your database in Fathom

Start trending for your database. This can be done using Fathom, which will monitor each
database and store the information for trending purposes, if necessary.

To trend database storage areas from within the Fathom Management console:

1. Select Resources from the menu bar.

2. Click New Resource Monitor.

3. Select Database if the database is managed.

4. Select the database that you want to trend or migrate (if it is not listed).

5. From the database’s Monitoring Plans page, click Edit. The Edit page appears:

6. Select the Trend Performance Data check box.

7. Click Save.
3–4

Performing System Administration
Using VST code

You can also view database storage information using custom VST code. The following
example shows the basic code you need to trend the size of your database areas:

Note: The program above will display the information to the screen. However, to trend this
data without Fathom, you need to write the output to a file or into a database for future
reference.

Trending application load

One statistic that most administrators do not keep track of is the amount of work that is
completed per day on their system. By trending database activity such as commits and database
requests, you can determine when the greatest workload on the system occurs and the growth
pattern of this workload over time.

Workload information can be valuable information. If you encounter a problem, you can see
whether there is an abnormal workload on the system or if there is some other issue. In cases
where additional customer records are added to the database, you might notice that the workload
on the system is increasing even though the number of users and the number of transactions are
not increasing. This indicates that there might be an application efficiency issue that needs to be
addressed before it becomes a problem. It will also help you to understand your need for
additional resources prior to loading even more records into the database. By knowing this
information prior to the event, you can plan effectively.

There might be other internal database information that you would like to monitor, such as
checkpoints or record-locking activity. These items trend in a similar fashion, and if you have
enabled trending from within Fathom, these items will be available to report on, too. See
Chapter 4, “Guidelines for Applying Fathom,” for more information on reporting your Fathom
data.

FOR EACH _Area WHERE _Areanum = the area to be monitored:
FOR EACH _AreaStatus OF _AREA:
DISPLAY _Area-name _TotBlocks _HiWater.

END.
END.
3–5

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
Trending operating system information

The approach and rules are the same for disk and memory trending, but the tools to obtain this
information vary from operating system to operating system. Fathom really simplifies this
process. If you are in a heterogeneous environment, you will fully appreciate having one
interface to monitor database and operating system resources. To gather operating system
information without Fathom, you must gather information from an operating system command
like sar or iostat and put that information into a database or operating system file for future
reference. With Fathom, you only need to monitor and trend the resource to gather this trending
information for future reference.

The steps to trend an operating system resource are similar to the steps to trend a database
resource. Figure 3–1 shows a sample monitoring plan page for a CPU resource.

Figure 3–1: Trending a CPU resource
3–6

Performing System Administration
Trending system memory

Memory usage increases as users and functionality are added to the system. There is a dramatic
change in performance when the memory resource is exhausted. The amount of paging and
swapping are key indicators to monitor. An administrator should focus on physical paging as
the primary indicator of memory utilization.

By monitoring operating system utilities like sar and vmstat during busy periods of the day,
you can determine the health of the memory resources. Example 3–1 shows the sar command
and its output.

The sar command has many options. In the previous example, virtual paging (-p option),
physical paging (-g option), and swapping (-s option) are requested. The command requested
10-second samples and only one sample. The output from the command is broken into one line
per command line option. The virtual faulting numbers are not as important as the physical
faulting numbers because most systems can do thousands of virtual faults per second without a
noticeable affect on performance.

The primary item to focus on is the pgscan/s value. This value represents the number of pages
that are being scanned per second to find pages for use by active processes. When this number
starts increasing by large amounts it can indicate the need to either reduce your memory usage
or increase the amount of available memory (that is, buy more memory). The swap values
should stay near or at zero because even small amounts of swapping have a negative effect on
performance and require you to reduce memory consumption, or increase available memory.

Example 3–1: sar command and output

Command:
mymachine: sar –pgw 10 1

Output:
SunOS mymachine 5.7 Generic_106541-15 sun4d 07/09/03

15:28:28 atch/s pgin/s ppgin/s pflt/s vflt/s slock/s
pgout/s ppgout/s pgfree/s pgscan/s percentufs_ipf
swpin/s bswin/s swpot/s bswot/s pswch/s

15:28:38 4.48 8.26 106.77 0.60 4.28 0.00
12.14 27.66 27.66 0.00 0.00
0.00 0.0 0.00 0.0 1557
3–7

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
Currently Fathom only tracks total memory consumption for physical and virtual memory. This
can be a misleading indicator of memory utilization because operating systems will often use
up “idle” memory for noncritical items like operating system buffers. This could falsely
represent memory usage. Trending this information can be helpful in circumstances where
virtual memory usage is in question.

Trending system disks

Disks, like storage areas, need to be monitored and trended to see usage patterns and anticipate
future needs in terms of both storage and throughput capacity.

Each system resource can be viewed and trended through Fathom.

To enable trending for disk storage capacity:

1. Select Resources from the menu bar.

2. Select System from the list frame and select the Disk resource.

3. Select the disk for which you want to enable trending.

4. Click Edit for the monitoring plan.
3–8

Performing System Administration
5. Select the Trend Performance Data check box:

6. Click Save.

Within Fathom, each disk must be enabled separately if it was not enabled at setup time. If you
enabled all disks upon installation, then you can disable by deselecting the Trend Performance
Data check box for each disk you do not want to trend. You can still spot check unmanaged
resources from within Fathom, if needed.
3–9

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
Setting alerts for variable extent growth

You need to be concerned with the use and growth of your variable-length extents. Again, the
goal is never to grow into these. You should have alerts on your areas to tell you when you need
to add space to eliminate the possibility of growth of these extents.

Another way to alert yourself when one of your variable extents is growing is to place all of the
variable extents in one file system. Then put an alert on the file system to tell you when one of
these extents has grown. You can monitor each variable extent individually, but this
single-file-system method simplifies the process by having one alert for all databases. Any
simplification you can build into the process is beneficial.

Additional factors to consider in trending

The following list identifies other trending-related factors you should consider:

• One of the greatest impacts on performance and availability of data over time is a
fluctuation in the number of users.

• The volume of data involved is another factor to consider when evaluating performance.

• A poorly written query on a large amount of data causes a performance impact.

Keep in mind that performance impact is not always linear. An example of this is a repeating
query that scans the entire table for a particular record or pattern. When the table is small, all of
the information can be stored in memory. But once the table grows beyond the size of the buffer
pool, it will cause a significant amount of degradation to the system due to continual physical
reads to the disk. This not only affects the query in question, but all other users accessing the
database.

Process monitoring

Applications have dependencies on processes as well as resources. If your application depends
on a background job to print reports, monitor this job to ensure your system is working properly.

This is one area that most monitoring tools omit, as the information is vastly different from
system to system. Consequently, it is very important to take time to inventory the critical
processes on your system, uniquely identify each process, and determine if it is working
properly. Most processes need no intervention as long as they are running, and a monitor can be
as simple as looking for these processes in the process table.
3–10

Performing System Administration
The status of other processes can be more difficult to determine. In some cases there is a tool or
operating system command that can be used to determine a processes status. For example, the
proadsv –query command can be used to determine the status of the AdminServer process.
This command could be put in a job within Fathom to periodically query the status of the
AdminServer process, or in a script or batch file at the operating system level.

Testing to avoid problems

The best way to avoid problems on your system is to test prior to implementation. Most users
think of testing only their application code. However, it is also necessary to test other aspects of
the system including administration scripts and applications, such as backup software,
hardware, middleware, and other infrastructure.

Types of testing

Testing is a long and meticulous process if done properly. Users can forget to test the basics.
There are three types of testing:

• Limits testing

Exceeds hardware and software system limits and ensures system reliability.

• End-to-end testing

Examines an entire operation, checks the integrity of individual processes, and eliminates
compatibility issues between processes. For example, looking at the order entry process
from the customer’s phone call to the delivery of goods.

• Unit testing

Examines a process in isolation. Unit testing should be done during early development and
again as the initial step in the user acceptance process prior to implementation.

You can also run tests on the individual system hardware components in isolation to ensure
there are no faults with any item. Once this testing is complete, you can run a stress test to test
the items together. A well designed test includes your application components, making an
end-to-end test possible. For a complete check of the system, execute the stress test while
running at full capacity and then simulate a crash of the system to check system resiliency.
3–11

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
Ensuring system resiliency

Resiliency is the ability to recover in the case of a disaster. The goal in a disaster is to appear to
the outside world as if nothing has happened. In the case of a Web site, if a customer or potential
customer cannot access your site, that customer might be lost forever. You need to gain the trust
of your customers, both internal and external, so they will work with you in making effective
use of your system resources. The trust you gain from being able to deal effectively with bad
situations will increase your ability to succeed.

This section will answer the basic questions regarding the creation of an effective recovery
strategy and show you where to invest your time and energy to create a complete solution. It is
referred to as focusing on a recovery strategy. You want to focus on recovering from various
situations, and not merely on the process of backing up your system.

Many users tend to focus on the backing up activities and not on recovery. If you had a good
backup of your database, but you neglected to back up your application code, you are in as much
trouble as if you had failed to back up your database because there is no effective way to access
your data. Efforts to possibly obtain third-party application code back from the vendor, or to
re-create an in house application, will be a waste of time if you cannot serve your customers.

Why do backups?

More and more companies rely on online systems to do very basic portions of their business. If
a system is down for any period of time, it affects the ability of these companies to do business.
Consequently, it is important to protect your data and applications. Problems can occur for
several reasons, including hardware failure, software failure, natural disaster, human error, or a
security breach. The goal of a complete backup strategy is to appear to the outside world as if
nothing has happened, or at worst to minimize the amount of time that you are affected by the
problem. A secondary, but equally important goal, is to reduce or eliminate data loss in case of
a failure.

The best way to increase system resiliency is to prevent failure in the first place. The best way
to do this is to implement redundancy, like disk mirrors, into your design to minimize the
probability of hardware problems that cause system failure.

Even with redundant hardware it is possible to encounter other issues that will cause a system
outage. This is the reason to implement a complete backup strategy.
3–12

Performing System Administration
A complete backup strategy needs to take many things into account, including these factors:

• Who performs the backups.

• Which data gets backed up.

• Where the backups are stored.

• When the backups are scheduled.

• How the backups are performed.

• How often the current backup strategy is reviewed.

A backup strategy must be well-designed, implemented, and periodically reviewed and, if
necessary, changed. The only time a problem is found is when the backup is needed. By then it
is too late. When systems change it is often necessary to modify the backup strategy to account
for the change. You should also periodically test your backup strategy to ensure that it works
prior to a problem that would precipitate its use.

Creating a complete backup-and-recovery strategy

A great deal of time and money are spent on backup and recovery strategies. However, they are
often not tested and revised based on the discoveries made.

A complete backup strategy should try to balance the probability of the problem occurring with
the amount of data loss in a given situation and the amount of time and resources spent on
backups. A disk failure is a relatively likely event compared to a fire or a flood. This is the
reason to have redundancy at the disk level—to reduce the probability of failure. A fire or flood
is less likely, and most people understand that they would lose some data (provided they were
informed about this probability prior to the disaster).

It is also important to include the users in the disaster-planning process. They are the real owners
of the data and can help with the probability/data loss/cost trade-off decision.
3–13

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
It is possible to provide near-100-percent reliability, but there is a large cost to doing so. Take
the case of an emergency services organization. It needs as close to 100 percent reliability as
possible, since a failure on its part could cost lives. It needs to have complete, duplicate systems
at a second location with available staff in case their primary location is knocked out by a
disaster. Your situation might allow you to lose some data and availability of the system in a
trade-off for lower cost. It is important to focus on the entire system and not just your databases
and applications. You must also weigh the cost/benefit of each strategy. While you are doing
this analysis, you need to include the people who run the business to determine their
requirements. It is sometimes helpful to put a price on lost data and downtime because it makes
it easier to do the final cost/benefit analysis.

The following sections identify the key areas to consider when devising a complete
backup-and-recovery strategy.

Who does the backup?

In most cases the system administrator performs backups of the system on a regular basis. When
the system administrator is unavailable, some businesses have other personnel handle the
backups. It is best to have one central person responsible for the overall process and all
archiving activity.

What does the backup contain?

An application consists of many diverse components, including databases, application code,
user files, input files, third-party applications, and so on. Remember that your application is
made up of an OpenEdge release, your application source and object code, middleware such as
the AppServer, and associated operating system files.

The best way to determine what needs to be backed up is to walk through the vital processes
within your organization and note activities and systems such as these:

• The systems that are involved.

• The software application files.

• The data that is used throughout the process.

Where does the backup go?

The media that you use for backups must be removable so it can be archived off site to better
protect data from natural disaster. Consider the size of your backup in relation to your backup
media. For example, tapes with a large storage capacity are a practical and reliable option to
back up a 20GB database.
3–14

Performing System Administration
Tape compatibility is also a consideration. You might want to use the backup tapes on more than
one system. This will allow you to back up on one system and restore to another system in the
case of a system failure. A Digital Linear Tape (DLT) is supported on many platforms and can
be used to help move data from one system to another or to retrieve an archive.

Archiving off site is as important as the backup itself. If a fire, flood, or other natural disaster
destroys your building, you can limit your data loss by having your backup at a separate
location. This can be a formalized service, or as simple as placing the completed backup tapes
at a person’s house. However, it is important to make sure you have access to your archives
24 hours a day, seven days a week. This is especially important if data is stored in a private
residence and the catastrophe occurs when that person is not at home.

How to label a backup

Proper labeling of your backup media is essential. Every label should contain:

• The name of specific items stored on the tape. A tape labeled “nightly backup” has no
meaning without the ability to cross reference the items contained in the nightly backup.

• The date and time when the tape was created should appear on the tape. In situations where
multiple tapes are made in one day, you will need to know which tape is more current.

• The name or initials of the person who made the tape, to ensure accountability for the
quality of your personnel’s work.

• Instructions to restore the tape. There should be detailed restore instructions archived with
the tape. The instructions should be easy to follow and might include specific command
information required to make the backup.

• Volume number and total number of volumes in the complete backup set. Labels should
always read “Volume n of n.”

Note: Always write-protect the tape before archiving and write-enable the tape before using it
for backup.
3–15

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
When do you do a backup?

Perform a backup as often as practical, balancing the amount of data loss in a failure situation
with the interruption to production that a backup causes. To achieve this balance, consider these
points:

• Static information, like application files that are not being modified, only needs to be
backed up once a week, or less often.

• Most database application data should be backed up at least once a day.

In cases where data is backed up once a day, it is possible to lose an entire day’s work if the
disks fail or some natural disaster strikes at the end of the day. If you performed multiple
backups throughout the day but only archived once a day, you would be better protected from
a hardware, software, or user error, but your protection from most natural disasters would be
identical. By moving the intra-day tapes from the machine room to a different portion of your
office, you decrease the probability of a fire in the machine room destroying your tapes.

Using PROBKUP versus operating system utilities

Among knowledgeable administrators, there are debates concerning the use of the OpenEdge
PROBKUP utility versus operating system utilities. Also, there is a great deal of misinformation
about when and how to back up a system while leaving it online. This section discusses these
issues in detail.

Understanding the PROBKUP utility

The PROBKUP utility was created to back up databases. It has many nice features that make it
unique, including:

• The PROBKUP utility is database-aware.

Database aware means that it can scan each block to ensure it is the proper format during
the backup process. It takes longer to do this scan, but the added integrity checking of
potentially seldom-used blocks is worth the small performance degradation.

• PROBKUP has an online option.

This online option allows you to to back up a database while the database is available to
users. Since the PROBKUP utility is database-aware, it knows when the structure of the
database changes regardless of the number of disks/areas/extents. Therefore, the syntax of
the command does not need to change when the structure of the database changes.
3–16

Performing System Administration
How PROBKUP works

The following steps briefly identify the PROBKUP process:

1. Establish the database latch (online only).

2. Do a pseudo checkpoint (online only).

3. Switch AI files (if applicable).

4. Back up the primary recovery area.

5. Release the database latch (online only).

6. Back up the database.

The database is backed up from the high-water marks downward. Free blocks are compressed
to save space. Online backups represent the database at the time the backup started. All
transactions started after the backup has begun will not be in the database when a restore and
transaction rollback occurs.

The reason for the pseudo-checkpoint in an online backup is to synchronize memory with disk
prior to backing up the database. This synchronization is critical since the PROBKUP utility can
then back up all of the data that is in the database or in memory at that moment. Other utilities
can only back up the information on disk, thus missing all of the “in memory” information.

Note: This pseudo-checkpoint affects the “buffers flushed” information in the VSTs for the
database, which will in turn affect PROMON and Fathom. Therefore, you need to note the
number of flushed buffers before and after the backup to ensure that you only track those
buffers flushed during normal operations. The importance of this statistic is discussed in
the “Monitoring buffers flushed at checkpoint” section on page 3–28.
3–17

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
Adding operating system utilities to augment PROBKUP

The PROBKUP utility backs up only the database and primary recovery area. This utility does not
back up the after-image files or even the database log file.

All complete backup strategies use operating system utilities to back up additional important
files on the system such as programs, application support files, and user home directories. Some
administrators choose to back up their database to disk with PROBKUP and use an operating
system utility to augment the database backup with other files to get a complete backup on one
archive set. Also, you should back up your after-image files to separate media from the database
and before-image files to increase protection, as discussed in the “After-imaging
implementation and maintenance” section on page 3–20.
3–18

Performing System Administration
Using PROBKUP or operating system utilities

Table 3–1 lists the advantages and disadvantages of the of PROBKUP utility.

Table 3–1: Advantages and disadvantages of PROBKUP

Advantages Disadvantages

Has online backup capability — Because PROBKUP
is the only utility that is database aware, it is the only
utility that is designed to back up a running database.
There are methods using the PROQUIET utility that
achieve similar results in conjunction with an
operating system utility, but generally those methods
are more cumbersome and time consuming.

Performs block level checking of database — The
PROBKUP utility retrieves each block from the database
and, because it is database aware, it performs some
tests on each block to ensure it has the proper format.
This is not a total check of each record, but a block
level verification.

Knows when structure has been modified so it is
easier to maintain — Because the PROBKUP utility
uses the database structure file to determine the
location of all of the information inside the database,
it is aware when changes are made to the structure.
With other utilities, you need to keep track of the
locations of all of your database areas and extents.

Does not back up empty blocks — The utility only
looks at blocks below the high-water mark, so if you
have additional allocated space in the database, it is
not necessary to back it up. Other utilities will back up
the entire database including blocks above the
high-water mark.

Only backs up the database — The PROBKUP utility
only backs up the database and the primary recovery
area. All other components must be backed up using
some other utility.

Performs slightly slower — The slight reduction in
performance versus operating system utilities is due
to the block level checking that is done by PROBKUP.
The performance trade-off is well worth it.
3–19

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
Table 3–2 lists the advantages and disadvantages of the operating system utilities.

After-imaging implementation and maintenance

After-imaging provides an extra layer of protection around the database. Every high availability
system should implement after-imaging. It is essential that you have a good backup and
recovery plan prior to implementing after-imaging.

Once started, the OpenEdge after-image feature keeps a log of all transactions that can be
“rolled-forward” into a backup copy of the database to bring it up-to-date.

The primary reason to enable after imaging is to protect you from media loss. This can be the
loss of a database, a primary recovery area disk, or a backup tape. In the case of a lost backup,
you can go to the previous backup and roll-forward to bring the system up-to-date. This solution
assumes that your after-image backup was not stored on the same piece of media as the database
backup that you were unable to recover. (This is the main reason for doing a backup of your data
on one tape or tape set and your after-image files to a second tape.)

Table 3–2: Advantages and disadvantages of operating system utilities

Advantages Disadvantages

Ability to do a complete backup — With an
operating system utility you can back up the entire
application.

Tight integration with the operating system —
Operating system manufacturers are better able to
support your use of their utilities. This integration
makes it easier to combine the backup with other
utilities in some cases.

Integration with third-party tools — The operating
system might allow you to integrate with an enterprise
backup tool. PROBKUP can also be integrated, but it
requires you to first back up the database to disk and
then move it to tape with an operating system or
third-party tool.

Performance is generally better — Since the utility
does not do any block level checks, it can get
information off to tape faster than a PROBKUP in most
cases.

More difficult to maintain — When adding extents
or otherwise modifying the database structure, you
need to ensure that your backup takes the new
locations into account.

No online capability — The only way to back up an
OpenEdge database in an online fashion using
operating system utilities is to “quiet” the database
with the PROQUIET command. Once the quiet point has
been established, you can back up the database with
an operating system or third-party tool. The quiet
point can only be disabled after the entire database is
backed up. Your users cannot log into or out of the
database or make any modifications for the duration
of the quiet point.

Limited integrity checking — Most utilities allow
you to check to ensure that the blocks on tape are the
same as the blocks on disk. If there are problems with
the blocks on disk, these integrity checks will not find
the problem.
3–20

Performing System Administration
After-imaging provides user error protection. This feature is not available from any other
source.

This section describes how this feature works. For example, if a user or developer runs a
program that updates all of your customer records to the same name, mirroring would not
protect you. It would store two copies of the bad data. With after-imaging, you can restore last
night’s backup and roll the data forward to a point in time just prior to the moment the program
was run. Without after-imaging, the most likely recourse would be to restore from the last
backup and manually retype the day’s transactions.

After-imaging can also be used to keep a “warm” standby copy of your database. This standby
database could be stored on the same system as the primary copy. However, for maximum
protection you would normally store it on a different system. Progress can provide replication
through its Fathom Replication product with greater flexibility, but after-imaging provides a
way to do a “poor man’s replication.” This form of replication allows you to periodically update
your standby database by transferring after-image files from the primary database and applying
or rolling-forward those files to the standby database. In the case of a system failure, you could
apply the last after-image file to the standby database, and start using the database with
significantly less downtime to the users. If it were not possible to apply the last after-image file
to the database, you would lose only the data entered since the last application of the after-image
file.

Note: Users have been using this method since Progress introduced after-imaging to the
product. It is known to be reliable.
3–21

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
Table 3–3 and Table 3–4 present the advantages and disadvantages of using after-imaging
replication and site replication, respectively.

After-image-based replication is a viable alternative for users who want an extra layer of
protection for their systems but cannot or do not need to implement site replication.

Testing your recovery strategy

The only valid backup is your last tested backup. This underscores the need to test your backup
strategy on a regular basis. This does not mean that you should delete your production database
and restore from backup to “see if it works.” It is best if you can restore your database to a
different location on disk, or better yet to a different system.

How often should you test your backup? If you are using an operating system utility to back up
your database, it is a good idea to test your backup any time you modify the structure of your
database. Since PROBKUP is database-aware you might not need to test for structure changes.
However, it is still wise to test at least twice a year.

Table 3–3: Advantages and disadvantages of After-imaging replication

Advantages Disadvantages

• Included with the product
(inexpensive).

• Time-tested reliability.

• Initial setup time (custom code).

• Ongoing maintenance.

• Read-only access only to the standby
database.

• No synchronous option.

Table 3–4: Advantages and disadvantages of Fathom Replication

Advantages Disadvantages

• Synchronous replication ability.

• Ease of maintenance.

• Read/write access on primary and
standby.

• Cost.

• Greater infrastructure requirements.
3–22

Performing System Administration
You need to test the backup and the process when there are changes in staff or times when the
administrator might be out of town. Any member of the IT staff should be able to perform a
well-documented recovery process. If you do not have an IT staff, you need to ensure that each
person who might be required to restore the system can follow the documented recovery
procedures.

Your recovery procedures should be scenario-based. Common recovery scenarios, such as a
loss of a disk (database, after-image, or application files, for example), fire, flood, and so on,
need to be clearly documented with step-by-step instructions to describe how to determine the
root cause of the problem and how to recover from the event.

You hope you will never need to use your recovery plan. However, if the plan is well
documented and the users were involved in the cost/benefit trade-offs in the beginning, then you
will never be second-guessed or lose the trust of your user base because of a disaster.

Maintaining your system

Do not let OpenEdge’s ease of maintenance lead you to become complacent about maintaining
your system. The health of the system should be monitored every day. This can be done using
a tool such as Fathom or manually using scripts.

The areas that are most important to monitor are the areas that will cause a performance problem
or cause the database to stop running. While the issues that cause the database to stop running
are the most important to identify before they fail, performance problems are often equally
important to system users. A slow system erodes the users’ confidence in the system, and they
will begin to look elsewhere for their information. A slow Web site might drive users to go
elsewhere for information, and they might never return.

This section identifies which areas to monitor and the ways to monitor these resources.

Note: This section does not present a comprehensive list of resources to monitor. Keep in mind
that your system will most likely have additional resources that warrant monitoring.
3–23

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
Daily monitoring tasks

It is too easy to become complacent when you have a smooth, well-running system. Unless you
setup a routine of daily tasks, you might end up relegating system monitoring to the bottom of
your priorities. It might slip into a problem state when you are least expecting it. Establish and
execute a simple set of daily tasks to ward off impending problems.

The following sections describe the resources you should monitor on a daily basis.

Monitoring the database log file

The database log file contains a wealth of information about database activities. OpenEdge
places many pieces of information in the file beyond simple logon and logoff information. For
example, when the database is started, all of your startup parameter settings are placed in the
log file. This information can be used to verify the settings in your PF file (parameter file) or
your conmgr.properties file.

Regularly pay attention to error log entries in the log file. OpenEdge places serious errors in this
file when they occur. Most users do not report an error to the administrator unless it happens
more than once. Error details are automatically recorded in the log file, providing an
administrator accurate data so that appropriate corrective action can be taken.

The former method for locating these errors required an administrator to scan each day, or
several times a day, looking for specific words or patterns. This could be automated through the
use of the grep command on UNIX/Linux and through the search function on Windows.
Fathom can perform this task for you by searching for multiple patterns in the log file.

To create custom error search criteria in Fathom:

1. Select Resources from the menu bar.

2. From the list frame, browse to and select the database that has the log file you want to
monitor.

3. Select Log File Monitor.

4. Click LogFileMonitor_RuleSet.

5. Click View Library Definition.

6. Click Add Rule.
3–24

Performing System Administration
7. Click Create Criterion.

The Create Search Criterion page appears, as shown in the following example:

The criterion created in this example allows external programs to store items in the
database log file and generate alerts from within Fathom. Also, Fathom lets you create
your own rule sets and run them against your own log files.

Using the PROLOG utility

The log file for a given database should be truncated on a regular basis to keep the length
manageable. The PROLOG utility is used to keep the log file manageable. This utility should be
run after you back up the log file.

Monitoring area fill

The fill rate of area extents should be checked every day. With Fathom, you can set an alert to
tell you if your database is growing past a configurable limit. For example, you can tell Fathom
to send you an alert when a particular area is greater than 90 percent full. This allows you to
plan an outage when it is convenient for the users to address increasing the size of the area.
3–25

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
In addition to alerts, you might want to have a snapshot view of where the system is today. This
can be done with VST code by looking at the _AreaStatus table. The two columns that show
your area fill status are:

• _TotBlocks

Represents the total space allocation for the area.

• _HiWater

Represents the amount of used space within the area.

You can graphically display this data in Fathom using the Storage Areas Utilization page.

To monitor area fill:

1. Select Resources from the menu bar.

2. From list frame, browse to and select the database.

3. Select Storage Areas from the Operation Views section in the detail frame. The Storage
Area Utilizations page appears:
3–26

Performing System Administration
Monitoring buffer hit rate

The buffer hit rate measures the percentage of time the system is retrieving records from
memory versus from disk. In Fathom, you can trend this rate and setup alerts for when it falls
below a certain level. However, you should view the buffer hit rate throughout the day to ensure
that the users are getting consistently acceptable performance. A good goal for buffer hit rate is
95 percent. As stated in Chapter 2, “Managing OpenEdge Database Resources,” a buffer hit rate
of 95 percent equates to five physical I/O operations for every 100 requests to the database
manager. Some applications never achieve this level, but perform fine. Other applications need
higher buffer hit rates to meet user requirements.

Figure 3–2 shows a portion of the Fathom Vital Signs page that can be displayed from the
Operations View. It displays content related to a test database. This example shows that the
commit workload varied throughout the day but the buffer hit percentage remained constant
above 98 percent. This percentage indicates consistent performance for the users.

Figure 3–2: Monitoring buffer hit rate in Fathom
3–27

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
Monitoring buffers flushed at checkpoint

Buffers flushed at checkpoint are a good indicator of APW and checkpoint efficiency. The
APW’s job is to keep writable buffers at a low count. Also, you do not want frequent
checkpoints where the database and memory are synchronized. If you are seeing an increase in
buffers flushed during your prime operating times, and they cannot be attributed to an online
backup, you should make adjustments. Solutions to this issue are discussed in the “Monitoring
system resources (disks, memory, and CPU)” section on page 3–28.

If you were monitoring using PROMON, you would obtain the buffers flushed at checkpoint
readings at the beginning and end of the prime operating hours and store them. Storing a reading
can be as simple as writing it down when you read it from PROMON. If you create VST code, you
can store the data to a file. If you are using Fathom, you can look at the information in the
FathomTrendDatabase as seen in the Operations View in Figure 3–2.

While the PROMON option requires multiple checks throughout the day, the other methods let you
check your APW and checkpoint efficiency once, at the end of the day. The example in the
“Monitoring buffer hit rate” section on page 3–27 shows that despite high load during certain
times of the day, it is possible to eliminate buffers flushed at checkpoint. This can be done with
proper tuning of the before-image cluster size and the proper number of APW processes.

Monitoring system resources (disks, memory, and CPU)

The system resources that require monitoring vary from system to system, but disk fill rate —
along with memory and CPU utilization — are generally resources that need to be watched
daily. Memory and CPU are less important because if overused, these resources will generally
only cause a performance issue. Overusing disk resources can cause an outage. The following
sections present a few examples that explain how to use different utilities to monitor these
system resources.
3–28

Performing System Administration
Using sar

Example 3–2 shows a sar output for CPU activity (-u option to sar) taken during a peak period
of the day. The samples are 60 seconds in duration and repeated ten times to give a ten-minute
picture of the CPU activity.

It is important to take longer samples to yield more accurate results. Many users take 5- to
10-second samples so they can see the samples more quickly, but it is very difficult, if not
impossible, to tune the system down to this level. Longer samples (5 to 10 minutes) provide a
good general picture.

Note: Keep in mind that samples that range from 5 to 10 minutes will miss short duration CPU
spikes that you can capture with 1-minute samples.

Also, the average at the end provides you with (in this case) a 10-minute sample for overview
purposes. This example shows that the amount of system CPU and wait on I/O time has been
kept to a minimum, and there is still idle time. This indicates that there is additional capacity to
accommodate growth in workload or the number of users on this machine.

Example 3–2: Using sar to monitor system resources

mymachine: sar -u 60 10

SunOS mymachine 5.7 Generic_106541-15 sun4d 07/10/02

09:55:15 percentusr percentsys percentwio percentidle
09:56:15 67 5 3 24
09:57:15 68 5 5 23
09:58:15 56 3 3 39
09:59:15 54 2 2 42
10:00:15 54 2 2 43
10:01:15 53 3 3 41
10:02:15 52 3 3 41
10:03:15 53 2 2 43
10:04:15 54 2 2 42
10:05:15 65 3 4 28

Average 58 3 3 37
3–29

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
Using Task Manager

On Windows, this same CPU and memory information is available at the operating system
level. It displays on the Performance tab in the Windows Task Manager, as shown in Figure
3–3. The issue with the Windows Task Manager is that the refresh rate for the CPU is too fast.
Even on the lowest setting the screen refreshes every five seconds. This is useful for a general
picture during peak periods, but it does not provide a mechanism for keeping a long-term history
or good granularity of the data. It will, however, let you know when you are out of CPU
resource.

Figure 3–3: Windows Task Manager
3–30

Performing System Administration
Using Fathom

Fathom can store and report on CPU resource usage over time. There is no need to look at the
system in the middle of the night while your nightly processing is running because Fathom can
gather this information 24 hours a day.

Figure 3–4 shows a portion of the standard Fathom CPU Summary report. Fathom provides
hourly averages so you can see how the system ran in your absence. Also, each sample is stored
in the FathomTrendDatabase. If you need to look at each sample to perform a more in-depth
analysis, you can extract the information from the FathomTrendDatabase using a custom report.
Customized reports are discussed further in Chapter 4, “Guidelines for Applying Fathom.”

Figure 3–4: CPU Summary Report
3–31

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
As shown in Figure 3–5, Fathom’s File System Operations view displays:

• Storage information about all file systems.

• Database files that are on each file system.

This information makes it easy to determine disk space utilization considerations. The file
system level is a better indicator than than the physical disk level. Administrators should visit
this page at least once a day.

Figure 3–5: File System Operations view
3–32

Performing System Administration
Periodic monitoring tasks

There are tasks that you need to perform on a periodic basis to promote monitoring of your
system. Some of these tasks, like database analysis, should be done monthly. Other tasks should
only be done as needed, such as an index compress. On UNIX and Linux systems, you can
schedule these tasks in cron. On Windows, you can use the Scheduled Tasks application.

Fathom provides a single interface to schedule all database-related tasks, including periodic
maintenance to the database. In fact, you can schedule any type of task inside of the Fathom Job
Scheduler.

The following sections describe the OpenEdge periodic maintenance utilities.

Database analysis utility

The following points relate to using the database analysis utility:

• Use the database analysis utility to expose table and index storage information.

• Run this utility at least once every three months while users are accessing the database
with low-to-moderate impact on performance.

• Use the utility’s information to determine if you need to rebuild your indexes or make
modifications to your database structure.

The database analysis report details table storage information and helps you to determine if
tables need to be moved to other areas or reorganized to reduce scatter. However, the area of
index utilization is generally more dynamic and needs to be analyzed on a regular basis.

Index efficiency is important. If your data is 100 percent static, then you want your index
utilization to be 100 percent to provide you with the maximum number of index entries per
block. Unfortunately, this is not the case with most applications. Most applications perform
substantial numbers of inserts and modifications, which impact the indexes. It is best to have
sufficient space left in the index blocks to add additional key values without introducing the
need for an index block split.

In an index block split, half of the information in an index block is moved to another block, and
the index pointers are adjusted to include the new block. Block splits are very expensive
operations. Block splits can reduce overall performance during the block split. The split might
cause index fragmentation. If your indexes are small, there is no problem with a few cases of
block-splitting or some fragmentation. But as indexes grow in size and activity, it is in your best
interest to keep them in prime operating condition.
3–33

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
Look at the _indexstat table within the database to monitor index block splits. This VST is not
enabled by default. It must first be enabled and subsequently disabled when you are finished
gathering data. There is overhead associated with this feature, so it should only be enabled for
the time needed to gather your statistics and make the necessary modifications to your
administrative plan.

You can enable this VST using these options:

• Use the Progress Explorer to start the database, then specify index base and index limit
options in the Other Server Arguments field on the Default Configuration Properties
window.

• From the command line, use the –indexbase and –indexlimit options on broker startup
(PROSERVE).

You should be most concerned with index splits. When the trend in the number of splits for a
given time period increases, run index compaction to reorganize the data.

Index rebuild utility

The purpose of an index rebuild is to increase index efficiency and to correct errors. You will
get significantly better organization within the indexes by sorting the indexes prior to merging
them back into the database. You can do this by answering “yes” to the question “Do you have
enough room for sorting?” when running the utility. Be aware that sorting requires substantial
disk space (50 to 75 percent of the space of the entire database when choosing all indexes). If
you have a database that is greater than 3GB, you should investigate and use the <dbname>.srt
file to distribute these sort files.

Only use this utility when either of the following conditions exists:

• You can afford the downtime it requires.

• Index corruption forces a rebuild of an index. In other cases, you can use the index
compress utility to improve the efficiency of the indexes with minimal impact to users.

Drawbacks to the index rebuild utility

The primary drawback to using this utility is that the database must be offline when the utility
is run. You can use a combination of online utilities, including index fix and index compact, to
approximate the effect of an index rebuild.
3–34

Performing System Administration
Another drawback is that you cannot choose a level of compression with this utility. The utility
tries to make indexes as tight as possible. While high compression is good for static tables,
dynamic tables tend to experience a significant number of index splits right after this utility has
been run. This affects the performance of updates to the table.

Even with the decrease in update performance, the overall benefit of this utility is often
desirable. The performance hit is limited in duration, and the rebuild will reduce I/O operations
and decrease scatter of the indexes.

Index compact utility

This utility is the online replacement for index rebuild. Run this utility when you determine that
the indexes are not as efficient as possible. You can determine inefficiencies, for example, by
the output of the database analysis utility.

The benefit of this utility over index rebuild is that it can be run with only minimal performance
impact while users are accessing the database. The resulting index efficiency is generally not
quite as good as a sorted index rebuild, but the cost in downtime and performance impact is so
much lower that it is generally the preferred option.

The index compact utility is the only option for high availability applications. Also, this utility
allows you to choose the level of compression that you want for your index blocks. The default
compression level for this utility is 80 percent—ideal for non-static tables. If your tables are
static, you might want to increase the compression level. The limitation of the utility is that it
does not let you choose a level of compression that is less than your present level of
compression. In any case, your index entries will still be reorganized, but they will not have
more space overall in the blocks for additional index entries.

Index fix utility

The index fix utility corrects leaf-level index corruption while the database is up and running.
Run this utility if you get an error indicating an index problem.

The limitation of this utility is that if the index error is at the branch level rather than at the leaf
level, you will need to use the index rebuild utility to correct the problem. The major benefit is
that you can run this utility while users are accessing the database with minimal performance
impact.
3–35

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
Table move utility

The purpose of this utility is to move a table from one storage area to another. This allows you
to balance your I/O or group similar tables. You can run this utility while users are accessing
the database, but users will be locked out of the table being moved for the duration of the move.
This effectively prevents them from doing any work. The other drawback of this utility is that
a significant amount of logging space is used. This affects the primary recovery and after-image
areas. In the primary recovery area, logging of the move process uses three to four times the
amount of space occupied by the table itself. If you have not planned accordingly, you run the
risk of crashing the database from lack of space in the primary recovery area. This utility should
be tested on a copy of your database before using it against production data.

Index move utility

The purpose of this utility is to move an index from one storage area to another. It works in the
same manner as the Table move utility and has the same limitations and cautions. See the “Table
move utility” section on page 3–36 for details. Note that, just as with the table move utility, you
should test the index move utility on a copy of your database before using it against production
data.

Running the utilities

You can run all of these utilities from the command line. You can also use Fathom to schedule
these utilities to run at specific times. Fathom provides templates to run common utilities, or you
can run existing script or batch programs.

Defining a Fathom job

The steps to define a Fathom job are presented below.

To define a Fathom job:

1. Select Jobs from the menu bar.

2. Select Create Job.
3–36

Performing System Administration
3. Enter the information requested on the page:

Note: In the Command line field, enter only the command itself with no options. Enter
all options in the Command parameters field.
3–37

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
Scheduling a Fathom job

Once a job has been created and tested it can then be scheduled to run when needed. The output
status of a job can trigger an alert, if necessary, so you know if a utility was completed
successfully every night.

To schedule a Fathom job:

1. Select Jobs from menu bar.

2. Select the job you want to schedule from the list of defined jobs in the list frame.

3. Click Schedule. The Job Schedule page appears:

From this page, you can schedule the job to run once or on a regular basis.
3–38

Performing System Administration
Truncate BI and BIGROW

The before-image file or primary recovery area varies in size, depending on the transactions
scoping within your application. Sometimes you will experience abnormal growth of this area,
such as when you make schema changes or wholesale changes to a table in the database. These
circumstances warrant truncating the BI file to recover the space.

Generally, you do not want to truncate the BI file every time you shut down the database. When
the BI file is truncated for any reason, the database engine must reformat the recovery space to
make it usable. If this reformatting is done while the system is running, it can cause noticeable
performance degradation. Consequently, you should extend the BI file to accommodate normal
growth. You can do this with the PROUTIL command’s BIGROW option. With this command, you
specify the number of clusters by which you want to grow the BI file. By preallocating these BI
clusters and eliminating the formatting of clusters during normal processing, you can eliminate
a substantial performance drag on the system.

Understanding dump and load

Determining when to perform a dump and load is a constant struggle. If you set up your database
correctly, your records should not get fragmented and only your indexes should need
reorganizing. This index reorganization is the primary benefit of a dump and load. Usually,
about 80 to 90 percent of the benefit of a dump and load can be achieved with an index
compress, as described in the “Index compact utility” section on page 3–35. However, you
might need to dump and load to reorganize your database into different areas or extents due to
changes in application requirements.

A fast dump and load process is important, since the system will not be available to users during
the process. Some administrators have engineered change tracking to allow users access to data
during the dump and load process with only a short outage to apply the changes to the target
database before providing access. However, this is an application-specific process and outside
the scope of this manual. This section focuses on standard OpenEdge utilities.

Before performing a dump and load, it is important to have a good backup of your existing
database. This backup provides you with a fallback position should something go awry.

The basic dump and load options are described in the following sections.
3–39

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
Data Dictionary dump and load

Follow these rules when performing a Data Dictionary dump and load:

• Multi-thread both the dump and the load. Generally, you should add sessions on both the
dump and load until you cause a bottleneck on the system.

• Pay close attention to avoiding disk variance in the database and with the dump files to
achieve maximum throughput. This means using all of the disks on the system evenly. For
example, you might want to make use of your BI disks because they will be idle during the
dump portion of the process. In this instance, we are focused on I/O throughput, not
storage capacity.

• Contrary to popular belief, it is better to leave the indexes enabled during reload. This does
not make for efficient indexes due to index splits during the load process, but since the
indexes are built at the same time the data is loaded, you can take advantage of the
multi-threaded nature of OpenEdge. The indexes can be reorganized later through the use
of an index compress. Otherwise, the index rebuild is a single-threaded process.

Bulk loader

This option is a good one because it is simple. However, the load process combines two
single-threaded operations on the load side with the dictionary dump processes. The bulk loader
itself is single-threaded; files are loaded sequentially with the indexes turned off. This option
necessitates a single-threaded index rebuild process. The bulk load process itself is fairly quick.
However, it is not possible to run multiple copies of this utility simultaneously, so you need to
run an index rebuild at the end of the process. Therefore, it does not scale well on
multi-processor systems.

Binary dump and load

This option is much faster than the previous methods described. The original implementation
allowed for multi-threading of both the dump and the load. However, it did not allow for
building indexes during the process and made the user do a single-threaded index rebuild. This
limited the overall scalability of the process.

This limitation has been eliminated with the index build option on the binary load utility. Due
to its multi-threading abilities, this utility, when used in conjunction with the index build option,
provides the best overall dump and load performance in the vast majority of cases.
3–40

Performing System Administration
Profiling your system performance

Performance is a matter of perception. Users say performance is slow or fast based on many
factors. It is best to take perception out of the equation by establishing some baselines on
important aspects of your system.

Establishing a performance baseline

The primary reason to establish the baseline is to enable you to quantify changes in performance
from changes in your load or application. The most difficult part of establishing a baseline is
determining which operations are critical to the effective use of the system. You want the list of
operations to be complete, but you also want to avoid having too many items on the list. Too
many items will increase the amount of work needed to establish reliable baselines.

The basic rules outlined below should allow you to narrow down the number of tasks that need
baselines to a manageable number. You might want to have two sets of baselines—one for
daytime processing and one for end-of-day processing.

Include the following tasks:

• Tasks that are done many times throughout the day (such as creating orders, process
control, and data entry tasks).

• Tasks that are important to the user (such as Web site queries, customer support screens,
and order entry tasks).

Do not include the following tasks:

• Periodic tasks (such as monthly and weekly reports).

• Little-used portions of the application.

• Reporting, as it generally falls into the above two categories. Also, you can schedule most
reporting outside of your primary operating hours.
3–41

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
Collecting your baseline statistics

Once you have determined what items you want to benchmark, you can plan your strategy.

You can modify the application code to collect this data, which is the most accurate method.
However, it is also time consuming and costly. An easier way to perform data collection is to
time the operations on a stopwatch. This is fairly accurate and easy to implement. To determine
the best timing baseline for each task, perform timing in isolation while nothing is running on
the system. When the best timing baselines have been established, repeat the task during hours
of operation to establish your under-load baselines. It is best if you can train one or two
individuals in each area to do these timings. This way, if there is an unrecognized performance
problem, there will be someone trained to detect it and report the results so you can understand
its magnitude. This also shows users that you are concerned with performance and helps to
establish a rapport with them.

Understanding your results

Once your task times have been established, you need to analyze the results.

As mentioned, it is best to establish the baselines while there are no reports of any problems on
the system. This will establish what is normal on your system. If users are reporting problems,
you can compare the current timings against your baselines to see if the problem is real or
imagined. If there is a material difference in the current timing, you need to start analyzing
performance on the system with monitoring tools such as PROMON, VSTs, Fathom, and operating
system utilities.

Performance tuning methodology

Always analyze problems starting with the slowest resource and moving to the fastest. Thus, the
first place to start is disks, then memory, and finally CPU efficiency. Before you start looking
at the system, you need to make sure that the application is performing correctly. Correct
application performance has the greatest effect on performance. This is easy to determine by
looking at the number of database requests per user. If most users have tens of thousands of
requests but a few users have millions of requests, you should ask those users what they are
doing with the system and look at those portions of the application for inefficiencies.
3–42

Performing System Administration
When looking at the PROMON Block Access screen (option 3) output in Example 3–3, you can
see that most users are in the tens of thousands for numbers of requests. You should contact
these users to determine how they are using the system.

If these users are doing the same jobs as everyone else, the cause of the problem might be how
users are using the application. This is more common with off-the-shelf applications than with
custom applications. The business rules for the off-the-shelf application might not match the
business process exactly.

A good example of this is an application that is written for companies with multiple divisions,
and the application expects the user to enter a division code as a unique identifier. However,
suppose a company that has only one division bought the product and the users were not trained
to enter a division code. This application might not have an index defined to find records
efficiently without a supplied division code. While this can be rectified on the application side,
you first need to discover the problem before you can address fixing it. The solution might be
to train users to enter a division code until an application modification can be made.

Once you have ruled out the application, you can start looking for common problems.

Example 3–3: PROMON Block Access screen

Block Access:
Type Usr Name DB Reqst DB Read DB Write BI Read BI Write AI Read AI Write
Acc 999 TOTAL 54844706 3828058 156560 957 12017 911 23145
Acc 0 abackman 100224 3007 7 912 869 911 4256
Acc 5 1 0 0 0 10522 0 0
Acc 6 1 0 0 0 0 0 0
Acc 7 1 0 86649 0 0 0 0
Acc 8 1 0 69823 0 0 0 0
Acc 9 DB_Agent 118388 2094 0 0 0 0 0
Acc 10 adam 49038107 3488666 2 0 0 0 0
Acc 11 lori 7829 153 0 0 0 0 0
Acc 12 john 985551 164519 1 0 0 0 0
Acc 13 connie 13886 292 0 0 0 0 0
Acc 14 michael 213915 30250 0 0 0 0 0
Acc 15 abackman 0 0 0 0 0 0 0
Acc 16 adam 4013915 130250 0 0 0 0 15982
Acc 17 frank 3416 82 0 0 0 0 0
Acc 18 jean 13358 375 0 0 0 0 0
Acc 19 wayne 83985 2063 0 0 0 0 0
Acc 20 arlene 53915 1350 0 0 0 0 0
Acc 21 carl 83742 2094 0 0 0 0 0
Acc 22 sue 114471 2863 0 0 0 0 0
3–43

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
Advantages and disadvantages of monitoring tools

The tools needed to examine performance issues range from cryptic (iostat) to full-featured
and easy-to-use (Fathom). This section describes your tools options, and the benefits and
drawbacks of each option.

Table 3–5 shows the advantages and disadvantages of monitoring tools such as TOP, IOSTAT,
VMSTAT, SAR, and MONITOR.

Table 3–6 shows the advantages and disadvantages of the OpenEdge PROMON utility.

Table 3–5: Advantages and disadvantages of system tools

Advantages Disadvantages

• Free.

• Instant access to information.

• Standard.

• Displays only OS information.

• Some provide graphical information
only without a command-line
interface.

• With the exception of sar, there is little
or no history stored unless the user
writes custom code.

Table 3–6: Advantages and disadvantages of PROMON

Advantages Disadvantages

• Included with OpenEdge server
license.

• Good current view data.

• Menu interface only. There is no
command line.

• Difficult to capture and store history
for trending.

• Database information only.

• No comprehensive storage area
information.
3–44

Performing System Administration
Table 3–7 shows the advantages and disadvantages of monitoring with OpenEdge VSTs.

Table 3–8 shows the advantages and disadvantages of monitoring with Fathom Management.

Table 3–7: Advantages and disadvantages of VSTs

Advantages Disadvantages

• Flexible.

• Comprehensive database information
available.

• High learning curve for interpreting the
information.

• Requires knowledge of the Progress
4GL.

• No operating system performance
statistics.

• Custom code for all aspects, including
storage of trending data.

Table 3–8: Monitoring with Fathom Management

Advantages Disadvantages

• Easy-to-use interface.

• Common tool for both operating
system and OpenEdge data.

• Simple storage of trending data.

• Remote administration capability.

• Databases must be in or migrated to the
conmgr.properties file for all
functions to work.

• Limited customization ability.

• Additional licensing cost.
3–45

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
Common performance problems

The common performance problems include:

• Disk bottlenecks.

• Memory bottlenecks.

• CPU bottlenecks, including performance issues such as a runaway process.

• Issues such as BI cluster size and page writers.

Disk bottleneck causes and solutions

Disks are the slowest resource on a host base system, so it is important to resolve issues in this
area first before proceeding to other areas of concern. Generally, when people report
performance issues, this is the first place to look for the cause of the problem.

Causes

The most likely causes of disk-related performance problems are listed below:

• Disk variance.

• Application issues.

• Low database buffer hit rate.

Disk variance

All disks are capable of doing approximately 100 I/O operations per second. If one disk is doing
all of the work, then the maximum number of I/O operations possible is around 100. Additional
disks functioning at the same time will increase the throughput potential of the system and
increase performance to the users.

Disk variance can be seen though sar. Example 3–4 shows two issues:

• Two disks are doing significantly more work that the other disks.

• The amount of wait time is greater for those disks that are working harder. In this case you
could move items off of the heavily used disks and onto the more lightly used disks.
3–46

Performing System Administration
There are many cases where there is extra storage capacity available on the disks, but due to the
utilization of the disks for I/O operations, it is advisable to add disks to increase throughput
capacity.

Application issues

A poorly written application can cause a significant drain on the system. When tracking down
performance problems, you should always consider the application before you look at the
hardware. Prioritize the portions of the application to be investigated and corrected before
modifying startup parameters. Changes to startup parameters can improve performance without
any application modifications, but the effects of these changes are not as durable as application
changes.

In terms of application procedures, it is important to avoid running heavy reports during the
hours of heavy On-Line Transaction Processing (OLTP). Running reports during this period can
have a significant impact on performance for those users. This is because reports generally look
at historical data and OLTP users look at current data. When a report is run, the old data needed
by the report replaces the new data required by the OLTP users. When that new data is needed
again by the OLTP users, they must retrieve it from disk rather than from memory. While a
report is running, it can force the new data to be flushed from memory once again, and this
vicious cycle can continue as long as the report is running.

Example 3–4: Viewing disk variance using sar

16:59:58 device
percentbusy avque r+w/s blks/s avwait avserv

17:00:58 nfs2 0 0.0 0 0 0.0 0.0
sd0 0 0.0 0 5 0.0 23.3
ssd2 0 0.0 2 29 0.0 1.8
ssd5 0 0.0 0 1 0.0 4.8
ssd6 0 0.0 0 3 0.0 12.1
ssd7 0 0.0 0 1 0.0 12.6
ssd10,g 0 0.0 0 2 0.0 10.8
ssd11,g 1 0.0 1 29 0.0 13.8
ssd12 99 3.6 2 307 128.5 145.8
ssd15 2 0.0 1 23 0.0 16.0
ssd16 1 0.0 1 9 0.0 13.7
ssd17 3 0.0 3 47 0.0 12.0
ssd20 4 0.0 3 60 0.0 14.6
ssd21 99 2.1 5 239 107.2 116.5
ssd26 1 0.0 5 71 0.0 1.7
3–47

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
Low database buffer hit rate

As noted previously, it is important to achieve the maximum buffer hit rate possible without
causing other problems on the system (such as excessive paging or swapping). If the buffer hit
rate is too low, you will be forcing users to access the disk rather than memory for information.
Since memory is an order of magnitude faster than disk, the objective is to retrieve as much data
as possible from memory and as little as possible from disk.

Solutions

Some of the solutions to the above problems include the following:

• Balancing I/O across available disks.

• Using –Bp to reduce impact of reporting.

• Increasing database buffers.

• Increasing throughput capacity or redistributing I/O load.

Balancing I/O across available disks

If you have many disks on your system, be sure to spread your database and application files
across as many physical disks as possible. Remember that application files are generally read
only once, so it is more important to spread your database across the maximum number of disks
to achieve maximum throughput. You need to monitor the number of I/O operations per second
on the disks to determine if you are approaching the throughput threshold for the disk.

Using –Bp to reduce impact of reporting

Private buffers allow users to have a personal or private buffer pool within the database buffer
pool. The –Bp client startup option allows you to allocate some of the general buffer pool for
private use. It is possible to allocate up to 25 percent of the general buffer pool in private buffers.

The private buffer option helps reduce the impact of reporting on other database users by using
and reusing the same portion of memory over and over again. Each user of private buffers keeps
a list of data in these buffers. Instead of looking for space in the general buffer pool, which
would affect other users, they look in their own list of buffers for the least-recently-used buffer
and overwrite that buffer. This option is only effective for report or read-only users since only
unmodified buffers can reside in a private buffer pool list. If a modification is made to the
buffer, then that buffer is taken off the private buffer list and added to the general buffer pool
list. These lists are known as least-recently-used (LRU) chains because the least-recently-used
item is taken off the top of the list and reused first.
3–48

Performing System Administration
Increasing database buffers

By increasing the amount of memory available for database buffers, you can put a larger
percentage of your database into memory. The theory behind this is that you actively use only
a small percentage of your database, and if you can put this portion of your database into
memory, you can avoid doing disk I/O and increase performance.

However, there is a point of diminishing returns on increasing buffers. Once you get a high
buffer hit rate, it takes a large increase in buffers to further increase the buffer hit percentage.
Remember, those small percentage increases can have a fairly large effect on performance.
Moving from a 95 percent to a 96 percent buffer hit rate represents a 20 percent decrease in disk
read operations, as the number of physical reads per 100 requests will be reduced from 5 to 4.
This is a consideration when looking at the reasons for increasing buffers and the benefit in
performance to users.

Another item to consider is whether there is a more effective use of the memory, such as client
memory.

Increasing throughput capacity or redistributing I/O load

It is possible that you do not have enough disk throughput capacity on the system. If you have
balanced the disk I/O across the available disks, increased the database buffers to get optimal
efficiency, and tried offloading tasks to other periods of the day, and you still have a disk
bottleneck, your only recourse might be to purchase additional disk drives. Remember that it is
better to buy several small disks than one large disk even though they might have the same
storage capacity. The smaller disks will have a greater combined throughput capacity.
3–49

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
Memory bottleneck causes and solutions

Although disk bottlenecks are likely to have the biggest performance impact because they are
the slowest part of the system, a memory bottleneck in the wrong place can also cause an
immense amount of disk activity. If your disk problems persist after you have done everything
possible to correct them, investigate your memory resources and settings.

Causes

The possible causes of memory bottlenecks are:

• Improper allocation of memory resources.

• Operating system using more memory than necessary.

• Other applications.

Improper allocation of memory resources

If you have unused databases running on your system, they are consuming memory you could
allocate elsewhere. You might have databases with high user memory consumption, causing
excessive physical paging and swapping on the system. Perhaps high memory allocations are
excessive and could be reallocated to other resources.

Operating system using more memory than necessary

Some operating systems will allocate excessive amounts of memory if left unchecked. With a
few modifications to the kernel, you can limit your exposure to this phenomenon.

Other applications

On many systems OpenEdge is not the only application using resources. Consequently, it is
important to analyze all the applications on the system and balance the resources of one
application against another. There are many cases where an application is initially very small,
so its resource usage is not noticed. However, over time the usage and resource footprint has
grown and is adversely impacting the entire environment. Consequently, all applications on a
system should be monitored for their memory consumption.
3–50

Performing System Administration
Solutions

Possible solutions to application problems include:

• Use memory for the common good.

• Limit operating system buffers.

• Think outside the box.

Use memory for the common good

Memory should be used first for items that will benefit all users. If there is memory still
available, then allocate it to individual users or processes. Generally, you want to look at the
buffer hit rate for all of your databases and get the best performance you can before
investigating other issues and solutions. There are exceptions to the rule in the individual
process area, notably background tasks that are used to do reporting and other common tasks.

Limit operating system buffers

Some operating systems will dynamically allocate memory to accommodate as many modified
buffers as possible. However, it is a good idea to limit operating system buffers to 10 percent of
physical memory. OpenEdge handles most of its own I/O and does so even more with the use
of the –directio parameter on broker startup.

Think outside the box

Using memory is not always a choice between different operating systems and OpenEdge
parameters. One example of using resources in a nontraditional way is the use of RAM disks. If
you do a significant amount of I/O to the temporary files on your system, you might want to
create a RAM disk with some of your memory to accommodate these files and eliminate some
I/O to the disk subsystem. You must be very careful about how and when to use this option, and
you must have a very deep understanding of how much space you are using with temporary
files. You do not want to cause a reliability problem with the adoption of this feature.
3–51

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
CPU bottleneck causes and solutions

Once you encounter a CPU bottleneck with no other bottlenecks on the system, your only
recourse is to buy more CPU capacity. This is easier said than done. CPU time is divided into
user, system, wait, and idle time. Your goal is to achieve the maximum amount of user time as
possible. A practical system profile is 70 percent user, 20 percent system, 0 percent wait, and
10 percent idle. The most common problem is that the CPU is waiting for another resource, in
most cases the disk, and all of the CPU time is being used waiting for this resource. On most
systems, this is very easy to see because the percentage of waiting on I/O will increase.
However, on some systems this time is logged as idle time. When the time is logged as idle
rather then waiting on I/O, you need to monitor the disks to see if the percentage of idle time
increases in direct opposition to performance on the system.

Common causes for CPU issues include the following:

• Runaway processes.

• Improper setting of the OpenEdge –spin parameter.

Runaway processes

It is possible for a single process to use 100 percent of the CPU time on a single-CPU system.
In many cases all of the time is logged as user time on the CPU. Although this looks good on
paper, it does not tell the real story.

By focusing on the amount of time a single process uses on the system, you can see processes
that exceed a particular threshold and report those processes to the administrator. By monitoring
your system over time, you can determine both the average and the maximum amount of time
a process uses on the system. Processes that use significantly more CPU time need to be
investigated by the administrator. Note that in some cases high CPU time is justified for
intensive portions of the application, but it is easy to spot a pattern and weed out the “good”
from the “bad.” This is easier to do on UNIX-based systems than on Windows systems.
Fortunately, the problem is much less prevalent on Windows than it is on UNIX. This is because
Windows is a closed environment and therefore has fewer ways to do things in an
out-of-the-ordinary manner than do UNIX-based systems.
3–52

Performing System Administration
Improper setting of the OpenEdge –spin parameter

On systems that have multiple CPUs, OpenEdge provides a mechanism that allows users to do
multiple simultaneous operations. The problem occurs when these operations “step on each
other’s toes.”

OpenEdge implemented latches, which are very fine grained locks in shared memory, to address
this issue. Before a user process can change a memory structure, it must establish a latch to
ensure the resource is not in use by another user. That way, no other user will modify the
resource while the first user is making a change. When establishing the latch, the CPUs check
with each other to ensure that two processes (users) are not trying to do the same thing at the
exact same time. Once that check has been completed, the first user process gets the latch,
makes the change in shared memory, and releases the latch.

All of this occurs at memory and CPU speeds, so thousands of operations can be completed in
a second. The problem manifests itself when the first user has established the latch and a second,
third, or fourth user tries to manipulate the same resource. By default, each user asks for the
resource one time and relinquishes the CPU if the resource is not available. This is very
inefficient, since a significant amount of system overhead is used to initially render the process
active in the first place. So, instead of asking once for the latch, it is better for the process to ask
many times in an effort to get the latch. It is cheaper in terms of system resources to ask
thousands of times, and in some cases tens or hundreds of thousands of times, to get the latch.
Because of the relative inefficiency of the CPU queue, multiple requests are preferable to asking
once, getting refused, and going to the end of the CPU queue only to come to the top of the
queue to ask again and finally get the resource. The problem manifests itself as high system time
on your CPU monitor.

The OpenEdge -spin parameter is set to indicate the number of requests to make for the latch
before going to the end of the CPU queue. For most multi-CPU systems, a good starting point
is a setting of 2,000 for –spin. Settings between 2,000 and 10,000 work well in the majority of
cases.
3–53

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
Other performance considerations

Other performance areas to consider include the following:

• BI cluster size

• Page writers

• Database block size

• Procedure libraries

BI cluster size

The BI cluster size determines the frequency of checkpoints on the system. The larger the cluster
size, the longer the time frame before the database engine will attempt to reuse the clusters. A
reuse scenario requires a checkpoint. Your goal is to have checkpoints occur on an infrequent
basis. A scenario of one checkpoint every two minutes during the highest update times of the
day is still too high. On many systems, a fairly low cluster size of 1024KB (1MB) will yield
checkpoints every 30 minutes for most of the day, with some higher frequency during peak
periods. On most systems, 1024KB should be the lowest setting to consider. If your workload
warrants, you should increase it to 2048KB and then monitor checkpoint frequency. If it is still
too high, increase it to 4096KB, monitor again, and so on. Most low-to-mid-update systems fall
into the 1024KB-to-4096KB range. Increase your BI cluster size only if you are on an enterprise
version of OpenEdge that will allow you to implement page writers.

Page writers

The enterprise version of OpenEdge provides a mechanism to expedite the task of writing
database buffers to the disk. There are several kinds of page writers: before-image, after-image,
and asynchronous. The before-image writer and after-image writer are easy to understand and
set. If you have a read-write database, you should have a before-image writer. If you have
after-imaging enabled, you should have an after-image writer. You can only start one of each
per database. The more complex scenario is the use of asynchronous page writers (APWs).
These synchronize the modified buffers in the database buffer pool in shared memory with the
database files on disk. If you are doing updates to the system, you should start with one APW
and then monitor the buffers flushed at checkpoint.
3–54

Performing System Administration
You can monitor the buffers flushed at checkpoint using the PROMON Activity (option 5) screen,
as shown in Example 3–5.

Example 3–5: PROMON Activity screen

Activity - Sampled at 07/10/02 17:50 for 30:44:17.

Event Total Per Sec Event Total Per Sec
Commits 853 0.0 Undos 3 0.0

Record Updates 107290 0.9 Record Reads 259518607 2345.2
Record Creates 291993 2.6 Record Deletes 1 0.0

DB Writes 158701 1.4 DB Reads 8213547 74.2
BI Writes 12092 0.1 BI Reads 967 0.0
AI Writes 23289 0.2

Record Locks 181966214 1644.4 Record Waits 217 0.0
Checkpoints 11 0.0 Buffers Flushed 0 0.0

Rec Lock Waits 0 percent BI Buf Waits 0 percent AI Buf Waits 0 percent
Writes by APW 99 percent Writes by BIW 88 percent Writes by AIW 0 percent
Buffer Hits 7 percent
DB Size 308 MB BI Size 64 MB AI Size 182 MB
FR chain 660 blocks RM chain 10 blocks
Shared Memory 83332 K Segments 1

0 Servers, 5 Users (5 Local, 0 Remote, 0 Batch),2 Apws
3–55

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
You can also use Fathom to monitor buffers flushed. Figure 3–6 shows the Checkpoint
summary section of the Page Writers Operations view page.

Figure 3–6: Viewing buffers flushed in Fathom

If you see “buffers flushed at checkpoint” increasing during the performance-sensitive portion
of the day, and this increase is not attributable to a quiet point or an online backup, you should
add one APW process. If you keep increasing the number of APWs and you do not see a
corresponding decrease in buffers flushed at checkpoint, then most likely you have a disk
bottleneck.

Database block size

As stated previously, in most situations an 8KB database block size is the optimal setting for
most operating systems other than Windows. For Windows systems, a setting of 4KB is more
appropriate. By synchronizing the database block size with the operating system block size, you
will get better performance. When you read a single database or index block on an 8KB block
size database, you will get eight times the information you would get for a 1KB block size. Also,
if the operating system handles disk to memory transfers in 8KB chunks, as most operating
systems do, and you only ask for a 1KB block, you run a high risk of wasting 7KB of transfer
space containing information that you will never use.
3–56

Performing System Administration
Procedure libraries

OpenEdge procedure libraries let you eliminate unnecessary disk I/O. Normally, when a
program is read from disk to be executed, a copy of it is placed in the local sort (SRT) file in case
it needs to be retrieved. This copy process causes a moderate-to-high amount of disk activity. If
a program is stored in a procedure library, the client process does not store a copy of the program
in the sort file. (You can override this with the –pls parameter.) For host-based systems this can
represent a significant reduction in temporary file I/O, which is very likely to increase
performance.

Conclusion

Performance tuning is more art than science in many cases. It is necessary to view the system
as a whole and realize that an improvement in one area might cause a problem in another. The
overall goal is to work the bottleneck to the fastest resource, which is the CPU. Once you have
achieved that, you can rationalize additional hardware expenditures to scale your application
even higher. It is always important to look at the application itself to make sure that you are not
just “throwing hardware at the problem.” Once you have an efficient application to work with,
you can take advantage of the system to run the maximum number of users at the highest
performance level with the fewest resources possible.

Periodic event administration

There are some tasks that are performed only occasionally on the system. These tasks require
thought and advance planning to decrease their impact and maximize the benefit to the
organization. Many of the items listed in this area could be considered luxury items, but if you
are well positioned in the other aspects of your system, you can invest some time in these tasks
to round out the management and maintenance of your system.
3–57

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
Annual backups

The annual backup is generally viewed as a full backup of the system that can be restored in the
event of an emergency. The most common use of the annual backup is for auditing purposes.
These audits can occur several years after the backup is taken, so it is very important to be able
to restore the system to its condition at the time of that backup. In the United States, it is possible
for the Internal Revenue Service to audit your company as far back as seven years. How likely
is it that you will be on the same hardware seven years from now? You might be on compatible
hardware if you are lucky; most likely you will be on different hardware with a different
operating system. Consequently, it is important to plan thoroughly for such an eventuality.

One way to guarantee platform independence is to dump your important data to ASCII and back
it up on a reliable, common, and durable backup medium. Some people prefer optical storage
over tapes for these reasons. Also, don’t overlook the application code and supporting software,
such as the release of OpenEdge being used at the time of backup. If you are not going to dump
to ASCII, you must obtain a complete image of the system. If you take a complete image and
are audited, you will need to find compatible hardware to do the restoration. It is also important
to use relative path names on the backup to give you greater flexibility during the restoration.
Finally, you need to document the backup as thoroughly as possible and include that
information with the media when sending the backup to your archive site.

Archiving

A good IT shop always has a complete archiving strategy. It is generally not necessary to keep
transactional data available online for long periods of time. In most cases, a 13-month rolling
history is all that is necessary. This can and will change from application to application and from
company to company. You need a thorough understanding of the application and business rules
before making a decision concerning when to archive and how much data to archive. In most
cases, you should keep old data available offline in case it is needed. In these scenarios, you
should develop a dump-and-purge procedure to export the data to ASCII. This format is always
the most transportable in case you change environments or want to load some of the data into
another application such as Microsoft Excel. Always make sure you have a restorable version
of the data before you purge it from the database. An archive and purge can dramatically
improve performance, since the system will have far fewer records to scan when it is searching
the tables.
3–58

Performing System Administration
Application modifications

Changes to applications require careful planning to reduce interruptions to users. Although
there might be a process to test application changes at your site, database administrators should
consider it there responsibility to verify expected application changes. The most effective way
to do this testing is to have a test copy of your database that is an exact image of what you have
in production and a thorough test plan that involves user participation.

Making schema changes

Schema changes can take hours to apply if they are not done properly. If the developers tested
the application of schema changes against a small database, they might not have noticed a
potential problem. A small database could apply an inefficient schema update in a short period
of time and would not raise any red flags. If you have a full-size test environment, you can apply
the schema change and know approximately how long it will take to complete. It is important
to understand how long this process takes, since the users of the application will be locked out
of the system during the schema update.

You should apply schema changes in single-user mode to avoid potential problems with schema
locks. If you do not have a full copy of production in your test environment, you can apply the
changes in multi-user mode and watch the number of updates that are being done by the process.
If you see hundreds or thousands of requests being done, you can estimate the amount of time
required based on the relative size of the test database to the production database. This estimate
will not be 100 percent accurate, but it will give you a general idea as to how long you need to
schedule the outage for this operation.
3–59

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
As Figure 3–7 illustrates, you can use Fathom to determine the number of database requests a
user has performed. You need to look at the number of requests before and after doing the
schema change operation. This information is also available through the PROMON Block Access
screen (option 1).

Figure 3–7: Monitoring user requests in Fathom

It is difficult to determine which user number you are. You can log in with a unique ID, figure
it out though a process of elimination, or run the following program from within the OpenEdge
editor to determine your user number:

FIND _MyConnection.
DISPLAY _MyConn-UserId.
3–60

Performing System Administration
Making application code changes

The amount of time it takes to apply application code changes can be greatly reduced by an
advance compilation of your code against a CRC-compatible copy of your production database.
To maintain CRC compatibility, start by creating a basic database, which is one that contains
no data—only schema definitions. Use the basic database to seed a production database and a
development database. The basic database is also saved, so you will have three copies of your
database. If you already have a production database in place, the basic database is obtained by
dumping the schema from those databases.

As development occurs on a test copy of the database, the production and basic databases
remain unmodified. When you are ready to promote your schema changes from development to
production, first make an incremental data definition dump from the Data Dictionary by
comparing the development schema with the basic database. The incremental data definitions
can be applied to the basic database, and you can compile your application against that database.
Second, the incremental data definitions can be applied at a convenient time on the production
database (after appropriate testing). While the incremental data definitions are being applied,
you can move the r-code you created against the basic database into place avoiding additional
downtime to compile the application code.

Migration of OpenEdge releases

Migrating releases of OpenEdge can be as easy as running a conversion utility or as complex as
a dump and load of your databases. And, in most cases, minor version changes can be made
without running a conversion utility. It is important to test even minor version changes and
service packs or patches in your test environment prior to promoting the code to production.
When making a major version change, you need to do additional analysis prior to making any
changes. Major version changes also require that you test the conversion process for
performance and reliability prior to applying the new version to your production environment.
In almost all cases, even major version upgrades go very smoothly, but you never want to
become complacent.

When you have everything in your database set up properly, you are ready to run the conversion
utility. Generally, the actual conversion of the database will only take a few minutes, so it is not
a major undertaking to convert the test environment and verify that conversion. After the
verification has been done on the test database, you can decide how to proceed with the
production application and databases. If you are unhappy with your setup for any reason, it
might be wise to do a more complex conversion.
3–61

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
One possible motivation for considering a complex conversion might be that you have a
significant amount of record fragmentation in the database. A complex conversion might start
with a simple conversion to take advantage of new features in the new version. Then you would
do a dump and reload of your tables to establish a new database structure. By using a
multi-phase approach, you can minimize your risk by providing a fall back position if there are
problems during the migration. It is imperative to have good, tested backups before applying a
new version of OpenEdge or application code to the system. The same is true even when
applying minor versions and patches to the system.

Summary

The ideal system plan accounts for all aspects of the system administration and maintenance,
even those items done on an irregular or occasional basis. If you plan and test properly, you can
avoid potential problems and provide a predictable environment to users. In general, people do
not like surprises. This is especially true with business systems, so establishing accurate
schedules for all tasks is very important and will build confidence in your system.
3–62

4
Guidelines for Applying Fathom

This chapter provides guidelines for installing, configuring, and using Fathom, including the
following topics:

• Making practical resource monitoring decisions

• Configuring Fathom for your environment

• Remote monitoring

• Performance considerations

• Configuration Advisor

• The File Monitor

• Creating custom reports using 4GL

• Creating custom jobs

• Extending usefulness of existing Fathom functions

• Troubleshooting your Fathom installation

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
For more information about the tasks discussed in this chapter, refer to the Fathom product
documentation where you will find comprehensive installation, configuration, and usage
instructions. The Fathom product documentation set includes the following manuals:

• Welcome to Progress Fathom Management Standard Edition

• Installation and Configuration Guide

• Resource Monitoring Guide

• Database Management Guide

• Alerts Guide and Reference

• OpenEdge Server Management Guide

• Reporting Guide

• FathomTrendDatabase Guide and Reference

• OpenEdge Revealed: Achieving Server Control with Fathom Management

Fathom customers receive this documentation with the Fathom product. You can also access
this documentation from the Progress Software Corporation Web site at:
http://www.progress.com/products/documentation
4–2

Guidelines for Applying Fathom
Introduction

Throughout this manual you have been introduced to Fathom as a tool to monitor and trend
computer, operating system, and OpenEdge resources. The benefits of the product include:

• A common interface to monitor and view resources across operating systems and
platforms.

• Automatic trending of resources upon installation.

• Alerts to identify potential trouble spots.

• Ability to automatically configure alert thresholds.

While it is easy to see the value in such a product, you also need to be aware that a certain
amount of effort is needed to set up and maintain Fathom so that it generates the best results.

Fathom can provide a snapshot of the current status of a resource, or a trend of resource
utilization over a period of time. This trending information is stored in an OpenEdge database,
which is called the FathomTrendDatabase. This database needs to be maintained like any other
database on your system. Backups, tuning, and other maintenance activities are required to run
the FathomTrendDatabase properly, and to preserve and protect your data.

Making practical resource monitoring decisions

During the Fathom installation process, you need to make decisions regarding the resources that
you want to monitor and trend. You also need to think about the frequency of monitoring. If you
monitor too often or have too many monitored resources, you run the risk of affecting
performance of your core systems. If you monitor too few resources or monitor the resources
too infrequently, you reduce the effectiveness of Fathom.

This section provides guidelines for making effective decisions during the Fathom installation
process.

There are two portions of the Fathom installation:

• Installing the Fathom software.

• Configuring the Fathom resource monitors.
4–3

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
Before you install

Before you install Fathom, you need to do the following:

• Apply necessary service packs — Before you install Fathom, you must install the service
pack from the CDs provided with the software.

• Decide on what machine you want to store the FathomTrendDatabase — Install
Fathom first on the machine where you are going to store your FathomTrendDatabase.
Then install Fathom on other network nodes. Your application and network layout will
determine the number and location of FathomTrendDatabases, as described in the
“Determining the location and number of FathomTrendDatabases” section on page 4–18.

• Decide on the location where you want to install the FathomTrend Database — While
the default location for the FathomTrendDatabase is under the Fathom installation, it is
advisable to specify a directory outside of Fathom and OpenEdge (that is, $DLC). This
could make it more accessible for standard maintenance. Also, if you uninstall Fathom, the
database will be deleted if it resides within the Fathom installation.

• Know the SMTP host name and port number — Prior to installing Fathom, you must
know the Simple Mail Transfer Protocol (SMTP) host and port number. The SMTP host
is your mail server, and the port is the port number that this service is using to provide its
service to your network. The port is 25 by default, but some administrators modify this for
security reasons. Your mail administrator can provide this information to you in most
cases, or if you can log into the mail server machine, you can look at the services file to
determine the port that SMTP uses. The services file is located in the /etc directory on
UNIX and Linux systems. On Windows systems, this file is located in the
\winnt\system32\drivers\etc directory, by default.
4–4

Guidelines for Applying Fathom
In this file you will see a line similar to the following:

Where:

– smtp is the service name.

– 25 is the port number used by the service.

– tcp is the network transfer protocol used by the service.

– # mail is a comment, which is used to help the administrator identify the service.

The only item that might change on this line is the port number. This is the value that you need
when you install Fathom.

Initial installation settings

Allow Fathom to auto-discover all of the resources on the Getting Started page. Default
trending for resources will be enabled automatically. This will give you a good basic installation
to work from and allow you to choose which resources you want to trend. If you have experience
with Fathom, you might know which resources to trend, and the installation will provide a
convenient method to disable trending on just those resources you specify. For the first-time
user, it is best to use the defaults until you know what resources you want to trend. You will still
be able to get snapshot information of resources even if you decide to disable trending at a later
time.

smtp 25/tcp # mail
4–5

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
Post installation configuration tasks

Once your installation is complete, you need to perform some additional tasks to complete the
configuration. You might make future modifications to these items as you analyze the data.

In brief, here are the major steps to complete your Fathom installation:

1. Create one or more monitoring plans.

2. Create jobs.

3. Create actions.

4. Create rules.

5. Export your settings.

Create monitoring plans

All Fathom resources must have a monitoring plan. Each monitoring plan includes a schedule.

The first order of business is to change Fathom’s default schedule, as this is the basis for
trending on your system. The default schedule is initially set to monitor 24 hours a day, every
day. This schedule can be modified, but not deleted or renamed.

To provide additional flexibility in scheduling, additional schedules can be built during the
initial installation. These schedules are used only if requested by the user. Additional schedules
can be modified to better suit your needs. The most likely modification is to have your default
schedule cover your prime business hours (for example, Monday through Friday 8AM to 6PM),
with a second schedule for after hours and perhaps a third schedule for weekends. This approach
allows you to have more aggressive monitoring during peak periods and less monitoring during
times of inactivity. If no one is on the system and there is little or no batch activity on the system
between 7PM and 8AM, you could leave monitoring off until 8:30AM. This would allow users
to fill the buffer pool during their normal ramp-up time, which is not indicative of “normal”
running operation of the system.

There are many systems that do significant amounts of work during nightly processing. If this
is the case at your site, it is wise to leave monitoring and trending enabled during this period.
The point is to have Fathom poll and trend only when necessary.
4–6

Guidelines for Applying Fathom
Create jobs

After schedules and actions have been created, you can create jobs for your system. Each job is
individually scheduled on the Job page in Fathom. A job can be run once, repeated on a
schedule, or used as an action. You can use this process to start your end-of-day processing at
the same time each night, your weekly processing on the same day and time each week, or to
repeat a process on a monthly basis.

When you define a job, you can also use the job as an action. Any jobs defined as actions can
be used within compound actions, as described in the “Create actions” section on page 4–7.

Create actions

After you complete your schedules, you want to create actions or modify the default action. The
actions provide a mechanism for doing something in response to an alert. Alerts are discussed
in the “Rules” section on page 4–12.

Fathom provides the following actions:

• E-mail Action — This action is used to send an e-mail message in response to an alert.
Many pager companies allow an e-mail message to be sent directly to a pager, so you can
use this action to notify a person of an urgent issue. You might want to set up several
e-mail actions, depending on the severity of the problem. One action could be used to
notify administrators only, while another could inform the help desk, and a third could
notify a distribution list about very urgent issues, and so on. Information e-mails can be
sent to a location that is checked only periodically to minimize the interruptions for
low-level messages.

• Log Action — This action allows users to place a message in the file of their choice. This
is another way of handling informational messages. Instead of sending an e-mail to a user
or account that is looked at infrequently, you can place the message in a file that is viewed
on an ongoing basis. This way, the volume of e-mail messages is minimized.

• SNMP Trap Action — This action generates an SNMP trap or message. Simple Network
Management Protocol (SNMP) is the Internet standard protocol for managing nodes on an
IP network. For example, if you are running an operating system tool that supports SNMP
to manage your system such as HP OpenView, you can configure Fathom to send traps to
your tool to inform you of issues in your OpenEdge environment. This SNMP trap action
allows you to extend the capabilities of your existing infrastructure without having to train
your operators to use Fathom.
4–7

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
• Compound Action — This action allows you to combine actions in response to an alert.
The best example of this might be a situation where you wanted to send an e-mail (e-mail
action) and log the issue to a log file (log action) in response to an alert.

Figure 4–1 shows the Job Create view.

Figure 4–1: Job Create view

Note: You need to insure the Action checkbox has been selected in order to use the
defined job action.
4–8

Guidelines for Applying Fathom
• Command Action —You can also use actions to take corrective steps through the use of
jobs as actions, to generate informational messages, or a combination of the two. You are
only limited by your imagination and the amount of time you have to spend on
development of the background application code. In most cases you want Fathom to
deliver notification prior to a problem occurring. This is important because it provides an
opportunity to correct problems prior to an outage. In a best-case scenario, users will keep
and analyze trending information and take corrective action so alerts will never be fired in
the first place. Alerts should be treated like the warning lights in your car. If the light turns
on there is already a problem, which could have been taken care of with routine
maintenance.

Defining environment-specific rules

Once your installation is complete, you can focus your attention on the nuts and bolts of
resource monitoring and trending. This includes determining which resources to trend, which
rules to define, and how to determine the actions that those rules will take when a rule is broken.

Scheduling and polling

The default schedule for Fathom is 24 hours a day, 7 days a week. However, each resource can
have its own schedule. Once you select a schedule, you can choose a polling interval. The
polling interval tells Fathom how often to poll or query the resource for information. A poll
without trending will support the alert system within Fathom. The more frequent the poll the
greater the impact to the system. You might want to poll some resources frequently, but trend
only the resources a few times a day.

Trending

Trending is important because it allows you to gain insight into how and potentially why your
system demands are growing. However, it is equally important to know what resource not to
trend. If you are trending every resource, you can gain insight into all facets of your application,
but the additional load on the system to support this trending can cause a noticeable decrease in
performance. The goal is to trend what you need because only a limited number of samples are
stored in memory and it is difficult, or impossible, to get information about resources that you
are not trending. At the same time you do not want to trend too many resources that would incur
significant additional hardware expense to support the monitoring and trending tool.
4–9

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
If you are frequently monitoring and storing trending information, you might want to compress
data older than 180 days with the FathomTrendDatabase. This approach will take your
individual samples and compress these records into hourly, daily, and weekly records to
conserve space in the FathomTrendDatabase. It is also important to have an archiving strategy
for your FathomTrendDatabase data just like any other database. You should not discard the
data just because it is over one year old. Spend the time and resources to gather the data. This
historical data will allow you to provide the business with year-over-year statistics from which
to plan.

You can enable trending for the default schedule associated with this database resource by
selecting the Trend Performance Data check box, as shown in Figure 4–2.

Figure 4–2: Enabling trending
4–10

Guidelines for Applying Fathom
Clicking the Advance Settings button displays the page shown in Figure 4–3.

Figure 4–3: Advanced trending settings

On this page, you can specify how often you want Fathom to capture trending information. This
is a product of the frequency of polls and the number of polls between trending. If you trend
data on every poll, a trending data record is stored for this resource every polling interval.

For example, if you set the Trend Performance Data Every field to 1 and the polling interval
is set to every 5 minutes, you will store 288 trend records for this resource per day:

24 hours * 60 minutes per hour / 5 minutes per sample = 288 samples per day
4–11

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
If you want two trending samples per day, change the Trend Performance Data Every field
to 144:

If you want to exercise greater control over when samples are taken, you can create a separate
trending schedule. You could set up this schedule to execute at specific times of the day to
capture the data you require. This allows you to do your polling at peak periods after your
end-of-day cycle or at other specific periods of the day. You could have a single poll or a short
defined period to capture a specific period, task, or series of tasks. You should first try using the
default values, and then modify these over time to suit your needs.

Rules

Fathom rules provide boundaries for the system. If a rule is broken, an alert or action can be
taken based on the rule. Turn on rules only as you need them. This will limit the number of alerts
and make the alerts that you do get more meaningful.

It is important to keep your rules simple and focused on your most critical areas. Use the
following guidelines when setting up rules:

1. Focus on failures that you have already experienced, such as:

• Abnormal shutdown of a database.

• Process terminations.

• Disk full conditions.

144 samples * 5 minutes per sample / 60 minutes per hour =
12 hours per trended sample
4–12

Guidelines for Applying Fathom
2. Work on common problem sources, such as:

• Variable area extent growth.

• High area space utilization.

• High paging and swapping.

• High disk space utilization.

• Log file monitor for the database.

3. Work on housekeeping, such as:

• Removing any unnecessary rules.

• Adding additional rules as needed.

Job and report templates

Fathom lets you create job templates and use them as the basis for creating additional jobs. The
templates allow you to create business rules for how you want specific tasks to be completed,
and you can duplicate the process quickly while maintaining your business rules. Templates
provide a quick mechanism to go from configuration to implementation when you are dealing
with multiple resources in your environment.

Using job templates makes sense when you have multiple resources that are similar. If you are
going to create only one job, it does not make sense to create a template. Also, if you are going
to export your resource settings, the template you create might be more useful on other systems.

All reports use templates, so regardless of whether you are going to use the report once or
several times, you will create a template for the report.
4–13

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
My Fathom

The operational model of the business determines the ideal configuration of one or more simple
screens that are uncluttered and meaningful. The most common configuration is to have vital
system resources and your databases on the My Fathom page. Other models might include:

• Profiles based on applications.

• Profiles based on servers.

• One server for your real time application, another for personnel and payroll, and a third for
accounting and finance.

• Profiles based on Fathom users (database administrator versus system administrator).
4–14

Guidelines for Applying Fathom
Figure 4–4 shows a custom defined My Fathom page.

Figure 4–4: Customized My Fathom page
4–15

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
Export resource settings

Fathom lets you export your resource settings to provide a basis from which to build your next
Fathom environment. This feature is especially helpful for VARs and other users who need to
support the same application for a variety of systems. You can export the following items: job
templates, actions, database rule sets, report templates, log file search criteria, log file rule sets,
and shared views. These exported items can then be imported into a FathomTrendDatabase on
a different system.

When you are importing resources from a resource settings file, you can choose how to handle
resources that already exist in the current Fathom installation. Your choices are to display an
error, keep the existing resource, or replace the existing resource.

Default database monitoring

By default, Fathom polls database resources every five minutes. If trending is enabled, Fathom
also maintains trending information for each poll, with the exception of index and table
statistics, which are trended once every 288 polls (once a day).

The default rule plan for a database resource contains a small number of commonly used rules.
Any additional rules will need to be defined or imported.

Alert setup

Fathom alerts are effectively defined only after your Fathom actions have been defined and
saved into the Fathom Management console. You should first define the default action. The
initial setting of the default action is to send an e-mail to the address specified during the
installation process. You must determine what the default action for an alert will be, and then
modify the default action. In most cases, you can leave the default action as is and start creating
additional Fathom actions, as needed.

In most cases, it makes sense to set up alert categories based on your business needs. For
example, you might want alerts for system resources to trigger an action that sends an e-mail to
the system administrator, while database alerts would trigger actions that send e-mail to the
database administrator. Severe errors in either area could be directed to both system
administrators and database administrators.

It is important to start with a few important alerts and then add others as needed. First take the
default rule and add two additional rules, one for Variable Extent Grow for all of your database
areas and another for Stopped Trending. These rules will ensure that Fathom is operational on
your resources. Once these rules have been defined, you can add additional rules as needed.
Make sure that the defined rules trigger an alert only when you want them to, or you will devalue
the alert and run the risk of a valid alert being ignored.
4–16

Guidelines for Applying Fathom
Configuring Fathom for your environment

There are many different ways to configure OpenEdge-based applications, but most of these
configurations fall into one of the following three types: single machine, multiple machine, or
distributed multiple machine.

The simplest and most widely utilized configuration is a single-machine configuration. This is
where there is one machine acting as the database engine. The term database engine refers to
the machine that contains the OpenEdge databases and potentially the application code.
However, this configuration also refers to the server in the classic client/server environment
where you have many PCs connected to a central machine that serves data. In this configuration,
you will keep the FathomTrendDatabase to store your performance trending information on the
same machine as the application databases.

A multiple-machine environment is a little more complicated due to the increase in the number
of machines and the amount of trending data that will be stored. To successfully configure a
multiple machine environment, you need to know how you will use the information. If each
machine has a separate purpose and separate administrative staff, it would be wise to separate
the trending information as well. In most places, this is not the case. The machines work
together and have only one or two administrators to manage them. In this case you would have
a central machine act as the Fathom Management Machine (FMM), and the other machines
would report the trending data to this machine. If one of the production machines has spare
capacity (disk, CPU, memory, and network), you could use that machine as the FMM, but you
could also have a dedicated machine to handle this function.

Note: Remember that the FMM machine must have an AdminServer license in addition to the
Fathom license.

Having machines share the same FathomTrendDatabase will help reduce the number of places
you need to look for performance information and allow the administrators to be more efficient
in avoiding system issues. The downside is that there will be an increase in network traffic to
accommodate trending data being passed from Fathom client machines to the FMM. You
should avoid having more than ten Fathom client machines per FMM for performance reasons.
4–17

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
Determining the location and number of
FathomTrendDatabases

Determining the number of FathomTrendDatabases is straightforward in most cases. A small
percentage of installations will fall outside these guidelines, but most users should follow these
general rules.

If you are in a single machine environment you should:

• Have one trending database.

• Trend only those databases essential to business functions.

Because the FathomTrendDatabase is sharing resources with your production application, take
care to reduce the impact of monitoring on your other applications. By having only one
FathomTrendDatabase and limiting the number of resources to those that are essential to your
core business, you can implement Fathom and gain insight into your system’s inner workings
while limiting your use of shared system resources.

If you have multiple machines in a local area network (LAN), you should:

• Have one trending database.

• Store the trending database on your most reliable machine, where possible.

• Store the trending database where you have spare capacity.

• Trend only those resources needed.

You will introduce additional network traffic by trending remotely, but the ability to trend and
report from one database will provide significant benefits over time. If you place the database
on a machine that has excess capacity, you can use that capacity to provide a service to your
users.

If you have multiple database machines distributed across a wide area network (WAN),
you should:

• Have one trending database per site.

• Follow the rules for LAN machines, as described above.
4–18

Guidelines for Applying Fathom
For performance reasons, it is important to keep Fathom monitoring and trending traffic off of
your WAN. There is no problem with accessing your trending information across the WAN
through the Fathom Management console or through custom programs. However, you should
treat each site in your organization like a separate local area network.

Isolating the FathomTrendDatabase

By isolating the FathomTrendDatabase you can limit the impact trending has on other
resources. As stated before, the very act of monitoring and trending will have an impact on
performance.

This section discusses possible ways to isolate the FathomTrendDatabase along with the costs
and benefits associated with each suggestion.

Use a separate machine

If you isolate the FathomTrendDatabase on a separate machine, you can monitor this machine
to better understand the impact of resource trending on the machine and the network. The major
issue with this configuration is the increased network traffic to support monitoring. This might
not be a problem in many cases. If it is a problem, you can overcome it by increasing the
bandwidth of your network or implementing a private network. Given that the network is
generally the slowest hardware resource, you need to understand that the additional load on this
resource will not cause problems for your applications.

Use a private network

One way to eliminate problems in trending across the network is to set up a private network that
will support trending. This is fairly inexpensive if the machines are in close proximity to each
other. If this is not the case, the cost can increase significantly. Each monitored machine will
need an additional network card and one additional router or switch to attach the machines.
Once these machines are physically connected, you provide a separate subnet for the machines
in the private network. The machines can then communicate over that network for Fathom
without disturbing your production network.
4–19

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
Use both methods

By combining both of the previously described methods, you can collect data from a number of
machines simultaneously and feed that data back to a central repository. The production
machines would incur only the performance cost of collecting the data, while the reporting and
storage costs would be on the FathomTrendDatabase server side. There would be additional
setup and maintenance costs with this environment, but you need to weigh the value of the
collected information with the cost of collecting it to determine if this solution makes business
sense for your operation.

Remote monitoring

Fathom Management Version 2.1 introduced remote monitoring capabilities. Prior to that
version, you were able to install Fathom on several machines and redirect trending information
back to a single machine. This capability is still available; however, when Fathom Management
is not installed on a secondary machine, it is still possible to use Fathom Management to manage
resources on remote machines. The second machine would require only an OpenEdge license
to have the functionality described in this section. The Resource Monitoring Guide has a
complete description of this functionality. The goal of this section is to explain the capabilities
and limitations of Fathom Management’s remote monitoring features.

It is important to think about these remote machines just the same as you would think of any
other machine: the same rules apply to remote machines as to the machine where the console
resides. The only other consideration is the amount of data that you will be transferring between
the machines for monitoring and trending, since all of the data will be transferred across the
network to the FathomTrendDatabase. You might want to have remote machines on a less
aggressive schedule if you think network bandwidth might be an issue.

What resources can be managed?

The answer to this question depends whether or not Fathom Management is installed on the
remote machine. When Fathom Management is installed on a machine, it is possible to utilize
all of the Fathom Management functionality on that machine, and retain the trending data
locally, or send the data to a central system. In this case Fathom Management is not considered
to be remote; rather, it is installed in two or more locations while being managed from a single
console. If Fathom Management is not installed on a remote system, you must have an
OpenEdge license on any machine on which you wish to support remote monitoring.
4–20

Guidelines for Applying Fathom
Limitations of remote monitoring

There are currently three limitations: remote log file monitoring cannot be performed, jobs
cannot be run remotely, and scripted databases cannot be started or stopped. Otherwise, all other
Fathom Management tasks can be managed from a central console.

Remote database monitoring

Databases can be monitored on remote machines, and trending and alerts for remote machines
can be generated through Fathom Management. Remote databases can be started or stopped
through the management console.

OpenEdge server support

The real benefit of remote monitoring is for OpenEdge servers. AppServers, WebSpeed agents,
and the NameServer can all be remotely monitored through Fathom Management. All
OpenEdge server administration functions (add, trim, start, and stop) are supported through the
remote monitoring capabilities of Fathom Management.

System management support

All system monitoring and trending capabilities are available through the remote monitoring in
Fathom Management.

Setup for remote monitoring

The Fathom Management Remote Configuration utility (fmconfig) is used on each machine to
enable remote monitoring. This utility must first be run on the machine where the console
resides and then it can be run on the remote hosts.

See the Installation and Configuration Guide for a further explanation of the initial setup of the
remote machines.
4–21

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
Performance considerations

Progress has taken every step to reduce the impact of Fathom on your system. However, you
need to think of Fathom as another application in your operation. All applications require
system resources (disk, memory, CPU, and so on). Fathom is no different. There are cases
where improper monitoring has had an adverse affect on performance. Here again, you need to
look at the information you require and the information you desire. The information you require
is the information that is critical to your operation. If you need to choose between Fathom
monitoring and production performance, production performance will win. In most cases, you
can monitor critical functions without any noticeable performance degradation. To determine
how much additional monitoring you can perform without impacting your production
performance, review these points:

• Consider the number of resources that you are monitoring on the machine and the
frequency of the monitoring. If you are doing frequent samples and you have trending
enabled for the resource, CPU and memory will be affected when gathering the data, and
disk space will be affected when storing the data. It might be important to know the status
of the database (if it is running or not) every two minutes, but you might only want to
gather and trend storage information a few times a day.

• Consider how you plan to use the trending information for a resource. If you do not know
how you will use the data, assume that hourly information is more than enough for most
volatile resources and once a day is fine for more static resources. The reason that you
want to decrease the frequency of information gathering and analysis is that each time one
of these polls takes place there is a “burst of activity.” The more information you ask for,
the greater the length of the activity burst. For information that is gathered daily, you can
create a schedule that executes at a quiet period to reduce the impact on other applications.
4–22

Guidelines for Applying Fathom
Configuration Advisor

The following sections describes the Configuration Advisor.

What is the Configuration Advisor?

The Configuration Advisor is a tool to help determine the correct alert thresholds within Fathom
Management by examining captured database and system statistics within the
FathomTrendDatabase and providing suggested values for these alert thresholds. By looking at
past data, the Configuration Advisor can determine how your system acts under normal
conditions and then provide you with suggestions on the proper settings for each monitored area
of your application.

Who is it for?

If you have a good understanding of how your system operates, what you want to monitor and
how you want your alerts set, you might not want to use the Configuration Advisor. If you are
unfamiliar with Fathom's capabilities, or have purchased new software, or are making
significant changes to your system and are unsure as to the effect of these changes, you might
want to use the Configuration Advisor to guide you.

How does it work?

After installing Fathom you will need to monitor and trend each resource where you believe the
Configuration Advisor might be useful. Initially, it is advisable to monitor and trend all
resources; you can later scale back the amount of collected data. Generally, you should gather
trending data for a minimum of a week, and even up to a month if your activity varies greatly
throughout the month. This might seem like a contradiction of the suggestion made in the
“Performance considerations” section on page 4–22, which said to monitor only those things
that are necessary and add others as necessary. However, with the Configuration Advisor you
need to have accumulated the trend data for a resource in order to use the tool. Once you have
used the Configuration Advisor to determine your alerts, you can disable monitoring and
trending for resources where data is not necessary.

Once you have gathered the trending data you must define rules for each resource. Again, you
can choose to define a rule for every resource or only the rules you think you will need. The
Configuration Advisor will provide advice only on resources with rules defined. When you
define each rule you should make the rule inactive until you have a setting that you believe will
work for you.
4–23

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
Here is an example of the Configuration Advisor used for an AppServer. It is possible to set up
multiple monitoring plans (such as weekdays and weekends). Figure 4–5 has multiple
monitoring plans set up.

Figure 4–5: Configuration Advisor

The recommended values are based on the time periods used for analysis (in this case
weekdays). These values might not be appropriate for the weekend monitoring plan, since
activity levels can differ significantly from weekend to weekday. You can rerun the analysis for
the weekend plan separately and then provide a threshold for that rule.

Let’s take an example in the Recommended Values column. The Process CPU High shows a
value of .8 percent. This is the value that the Configuration Advisor recommends you set as a
threshold. Note the number in the parentheses to the right of the recommended value. This is the
number of times an alert would have been raised during the sample period if the recommended
value were set as a threshold. If you see a high number for this, you should either choose a
different threshold or make a system modification and then re-establish the threshold value with
new trending data prior to enabling the rule.

You might enable the Process CPU High alert. This alert will notify you if the CPU process
uses more CPU than normal. This will speed detection of runaway processes because either you
will be notified right away of the cause of the problem or you will have eliminated something
from your troubleshooting.
4–24

Guidelines for Applying Fathom
This initial monitoring will cause a small additional load on the system during the monitoring
period. The value of information gathered by Fathom for use by the Configuration Advisor, and
the convenience in setting up proper thresholds warrants the trade-off. Remember to disable
unnecessary monitoring after the Configuration Advisor has done its work.

If you have modified the default trending for any resources, it is possible that the Configuration
Advisor will not provide an accurate threshold estimate. This happens because is Fathom will
trend every poll by default for most resources and if you modify trending to trend every nth poll,
instead you might have a situation where the polls that are not trended would raise an alert, but
the trended poll would not. An example of this would be a situation in which you are polling
every five minutes and you are trending every three polls. If two polls came in at 1000 reads per
second and the third came in at 100 you would run the risk of only capturing the 100 reads per
second poll in your trending. If you set an alert threshold at 200, which is twice your trend data,
you would see two alerts if the situation happened again. This is not generally a problem for the
vast majority of users, but you should realize that the Configuration Advisor is only as good as
the data it uses for analysis.

The File Monitor

This feature replaces the file size option in earlier versions of Fathom. It provides numerous
options for monitoring various statistics on files of all types. The file monitor now supports file
aging, whether or not a file exists, growth rate, when a file was last modified, as well as current
file size. The usefulness of these features extends far beyond monitoring your OpenEdge
databases; they can be used for EDI functions, connectivity checking, application monitoring
and debugging, and countless other day-to-day IS functions.
4–25

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
To use the File monitor, from the Resources screen select New Resource Monitor, then File.
Figure 4–6 shows the Create File Monitor screen.

Figure 4–6: Create File Monitor

Enter the Name of the Fathom resource and the File Name that you want to monitor. It is always
a good idea to put some notes in the Description so that others who use the Fathom
Management console will understand why you are monitoring this file.
4–26

Guidelines for Applying Fathom
Once this information has been entered and you have saved the settings, you will be prompted
to enter the monitoring schedule for this resource. You can now enter the rules for this particular
file by clicking Add Rule. You will see the page in Figure 4–7:

Figure 4–7: Available File Monitor Rules

The following sections present a brief description of each rule and how you can choose to apply
it in different situations.

File Age

This alert is raised if a file is unmodified or is older than a specified date-time. There are two
ways to take advantage of this feature. One is to make sure that a file or files have been updated
more recently than a certain date-time. The other is to detect files that have not been updated for
a given period of time.

Using the most-recently-updated approach is extremely useful if you expect periodic refreshes
(such as daily updates) of certain application files. For example, you might get an XML feed
from a vendor with current pricing and stock information every day. You could avoid problems
such as a dropped feed, and ensure a new file is in place every day by raising an alert when the
file has not been updated.

The least-recently-updated feature is useful when files that have aged should be removed or
archived. This is a powerful tool to help keep systems clean. Users are notorious for leaving
output files around for long periods of time, often not knowing they are there, forgetting them,
or not caring. Here, the file age rule will allow you to enforce the 30-day-rule and automatically
remove output files over 30 days old with no user interaction.
4–27

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
File Exists

This alert is raised if a given file or file type exists or comes into existence. Fathom will look
for the file and take action only if the file exists. This rule is excellent for dealing with
applications that use operating system flag files to signify a problem. For example, OpenEdge
core files can be automatically removed. You could define an action to remove the file simply
when it comes into existence, or you can create a complex action to remove the file and send
e-mail to the administrator. For example, if your system is shut down every night, you could
check file aging for two-day old LBI, SRT, and other temporary files and remove them. Or, if you
discover a protrace file, you could move it to a backup directory and send e-mail to the
administrator.

File Growth Rate

This feature is equally good for monitoring database growth as well as non-DB files. For
example, OpenEdge log files and other system and application files can be monitored with this
option. If a file grows at a rate greater than some criterion you specify, an alert can be sent using
standard Fathom methods. If you know the cause of the problem — for example, a runaway
process — you could have the alert take corrective action on the first sign of the problem and
send alerts on subsequent passes if the corrective action was ineffective.

File Modified

This alert will fire if a file is modified in any way. If you have static files that should only be
modified by certain people, this would be an excellent way to keep track of when a file is
modified. (This is a way to keep those meddling developers in check!) Many applications have
files that should only be modified by the system administrator, such as the database parameter
file. If anyone modifies the file an alert will be fired. This alert could also take corrective action
by retrieving an original copy of the file from an online archive, in addition to sending a
message.
4–28

Guidelines for Applying Fathom
File Size

Determining if a file has grown beyond a given size is a constant concern for most
administrators. This alert allows you to define a maximum size threshold for a file and take
action if that size is exceeded. This action could be a simple notification or a complex action
that archived the file and then truncated it to allow for future growth.

Prior to Fathom Management Version 2.1, the administrator needed to either manually check
on critical files every day, or write custom code to perform the checks. All of these checks can
now be executed though a single, standard interface for any kind of file: OpenEdge, or
non-OpenEdge. Alerts can be configured within Fathom, so that as the number of files being
monitored changes, there is minimal additional maintenance required. For example you could
define one action that notified multiple people when a file was modified. If the list of people
notified changed, you would only need to modify one action instead of each individual file
resource. This saves time and provides better consistency.

Creating custom reports using 4GL

The data stored within the FathomTrendDatabase is partially normalized. One thing that will
help you to create effective reports with SQL is the creation of views to help with queries.
Example 4–1 shows an example of a typical view.

Example 4–1: Typical view

CREATE VIEW my_view AS
SELECT
Pub.cf_Sample.sample_id,
Pub.cf_Sample.sample_Len,
Pub.cf_Sample.sample_date,
Pub.db_areastatus_areaname areaname,
Pub.db_areastatus_areanum areanum,
Pub.db_areastatus_totblocks totblocks,
Pub.db_areastatus_hiwater hiwater,
Pub.db_areastatus_extents extents,
Pub.db_areastatus_freenum freenum,
Pub.db_areastatus_rmnum rmnum

FROM pub.cf_sample
LEFT OUTER JOIN pub.db_areastatus
ON pub.db_areastatus.sample.id=pub.cf_sample.sample_id;
4–29

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
Fathom data is also accessible through the 4GL. You can define how you want to view the
information. If you require all of the information for a resource, you can start with a simple
query of the Cf_Resrc table, and then expand on the search criteria to narrow down the
information that you really need. If you want to see what occurred on a specific day, start with
the Cf_Sample table then move to the table that contains the information you require. There is
more information regarding what data is stored in the tables within Fathom in the
FathomTrendDatabase Guide and Reference.

Example 4–2 shows a 4GL program created to display database activity summary information
based on a particular date.

Example 4–2: 4GL program to display database activity summary

FOR EACH Cf_Sample WHERE
Cf_Sample.Sample_Date = 4/15/2002:
FIND FIRST Cf_Resrc WHERE
Cf_Resrc.Resrc.ID = Cf_Sample.Sample_ID NO-ERROR.

IF AVAILABLE Cf_Resrc THEN
DO:
FIND FIRST Db_ActSum WHERE

Db_ActSum.Sample_ID = Cf_Sample.Sample_ID NO-ERROR.
IF AVAILABLE Db_ActSum THEN
DO:

DISPLAY
Cf_Resrc.Resrc_Name FORMAT “x(15)”
Cf_Resrc.Resrc_Loc FORMAT “x(15)”
STRING(Cf_Sample.Sample_Time,”HH:MM:SS”) LABEL “Time”

Db_ActSum.ActSum_Commits
Db_ActSum.ActSum_DbAccesses
Db_ActSum.ActSum_DbExtend
Db_ActSum.ActSum_DbReads
Db_ActSum.ActSum_DbWrites
WITH FRAME frame_x 1 DOWN 1 COLUMN.

END.
END.

END.
4–30

Guidelines for Applying Fathom
Example 4–3 shows an example of the 4GL code required to display information about a
specific resource.

Example 4–3: 4GL program to display resource information

FIND FIRST Cf_Resrc
WHERE Cf_Resrc.Resrc_Name = “TrendDatabase” NO-ERROR.

IF AVAILABLE Cf_Resrc THEN
DO:

FOR EACH Cf_Sample WHERE
Cf_Sample.Resrc_ID = Cf_Resrc.Resrc_ID:

FIND FIRST Db_ActSum WHERE
Db_ActSum.Sample_ID = Cf_Sample.Sample_ID NO-ERROR.
IF AVAILABLE Db_ActSum THEN
DO:

DISPLAY
Cf_Sample.Sample_Date
STRING (Cf_Sample.Sample_Time,”HH:MM:SS”) LABEL “Time”
Db_ActSum.ActSum_Commits FORMAT “>,>>9”
Db_ActSum.ActSum_DbAccesses FORMAT “>,>>9” LABEL “Accesses”
Db_ActSum.ActSum_DbReads FORMAT “>,>>9”
Db_ActSum.ActSum_DbWrites FORMAT “>,>>9”

WITH DOWN FRAME frame_x.
END.

END.
END.
4–31

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
Viewing archived data

Archived data is treated differently than actual trend data. You will always deal directly with
the table that contains the data, regardless of whether you are looking at a specific resource or
specifying a date range. Example 4–4 shows an example of how to display archived database
summary information.

Example 4–4: Code to display archived database summary information

FIND FIRST Cf_Resrc WHERE Cf_Resrc.Resrc_Name = “TrendDatabase” NO-ERROR.
IF AVAILABLE Cf_Resrc THEN
DO:

FOR EACH ar_actsum WHERE
ar_actsum.Resrc_ID = Cf_Resrc.Resrc_ID:

DISPLAY
Ar_ActSum.ActSum_EndDate
STRING (Ar_ActSum.ActSum_EndTime, “HH:MM:SS”) LABEL “Time”
Ar_ActSum.ActSum_Commits FORMAT “>,>>9”
Ar_ActSum.ActSum_DbAccesses FORMAT “>,>>9”
Ar_ActSum.ActSum_DbReads FORMAT “>,>>9”
Ar_ActSum.ActSum_DbWrites FORMAT “>,>>9”

WITH DOWN FRAME X.
END.

END.
4–32

Guidelines for Applying Fathom
Creating custom jobs

Progress has bundled Perl with Fathom. Perl is a programming language similar to the Korn
shell in UNIX or Linux and command procedures in Windows. The main benefit of Perl is that
it is supported on all of the platforms that OpenEdge supports. Any Perl programs you create in
one environment should work in a different environment with little or no modification. This
would not be the case if you used command procedures in Windows and decided to migrate your
application to UNIX. In this case, you would need to completely rewrite all of your supporting
programs. Fathom can integrate with Perl or any other programs you have on the system, so if
you are already comfortable with the Korn shell, use that language to create your jobs.

Fathom allows you to perform different actions, depending on the return code of the program.
The default success code for the korn shell is 0. You can have Fathom generate an alert for any
return code that is generated by the program. For example, on a return of zero you can put a
message in the log that your program completed successfully. On a non-zero return code, you
could generate an alert to send an e-mail or page to the administration staff. Any alert that is
available within Fathom is available to you at the command line.

To fire a Fathom alert from the operating system, use the following command:

For more information about this command, see the Alerts Guide and Reference.

Each job defined within Fathom has its own set of return codes. Because of this, you must define
the actions for each program individually. This can be cumbersome if you run many programs
from within Fathom. A solution to this problem is to have your own return code analyzer. This
is an external program that reads the return code and generates the proper Fathom action from
the command line. The benefit to this mechanism over defining the alerts from within Fathom
is maintenance. If you want to globally modify what action is performed on a particular return
code, you need modify only one program rather than modify each job individually.

The following examples show you how to set up the logic for this type of processing. The bulk
of this code could be set up as a subroutine that was called for each job. If a change were needed,
you would have to only modify the subroutine.

Fathom -firealert [name_of_alert]
4–33

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
Example 4–5 shows a Korn shell example.

Example 4–6 shows a Perl example.

Fathom gives you the flexibility to choose the method that is right for your business. Some users
prefer individual return codes per job, while other users prefer the return code mechanism, and
still others use a combination of the two. You have the ability to customize your environment
to meet your business needs.

Example 4–5: Korn shell example

#!/bin/ksh
FATHOM_BIN=${FATHOM_BIN-/usr/Fathom/bin}
Program_to_run
return_code=$?
case $return_code in
0)
$Fathom_BIN/Fathom –firealert all_is_ok

;;
1)
$Fathom_BIN/Fathom –firealert program_error

;;
*)
$FATHOM_BIN/fathom –firealert warning_unknown_error

;;
esac

Example 4–6: Perl example

#!perl
$FATHOM_BIN = “/d14/fathom/bin”;
$EXITCODE = system(“program_name”);
CASE: {
(($EXITCODE < 0) || ($EXITCODE > 1)) && do{
 system(“$FATHOM_BIN/fathom firealert program_error”);
 last CASE;

};
($EXITCODE == 0) && do{
 system(“$FATHOM_BIN/fathom firealert all_is_ok”);
 last CASE;

};
($EXITCODE == 1) && do{
 system(“$FATHOM_BIN/fathom firealert program_error”);
 last CASE;

};
}

4–34

Guidelines for Applying Fathom
Extending usefulness of existing Fathom functions

Although Fathom is rich with functionality, there are times when you might need to extend
existing Fathom functions to meet your exact needs. The following example illustrates how to
take an existing feature (the Log Monitor), and add some custom code to create a warm standby
environment by applying after-image logs to a secondary server. This operation is rather
difficult to automate and is an example of a task where Fathom can take a major burden off the
hands of the administrator

After-image administration

The process of archiving an AI extent is fairly straightforward.

The basic steps are as follows:

1. Create an action that takes a “full” after-image file, archives it to a separate directory, and
then marks the file as empty and available for reuse.

2. Create a rule on the log monitor to look for the string “After image extent switch.”

3. Set the action you created in Step 1 to the rule you created in Step 2.

There is a job template of this procedure that you can apply to your environment in the
downloads section of the Progress Software Developers Network (PSDN) Web Site
(http://www.psdn.com). The example on PSDN can be used as is or could be extended to
apply the after image extent to a second database to create a warm standby environment. The
general process is the same as the steps above; however, the action defined in the first step
would be more complex.

Here are the general steps you would need to consider when doing asynchronous replication:

1. Check to make sure that the remote host or replication database or both is available.

2. Archive the oldest “full” after-image file.

3. Copy the after-image file to the remote host (if necessary).

4. Apply the after-image file to the replication database.

5. Mark the after-image file as empty.

6. Repeat if additional “full” after-image files are present.
4–35

http://www.psdn.com

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
Each of these steps must be completed successfully in order for the next step to begin. Thus, you
would need to create a return code that would be sent to Fathom to indicate failure of any given
step. Every command will return a status code upon completion. A status of 0 means success in
most cases and a non-zero number indicates a possible problem. In UNIX, you can generate
these return codes yourself by using the exit command in your scripts. The syntax of the exit
command is: exit #, where # is the status that you want to return to the calling program. As the
author of the job to run your shell program, you have the ability to modify what action is taken
based on the completion code.

Figure 4–8 shows an example of completion actions and alerts.

Figure 4–8: Job Completion Actions and Alerts
4–36

Guidelines for Applying Fathom
The UNIX shell script below tests for the existence of a file (actually any one of a group of files).
If any file is found, the script will exit with a return code of 0, indicating success. Otherwise, it
returns 1, which signals “no files are found.” The ls command in this script will actually give
its own return code. In this case the output of the command is not used, as both standard output
and standard error are being sent to the bit bucket (/dev/null). The $? is the value of that return
code. This code allows you to take all of the non-zero return codes and return a 1, which makes
it easier to handle inside of Fathom or within other shell scripts:

This script is used to look for an input file in a directory. If the file is found, an action is defined
to process the file.

If you need more robust replication than described above, or if you would like to set up a report
server, Fathom Replication can provide real-time replication of data to a secondary database. In
the case of a reporting DB, you can run extensive reports against the copy, freeing up resources
on the primary (production) database. For more information, see the Progress Fathom High
Availability Replication User’s Guide.

Uses beyond monitoring

You can and should use Fathom Management to do other daily tasks beyond monitoring and
manipulating OpenEdge-related files on your system. If you have an EDI system that has a
staging area, you can check to make sure that area is emptied out on a regular basis by using file
system thresholds or by viewing a log file related to the EDI process.

#!/bin/ksh

ls *filename* 2>/dev/null >/dev/null

if [$? = 0]
then

exit 0
else

exit 1
fi
4–37

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
Any task you do on a daily basis is a good candidate for automating with Fathom Management.
The trouble with manual processes is that they are only as good as the people running them. If
the administrator forgets to do the task, or misses any step in the process, the task might not
succeed. A well-managed system will eliminate human intervention whenever possible. Fathom
Management is a way to automate complicated tasks using a common interface and
well-established mechanisms for alerting an administrator if there is a problem. It is so easy for
a busy administrator to forget to check an application log file or simply ignore the task for a few
days. With Fathom Management, no task is ever overlooked or done improperly, and alerts can
be delivered to several people at the same time to give greater visibility to an issue before it
becomes critical.

If you have existing scripts that have been well tested you might want to integrate them into
Fathom to allow for consistent reporting on issues of importance. Fathom provides a standard
interface to all tasks, and global changes can be made to task steps from within the Fathom
Management console should the need arise.

Fathom for system sizing

Fathom can also be extremely useful when it is time to upgrade a system. In the past, the steps
for upgrading a system went something like this: “The system is slow; we need to get another
one.” Now you can view historical Fathom Management data to determine what portion of the
system is slow. In some cases, you will be able to simply modify an OpenEdge parameter, such
as -B, to increase the efficiency of the database and avoid spending any money on hardware. In
other cases where you have tuned the system well and you still have performance issues, you
can use Fathom Management to determine where the problem lies rather than guessing at the
source of the problem.

The key here is knowing what is growing and why. Perhaps management has said that you need
to add 100 users in order to meet demand next month. What does this mean in terms of system
utilization? Beyond the basic additional resources for 100 users, increasing -n and making sure
you have enough memory to accommodate their sessions, what do you need? What will these
sessions be doing? How are they distributed among job functions? What is the reason for
growth? For example, is there going to be an increase in orders, and if so, how much of an
increase? Management will be able to provide you with the answers to some of these questions
but you will need to use the trending data from Fathom Management to determine the effect on
the system from these business growth decisions.
4–38

Guidelines for Applying Fathom
Do you need to plan for peaks in activity? If you have a “regular” processing cycle but
month-end has a much greater effect on the system, then you need to examine your peaks. On
a regular day you might do 5000 orders and 1,000,000 record reads, which result in 5,000
operating system reads, so your buffer hit percentage is 99.5%. But during month-end you do
5,000,000 records and 1,000,000 operating system reads with a buffer hit ration of 80%. The
effect of this is heavy reliance on your disks. If your disk subsystem can perform 200 I/O
operations per second, you would be within any margin of safety. However, if you add the
additional users and this doubles your record reads, you will need to increase disk throughput
capacity to handle 400 I/O operations per second, or your system will not be able to handle the
additional load.

If you have historical data, similar to Figure 4–9, showing how month-end has changed over
time, you can determine what will happen as you increase the load on your system.

Figure 4–9: Historical data

Without trending and historical information you are blind. Things might look fine today and you
might have a feeling for what it would take to add 100 users. But you have no ability to predict
reliably. Many companies have spent a significant amount of money on a system upgrade just
to find out that it does not solve the problem. With Fathom Management, you can pinpoint
where the problems are and configure the system to correctly solve those problems. For
example, if you are using 50% of your CPU on wait I/O time and your disks are working as hard
as they can, you would not want to upgrade the CPU and memory capacity of the system until
AFTER you increased the disk throughput capacity. By making the individual areas of the
system more visible and trending each resource’s data over time, you should be able to make
intelligent suggestions for improvements and save money by investing in the right areas.
4–39

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
For Application Resellers, Fathom Management can provide valuable information to use for
new clients. If you are monitoring your existing clients and trending their resource data, you can
use that data to provide projections for new clients when they inquire about how much system
they will need to support their business. If a prospective client asks how much hardware will be
needed for 100 users, you can look at your historical data for other 100-user systems and provide
estimates based on similar use configurations. Along the same lines, if an existing 100-user
customer is consuming 80 percent of the system capacity, and a new 100-user client is coming
on line who might be adding new users in the mid-term time frame, you would want to specify
greater capacity at the outset for the new client.

Another use for Application Resellers is in development or initial deployment. In development,
it is difficult to predict how things will work in the production environment. If application
resellers can access the trending data, particularly with an eye for nonlinear trends, then they
can identify and resolve problems in the application long before the customer determines that
there is a problem.

The rich, data-gathering capabilities of Fathom Management can provide information for the
small or large individual shop, or the application partner with one or more customers.

Troubleshooting your Fathom installation

Use the following tips to troubleshoot your Fathom installation:

• Check the admserv.log file for error messages. Fathom places all information regarding
problems in this file.

• If pages within Fathom are displaying errors such as #503, complaining about problems
with compiling JSP pages, try cleaning out the jspwork directory. This will remove all
cached files and force the Java Virtual Machine (JVM) to rebuild the files as screens are
encountered. The jspwork directory is a subdirectory under your Fathom installation
directory, by default, C:\Progress\Fathom\jspwork on Windows and
/usr/Fathom/jspwork on UNIX and Linux. You can delete all of the files and directories
under this directory, but be careful not to delete the directory itself or other files under the
Fathom directory.
4–40

Guidelines for Applying Fathom
• The logs directory in your Fathom installation directory should be periodically cleaned
up. This directory contains, among other things, request logs for the Web server. This
allows you to see what has been requested from your system and when the request was
made. There is a new log for each day. You could write a simple job to periodically clean
out these files.

• To help in debugging reporting and job issues, check Debug Log file. By checking this
box, you will get additional debugging information regarding the report or job.

Frequently asked questions and answers

This section provides solutions to the most common problems encountered during the setup and
installation of Fathom.

Question 1

Why do I see an admSQL.log file in my Fathom home directory?

Answer

This log is created when tracing is turned to the verbose (high) setting.

Question 2

How do I debug strange behavior and page hangs when running the Fathom Management
console?

Answer

You might need to disable the generation of charts. The default state of chart generation is
“enabled.” To disable all charting within Fathom, include the following line in
fathom.init.params:

If you run Java utilities and Fathom at the same time, generating graphics within Java
sometimes causes problems. By turning off chart generation from within Fathom you eliminate
this variable and perhaps resolve the issue. Additionally, it is also good to verify that there are
no errors being reported in the admserv.log file.

pscChartingDisabled=true
4–41

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
Question 3

How can I modify the amount of information that is written to the log files from Fathom?

Answer

To allow customers to reduce the amount of information written to the log files, specifically
admserv.log, a switch called LogLevelFathom has been added that can be set to an integer value
to control the amount of information that is written to the log file.

The valid values range is from 0 to 4. A lower number indicates you want only severe errors and
a higher number indicates you want verbose output. The logging levels are as follows:

Question 4

How do I resolve the Error initializing Fathom osmetrics library error when starting
Fathom or the One or more properties changes are invalid error when moving from page
to page within Fathom?

Answer

Disabling the Remote Registry Service on Windows prevents osmetrics.dll from loading. To
resolve the problem you need to start this service. You can access the service properties by
selecting Start→ Settings→ Control Panel→ Administrative Tools → Services→
Remote Registry Service.

0 = Severe errors only

1 = Error

2 = Warning

3 = Informational

4 = Verbose
4–42

Guidelines for Applying Fathom
Question 5

I have a license and installed Fathom. However, Fathom will not run and I receive a message
that I am not licensed to run Fathom. How do I resolve this issue?

Answer

You might be looking at an incorrect configuration file. In the Fathom.init.params file there
is an entry called FathomLicenseFile that allows you to specify the location of your
configuration file (progress.cfg). The default entry looks like this:

Question 6

I am having trouble using environment variables in Windows. Some variable references work,
while others do not. What is the problem?

Answer

You can use variables in Windows that use UNIX syntax with the use of the $VAR syntax rather
than the "%VAR%" syntax, as is required throughout Windows. However, the variable must be
specified in the ${ENVVAR} format if the embedded variable is in a path of longer string.

For example:

SET fathomLicenseFile=/usr1/fathom/fathom.cfg

Value Outcome

$TESTVAR Works

${TESTVAR} Works

$TESTVAR/dir1/foo Fails

${TESTVAR}/dir1/foo Works

/dir2/dir3/$TESTVAR/foo Fails

/dir2/dir3/${TESTVAR}/foo Works
4–43

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
Question 7

How do I resolve the following error?

Answer

Increasing the Java limits might resolve the problem. The -Xmm64m -Xss16 parameters in the
java_env file control the Java limits.

For UNIX systems, you need to modify the correct JVMARGS entry. To determine which entry
to modify, you need to know the type of operating system you are using. This can be done with
a uname command with no options. This command will return the operating system type. Once
that has been determined, you need to edit the java_env file and search for your operating
system type. You need to edit the JVMARGS entry just below your operating system with the
values that you want.

For Windows, use regedit to modify the values.

Question 8

I am getting a Java out of memory error on my system. How do I fix this?

Answer

On UNIX systems, change the values -ms and -mx in the java_env file.

On Windows systems, add the arguments to the registry key JVMARGS in:
HKey_Local_Machine\Software\PSC\Progress\OpenEdge_Release_Number\JAVA.

For UNIX systems, you need to modify the correct JVMARGS entry. To determine which entry
to modify, you need to know the type of operating system you are on. This can be done with a
uname command with no options. This command will return the operating system type. Once
that has been determined, you need to edit the java_env file and search for your operating
system type. You need to edit the JVMARGS entry just below your operating system with the
values that you want.

For Windows, use regedit to modify the values. Values of 32 and 64 are acceptable.

FATAL ERROR in native method: JDWP "threadControl.c" (Apr 27 2000), line 878:
Unable to create thread table entry.
4–44

Guidelines for Applying Fathom
Conclusion

Users view the application, database, and operating system as a single entity. Ultimately, user
satisfaction is determined by the reliability, speed, and maintenance of the entire system.
Generally, system and database administrators tend to focus on the details of individual
resources, just as most tools tend to focus on a single aspect of the system. Fathom is the best
tool to collect and organize all vital resource information. Also, Fathom compares interactions
of each resource with other resources to help you make decisions regarding resource utilization
and system architecture.

We have looked at the advantages of Fathom as a way to look into both your system and your
OpenEdge resources through a common interface. The hardware portion of all systems requires
you to look at the network, disk, memory, and CPU resources in an effort to move any potential
bottlenecks from the slowest to the fastest resource.

With this said, we have seen that the best performance is important only if the system is
available to the users. Availability can be improved by increasing system resiliency to eliminate
outages or, in the worst case, reducing the length of an outage through advanced recovery
planning. Regular maintenance can also improve both reliability and performance.

We have seen examples of how Fathom can provide a snapshot of how the system is operating
at the present time. We have also seen how Fathom can be used to trend operating systems as
well as OpenEdge resources over time to provide data points for capacity planning. Beyond that,
Fathom can be used to notify you of resource usage issues prior to affecting users.

A well managed system will increase user productivity and confidence, and allow the system
manager to sleep well at night.
4–45

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
4–46

Glossary

A
Action

A user-defined process set to automatically occur in response to the status, availability, or
performance information of a monitored resource.

Administrator

A user who has access to all Fathom™ Management functionality without restrictions.

Alert

An indication of a real or potential problem in a monitored resource.

B
Bottlenecks

Processing conflicts.

Busy extent

An AI extent that is currently active.

C
Checkpoint

A synchronization point between memory and disk.

Chunk

See Stripe.

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
Closed extent

An AI extent that contains notes and cannot be written to until the extent is marked as
empty and readied for reuse by the database administrator. Also known as a Full extent.

Console

See Fathom Management console.

CPU queue depth

The number of processes waiting to use the CPU.

Custom job

A user-defined task that is executed according to a user-defined schedule.

See also Database maintenance job and Job.

D
Database aware

The ability to scan each block to ensure it is the proper format during the backup process.

Database engine

The machine that contains the OpenEdge™ databases and potentially the application code.

Database maintenance job

A Fathom-supplied, specialized job template from which job instances can be created. The
predefined database jobs address fundamental OpenEdge database maintenance activities.

See also Custom job and Job.

Database object

A table or index.

Database rule sets

A set of rules that you can define and then associate with one or more database resources.

Default rules

Fathom-provided default settings that define rules for resource monitors that you can use
to quickly set up and/or update resource monitoring rules. Default rules are set at the
resource type level. You can override them at the individual resource level.
Glossary–2

Glossary
Demand-page executables

Reserve text or static portions of an executable that is placed in memory and shared by
every user of that executable. Also known as Shared executables.

Detail frame

The largest frame of the Fathom Management console that displays information and tools
related to the selection made in the list frame.

E
Empty extent

An extent that is empty and ready for use.

Export

To place a copy of a Fathom component’s definition into a file that you can then import to
another machine and use.

Extents

Physical files that are stored at the operating system level.

F
Fathom Management console

A Web-based interface used to access all of Fathom’s functionality.

Fathom System Architecture

Fathom Management is comprised of three components:

• A Web-based management console, which provides a central location for viewing
and configuring resources that are monitored by Fathom.

• A database agent, which monitors and manages databases and gathers data from
Virtual System Tables (VSTs) for reporting.

• A database, which stores all data collected by agents for use in reporting.

FathomTrendDatabase

A database that stores all data collected by Fathom agents.
Glossary–3

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
Fragmenting the record

A record that has been divided between two or more blocks on disk.

Full extent

An extent that has been filled with data. In the case of an AI extent, it cannot be written to
until the extent has been backed up and marked empty. If a data extent is full, it is still
updatable. Also known as a Closed extent.

H
High-water Mark

A pointer to the last formatted block within the database storage area.

I
Idle time

A time period that means that the CPUs have capacity to support growth.

Import

To add a component definition from an import file to your project.

Index block split

The process of making additional space for an inserted index entry.

Indirection

The inability of a single inode table to address all of the physical addresses in a file.

Inode

A mapping of logical to physical addresses in a file.

Inode table

A table of contents on disk used to translate logical addresses to physical addresses.

Interleaved memory

Striped memory chunks. This is similar to striped disk blocks.
Glossary–4

Glossary
J
Job

General term used to identify a task executed on regularly scheduled intervals. Fathom
Management supports two types of jobs: custom and database maintenance.

See also Custom job and Database maintenance job.

Job instance

An individual job derived from a job template. A job instance has schedules that define
when Fathom runs these jobs.

See also Job template.

Job template

A template of predefined, common values from which individual jobs, called job
instances, can be created and separately maintained.

See also Job instance.

L
Latch

One or more locks to ensure two updates cannot happen simultaneously.

List Frame

The vertical frame that displays the full length of the left side of the Fathom Management
console and displays items related to the selection made in the menu bar.

M
Management console

See Fathom Management console.

Menu bar

A horizontal bar at the top of the Fathom Management console that lists the following
options: My Fathom, Alerts, Resources, Library, Reports, Jobs, Options, and Help. The
menu bar also displays the name of the machine and the username entered on the logon
screen.
Glossary–5

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
Metaschema

A set of definitions for the internal structure of the data.

Monitor

The combination of a resource, a schedule, and an alert that appears in the interface in
response to rules being met.

Monitoring an object

To set up criteria by which you can keep track of an object’s performance. You can adjust
the criteria for performance output according to your expectations.

Monitoring plan

Defines a block of time that a resource is to be monitored and the processing rules that are
to be checked during the defined time frame. The basic elements used by all resource
monitoring plans are schedules, rules, alerts, and actions.

My Fathom Home Page

A default, private custom view that Fathom creates for each Fathom user.

O
Optimistic read

A data-retrieval technique where the disk that has its read/write heads positioned closer to
the data will retrieve information.

Optimizing memory

Taking advantage of the memory that is available to you.

R
Report instance

The entity you schedule to run in order to produce report results. The report instance
identifies the details to be reported on.

Report template

One of over 20 report templates provided by Fathom or created by you that you use to
create a custom report of your own design.
Glossary–6

Glossary
Resiliency

The ability to recover in the case of a disaster.

Resource

A specific component of your system that is monitored by Fathom, such as database, files,
database and log files, CPU, memory, disk, file system, TCP, UDP, and HTTP ports, and
Ping (ICMP).

Rule definitions

The specific attributes of a resource to be monitored.

Rule set

Two or more individual rule definitions. Rule sets are defined and stored in the Fathom
Component library and can be shared among resources that belong to the same resource
type. Rule sets can be defined for log file monitors, database resources, and OpenEdge
server resources.

Fathom provides default rule sets and also supports user-defined rule sets.

Rules

Criteria by which a resource’s performance is measured.

S
Shared executables

See Demand-page executables.

SNMP trap action

A specific type of action that allows Fathom resource-related event notifications to be sent
to your SNMP management console.

Social blocks

Blocks that contain records from different tables.

Stripe

Part of a disk included in a bigger file system structure. Also known as a chunk.

Swapping

The process of taking an entire process out of memory, placing it on a disk in the “swap
area,” and replacing it with another process from disk.
Glossary–7

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
T
Tainted flags

A flag that tells OpenEdge there is a problem or abnormality with the database.

Total blocks

The total number of allocated blocks for the storage area.

Trend, Trending

The process of identifying and storing data in the FathomTrendDatabase.
Glossary–8

Index
Numbers

4GL
creating Fathom reports using 4–29 to

4–31

A

Actions
compound 4–8
creating 4–7 to 4–9
e-mail 4–7
guidelines 4–7
log 4–7
SNMP trap 4–7

AdminServer
monitoring the process 3–11

Admserv.log file 4–40

admSQL.log file 4–41, 4–42

After-image writers 2–12

After-imaging 3–20 to 3–22

Alerts
firing from the operating system 4–33
setting up 4–16

Annual backups 3–58

Applications
applying modifications 3–59 to 3–62
making code changes 3–61

APWs 2–32, 3–28

Archived data 1–6

Asynchronous Page Writers, See APW

B

Backups
annual 3–58
archiving 3–15, 3–58
complete strategy 3–13 to 3–16
contents of 3–14
documenting strategy 3–23
how to label media 3–15
location of media for 3–14
mechanism to create 3–14
platform independent 3–58
reasons for 3–12
tape compatibility 3–15
testing 3–22
using digital linear tape (DLT) 3–15
using operating system utilities 3–16 to

3–20
using PROBKUP 3–16 to 3–20
when to perform 3–16
who performs 3–14

Index

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
bdf command 1–4

Before-image writers 2–12

BI (before-image) File 3–39

BI cluster size 3–54

Bottlenecks
CPU 3–52 to 3–53
disks 3–46 to 3–49
memory 3–50 to 3–51

Buffers
hit rate 3–27, 3–48
increasing database 3–49
limiting operating system 3–51
monitoring flushed at checkpoint 3–28

Bulk loader 3–40

C

Cache usage 1–9

Client processes
estimating memory requirements 1–21
startup parameters 1–21

Compound action 4–8

Configuring Fathom 4–6 to 4–17

conmgr.properties file 3–24

CPU
bottleneck causes and solutions 3–52 to

3–53
bottlenecks 2–43
comparing fast versus many 1–28
idle time 1–24, 1–26
managing activity 1–24 to 1–28
monitoring 1–27
monitoring with Fathom 3–31
monitoring with sar 3–29
monitoring with Task Manager 3–30
multiple 3–53
optimizing usage 2–41 to 2–43
privileged time 1–24
processor time 1–24

queue depth 1–26
runaway process 3–52
setting -spin 3–53
spin parameter 3–53
summary report 3–31
system time 1–24
trending 3–6
tuning 1–25
understanding activity 1–24
user time 1–24
wait on I/O time 1–24, 1–27
what to buy 1–28

D

Data blocks
RM blocks 2–2
RM chain blocks 2–2
understanding 2–2

Database
activity, trending 3–5
adding new record blocks 2–16
administrator roles 3–2
after-image information 2–37 to 2–39
areas See Database areas
block manipulation 2–16 to 2–20
buffer hit rate 3–27
buffers 2–11, 3–49
buffers flushed at checkpoint 3–28
default Fathom monitoring 4–16
deleting record blocks 2–19
dump and load 3–39
empty blocks 2–7
extents 3–10
free blocks 2–7
high-water mark 2–7
index blocks 2–4, 2–19
latches 2–42
locks 2–42
log file 3–24 to 3–25
low buffer hit rate 3–48
master blocks 2–5
monitoring buffer hit rate 3–27
multi-volume extents 2–37
optimizing data layout 2–20
primary recovery area 2–29 to 2–32
RM block layout 2–3
–2

Index
spin locks 2–42
storage object block 2–7
trending areas 3–3 to 3–5
updating record blocks 2–18

Database Analysis utility 3–33 to 3–34

Database areas
before image cluster size 2–30
block sizes 2–21, 2–33, 3–56
determining space to allocate 2–26
distributing tables 2–22 to 2–32
enabling large files 2–34
extents 2–33, 2–34, 2–37, 3–10
for offline utilities 2–34
index storage 2–28 to 2–29
monitoring fill rate 3–25
optimizing 2–32 to 2–35
partitioning data 2–35
primary recovery area 2–29 to 2–32,

2–35 to 2–36
records per block 2–25
sizing 2–21
splitting off the schema 2–33
using extents 2–27 to 2–28

Database broker
memory requirements 1–21
startup parameters 1–21

Database resources
managing 2–1 to 2–43
See Database

Demand page executables 1–21

df command 1–4

Disk capacity
managing 1–2 to 1–17

Disks
application issues 3–47
balancing I/O 3–48
bottlenecks 3–46 to 3–49
cache usage 1–9
comparing expensive and inexpensive

1–8
data storage requirements 1–4
determining current storage 1–4 to 1–5

determining what to buy 1–8
increasing buffers 3–49
increasing reliability with RAID 1–9 to

1–16
increasing throughput 3–49
location of data on 1–8
low database buffer hit rate 3–48
mirroring 1–13
monitoring 3–28 to 3–31
network storage 1–17
parity 1–13
properties option on Windows NT 1–4
redistributing I/O load 3–49
reducing impact of reporting 3–48
stripe size 1–11
striping 1–10 to 1–11, 1–13, 1–18
swappable 1–13
trending 3–8
understanding data storage 1–3
using procedure libraries to limit disk I/O

3–57
using RAID 1–9 to 1–16
using the bdf command 1–4
using the df command 1–4
variance 3–46

Documentation 4–2

Dump and load 3–39
binary 3–40
bulk loader 3–40
data dictionary dump and load 3–40

E

E-mail actions 4–7

Empty blocks 2–7

Examining growth patterns 1–5

Exporting Fathom settings 4–16

F

Fathom
actions 4–7
admserv.log file 4–40
Index–3

Index

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
admSQL.log file 4–41
alerts 4–16
benefits 4–3
collecting storage information 1–6 to 1–7
compound action 4–8
configuring 4–6 to 4–17
creating monitoring plans 4–6
custom jobs 4–33 to 4–35
custom reports 4–29 to ??
default database monitoring 4–16
default monitoring schedule 4–6
defining jobs to run utilities 3–36 to 3–38
e-mail actions 4–7
environment considerations 4–17
environment variable 4–41
exporting settings 4–16
FathomTrendDatabase 4–4
File Systems Operation view 3–32
frequently asked questions 4–41 to 4–44
guidelines for applying 4–1 to 4–45
importing settings 4–16
installation guidelines 4–4 to 4–5
job templates 4–13
jobs 4–7
jspwork directory 4–40
log action 4–7
logs directory 4–41
monitoring AdminServer 3–11
monitoring buffer hit rate 3–27
monitoring CPU usage 1–27, 3–31
monitoring database areas 3–26
monitoring disk capacity 1–5
monitoring disks 1–6 to 1–7
monitoring user activity 2–13
My Fathom page 4–14
performance impact of running 4–22
Perl language 4–33
polling 4–9 to 4–12
product documentation 4–2
pros and cons 3–45
report templates 4–13
rules 4–12 to 4–13
scheduling 4–9 to 4–12
selecting the Fathom Management

machine 4–17
SMTP host name 4–4
SMTP port number 4–4
SNMP trap action 4–7
trending 4–9

trending operating system information
3–6

troubleshooting 4–40 to 4–41
viewing checkpoint summary 2–31, 3–56
viewing database storage areas 2–7
viewing file system usage 1–5
viewing latch and lock activity 2–9
viewing latches 2–43
viewing master block data 2–5
viewing raw VST data 2–5
viewing user requests 3–60

Fathom Management, See Fathom

Fathomdebug4gl environment variable
4–41

FathomTrendDatabase
custom reports 4–29 to 4–31
determining the number of 4–18
install location 4–4
isolating for better performance 4–19

Free blocks 2–7

Frequently asked questions 4–41 to 4–44

G

Growth patterns 1–5

I

Idle time 1–26

Importing Fathom settings 4–16

Index blocks 2–4, 3–33
manipulating 2–19

Index Compact utility 3–35, 3–39

Index Fix utility 3–35

Index Move utility 3–36

Index rebuild
and cache usage 1–9
utility 3–34 to 3–35
–4

Index
Installing Fathom 4–4 to 4–5

Interleaved memory 1–18

J

Jobs
creating custom 4–33 to 4–34
guidelines 4–7
Korn shell example 4–34
Perl example 4–34
return codes 4–33
templates 4–13
using to run utilities 3–36

jspwork directory 4–40

L

Latches
understanding 2–9
viewing activity in Fathom 2–9
viewing in Fathom 2–43

Locked record 2–9

Log actions 4–7

M

Managing
disk capacity 1–2 to 1–17
memory usage 1–18 to 1–23
OpenEdge database resources 2–1 to

2–43
system resources 1–1 to 1–28

Master blocks 2–5
retrieving data from using VSTs 2–5
viewing VST data from Fathom 2–5

Memory
adding remote clients 2–12
AIWs 2–12
APWs 2–12
BIWs 2–12

bottleneck causes and solutions 3–50 to
3–51

buffer hit percentage 2–39
client process requirements 1–21
decreasing 2–40
estimating requirements 1–20

for OpenEdge 1–21
operating system 1–20

how it works 1–18
increasing usage 2–40
interleaved 1–18
managing usage 1–18 to 1–23
maximizing 1–18
monitoring user activity in Fathom 2–13
optimizing usage 2–39 to 2–41
physical paging, see paging
private buffers 2–41
resource allocation 3–50
sample requirements 1–22
swapping 1–18
trending usage 1–23, 3–7 to 3–8
understanding internals 2–8 to 2–9
understanding shared memory resources

2–10 to 2–15
using Performance Monitor to trend

usage 1–23
using RAM disks 3–51
using sar to trend usage 1–23
virtual paging, see paging

Mirroring disks 1–12

Monitoring
application processes 3–10
daily tasks 3–24 to 3–32
database log file 3–24
periodic tasks 3–33 to 3–38
See Fathom
your system 3–23 to 3–40

Monitoring plans
creating actions 4–7
creating Jobs 4–7
default schedule 4–6
guidelines 4–6

My Fathom 4–14
monitoring CPU 1–27
Index–5

Index

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
N

Network storage environment 1–17

NFS protocol 1–17

O

OpenEdge
client process memory requirements

1–21
database broker memory requirements

1–21
migrating versions 3–61

OpenEdge database
See Database

Operating system
backup utilities 3–18 to 3–20
firing Fathom alerts from 4–33
limiting buffers 3–51
memory requirements 1–20
memory usage 3–50
monitoring tools 3–44

P

Page writers 3–54

Paging
excessive 1–19
physical 1–19
virtual 1–19

Performance
BI cluster size 3–54
common problems and solutions 3–46 to

3–57
establishing a baseline 3–41 to 3–43
monitoring tools 3–44 to 3–45
page writers 3–54
profiling 3–41 to 3–43
tuning 3–42 to 3–43, 3–57

Performance Monitor
monitoring CPU activity 1–26

Perl 4–33

Polling in Fathom 4–9 to 4–12

PROBKUP utility 3–16 to 3–19
pros and cons 3–19

Procedure libraries 3–57

PROLOG utility 3–25

PROMON utility
pros and cons 3–44

R

RAID
hardware 1–9
RAID 0 Striping 1–10
RAID 1 Mirroring 1–12
RAID 1+0 1–13
RAID 10 1–13
RAID 5 1–15
software 1–9

Record blocks
adding new 2–16
deleting 2–19
updating existing 2–18

Recovery strategy 3–12 to 3–16

Redundant array of inexpensive disks, see
RAID

Replication 3–21, 3–22

Reports
creating custom reports 4–29 to 4–31
templates 4–13

RM blocks
layout 2–3

Rules
guidelines 4–12 to 4–13
–6

Index
S

SAN environment 1–17

Scheduling in Fathom 4–9 to 4–12

Schema changes 3–59

See RAID 1–9

Shared executables 1–21

Simple Mail Transfer Protocol, see SMTP

SMTP host name 4–4

SMTP port number 4–4

SNMP trap action 4–7

-spin parameter 2–42, 3–53

Storage area networks, see SAN

Storage object block 2–7

System performance
See Performance

System resources

managing 1–1 to 1–28

T

Table Move utility 3–36

Tainted flags 2–5

Templates
for jobs 4–13
for reports 4–13

Tending
database activity 3–5

Testing your system 3–11

Trending
additional factors 3–10
application load 3–5
database areas 3–3 to 3–5
disks 3–8
in Fathom 4–9
memory usage 1–23, 3–7 to 3–8
operating system information 3–6
overview 3–3

Troubleshooting Fathom 4–40 to 4–41

V

VSTs
pros and cons 3–45
Index–7

Index

OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management
–8

	Preface
	Overview
	Purpose
	Fathom Management with OpenEdge or Progress
	Audience
	How to use this manual
	Organization
	Typographical conventions

	Managing System Resources
	Managing disk capacity
	Ensuring adequate disk storage
	Determining data storage requirements
	Examining your growth pattern
	Comparing expensive and inexpensive disks
	Determining the location of data on disks
	Understanding cache utilization
	Increasing disk reliability with RAID
	OpenEdge in a network storage environment
	Summary

	Managing memory usage
	How much paging is too much?
	Estimating memory requirements
	OpenEdge-specific memory estimates

	Managing CPU activity
	Understanding CPU activity
	Tuning your system
	Understanding idle time
	Monitoring your system
	Fast CPUs versus many CPUs

	Summary

	Managing OpenEdge Database Resources
	OpenEdge database internals
	Understanding database blocks
	Other block types
	Understanding memory internals
	Understanding shared memory resources

	Understanding how blocks are manipulated
	Record block manipulation
	Index block manipulation

	Optimizing data layout
	Sizing your database areas
	Distributing tables across storage areas

	Optimizing database areas
	Data area optimization
	Choosing an appropriate block size
	Primary recovery (before-image) information
	After-image information

	Optimizing memory usage
	Why is buffer hit percentage important?
	Increasing memory usage
	Decreasing memory

	Optimizing CPU usage
	Understanding the -spin parameter
	CPU bottleneck: Look at your disk drives

	Performing System Administration
	Understanding the database administrator’s role
	Ensuring system availability with trending
	Trending database areas
	Trending application load
	Trending operating system information
	Trending system memory
	Trending system disks
	Setting alerts for variable extent growth
	Additional factors to consider in trending
	Process monitoring
	Testing to avoid problems

	Ensuring system resiliency
	Why do backups?
	Creating a complete backup-and-recovery strategy
	Using PROBKUP versus operating system utilities
	After-imaging implementation and maintenance
	Testing your recovery strategy

	Maintaining your system
	Daily monitoring tasks
	Monitoring the database log file
	Monitoring area fill
	Monitoring buffer hit rate
	Monitoring buffers flushed at checkpoint
	Monitoring system resources (disks, memory, and CPU)
	Periodic monitoring tasks
	Database analysis utility
	Index rebuild utility
	Index compact utility
	Index fix utility
	Table move utility
	Index move utility
	Running the utilities
	Truncate BI and BIGROW
	Understanding dump and load

	Profiling your system performance
	Establishing a performance baseline
	Performance tuning methodology

	Advantages and disadvantages of monitoring tools
	Common performance problems
	Disk bottleneck causes and solutions
	Memory bottleneck causes and solutions
	CPU bottleneck causes and solutions

	Other performance considerations
	Conclusion

	Periodic event administration
	Annual backups
	Archiving
	Application modifications

	Guidelines for Applying Fathom
	Introduction
	Making practical resource monitoring decisions
	Before you install
	Initial installation settings
	Post installation configuration tasks

	Configuring Fathom for your environment
	Determining the location and number of FathomTrendDatabases
	Isolating the FathomTrendDatabase

	Remote monitoring
	What resources can be managed?
	Limitations of remote monitoring
	Remote database monitoring
	OpenEdge server support
	System management support
	Setup for remote monitoring

	Performance considerations
	Configuration Advisor
	What is the Configuration Advisor?
	Who is it for?
	How does it work?

	The File Monitor
	File Age
	File Exists
	File Growth Rate
	File Modified
	File Size

	Creating custom reports using 4GL
	Viewing archived data

	Creating custom jobs
	Extending usefulness of existing Fathom functions
	After-image administration
	Uses beyond monitoring
	Fathom for system sizing

	Troubleshooting your Fathom installation
	Frequently asked questions and answers

	Conclusion

	Glossary
	A
	B
	C
	D
	E
	F
	H
	I
	J
	L
	M
	O
	R
	S
	T

	Index
	Numbers
	A
	B
	C
	D
	E
	F
	G
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	V

