Progress.

Fathom

OpenEdge. Revealed:
Achieving Server Control with
Fathom. Management

Doug Merrett Expert Series

©2004 Progress Software Corporation. All rights reserved.

Progress® software products are copyrighted and al rights are reserved by Progress Software Corporation. This manual is also copyrighted and
all rights are reserved. This manua may not, in whole or in part, be copied, photocopied, trandated, or reduced to any electronic medium or
machine-readable form without prior consent, in writing, from Progress Software Corporation.

The information in this manual is subject to change without notice, and Progress Software Corporation assumes no responsibility for any errors
that may appear in this document. The references in this manual to specific platforms supported are subject to change.

Allegrix, A [Stylized], ObjectStore, Progress, Powered by Progress, Progress Fast Track, Progress Profiles, Partners in Progress, Partners en
Progress, Progress en Partners, Progress in Progress, P.I.P., Progress Results, ProVision, ProCare, ProtoSpeed, SmartBeans, SpeedScript, and
WebSpeed are registered trademarks of Progress Software Corporation or one of its subsidiaries or affiliates in the U.S. and/or other countries.
AccelEvent, A Data Center of Your Very Own, Allegrix & Design, AppsAlive, AppServer, ASPen, ASP-in-a-Box, BusinessEdge, Business
Empowerment, Empowerment Center, eXcelon, Fathom, Future Proof, Intelli Stream, ObjectCache, OpenEdge, PeerDirect, POSSE, POSSENET,
Progress Business Empowerment, Progress Dynamics, Progress Empowerment Center, Progress Empowerment Program, Progress for Partners,
Progress OpenEdge, Progress Software Developers Network, PSE Pro, PS Select, SectorAlliance, SmartBrowser, SmartComponent,
SmartDataBrowser, SmartDataObjects, SmartDataView, SmartDialog, SmartFolder, SmartFrame, SmartObjects, SmartPanel, SmartQuery,
SmartViewer, SmartWindow, Technical Empowerment, WebClient, and Who Makes Progress are trademarks or service marks of Progress
Software Corporation or one of its subsidiaries or affiliatesin the U.S. and other countries.

Javaand all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.
Any other trademarks or service marks contained herein are the property of their respective owners.

Fathom Management includes software devel oped by the Apache Software Foundation (http://www.apache.org/). Copyright © 1999 The Apache
Software Foundation. All rights reserved (Xalan XSLT Processor) and Copyright © 2000-2002 The Apache Software Foundation. All rights
reserved (Jakarta-Oro). The names “Apache,” “Xerces,” “Jakarta-Oro,” and “Apache Software Foundation” must not be used to endorse or
promote products derived from this software without prior written permission. Products derived from this software may not be called “ Apache” or
“Jakarta-Oro,” nor may “Apache” or “Jakarta-Oro” appear in their name, without prior written permission of the Apache Software Foundation. For
written permission, please contact apache@apache.org. Software distributed on an “AS IS’ basis, WITHOUT WARRANTY OF ANY KIND,
either express or implied. See the License for the specific language governing rights and limitations under the License agreement that accompanies
the product.

Fathom Management includes software developed by ACME Labs. Copyright © 2000 by Jef Poskanzer <jef @acme.com>. All rights reserved.
Software distributed on an “AS1S” basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License for the specific
language governing rights and limitations under the License agreement that accompanies the product.

Fathom Management includes software developed by Sun Microsystems, Inc. Copyright © 2003 Sun Microsystems, Inc. All Rights Reserved.
Software distributed on an “AS IS’ basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License for the specific
language governing rights and limitations under the License agreement that accompanies the product.

Fathom Management includes the Jetty Package Copyright © 1998 Mort Bay Consulting Pty. Ltd. (Austraia).

Fathom Management includes software developed by the ModelObjectsGroup (http://www.modelobjects.com). Copyright © 2000-2001
ModelObjects Group. All rights reserved. The name “Model Objects” must not be used to endorse or promote products derived from the SSC
Software without prior written permission. Products derived from the SSC Software may not be called “Model Objects’, nor may “Model Objects’
appear in their name, without prior written permission. For written permission, please contact djacobs@model objects.com.

Fathom Management includes files that are subject to the Netscape Public License Version 1.1 (the “License”); you may not use this file except in
compliance with the License. Y ou may obtain a copy of the License at (http://www.mozilla.org/NPL). Software distributed under the License is
distributed on an “AS IS’ basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License for the specific language
governing rights and limitations under the License. The Original Code is MozillaCommunicator client code, released March 31, 1998. The Initial
Developer of the Original Code is Netscape Communications Corporation. Portions created by Netscape are Copyright © 1998-1999 Netscape
Communications Corporation. All Rights Reserved.

Fathom Management contains copyright material licensed fromAdventNet, Inc. http://www.adventnet.com. All rights to such copyright materia
rest with AdventNet.

Fathom Management includes the RSA Data Security, Inc. MD5 Message-Digest Algorithm. Copyright © 1991-2, RSA Data Security, Inc.
Created 1991. All rights reserved.

August 2004

HSI\«
SECURED

Product Code: 4010
Release: V3.0A

Item Number: 101212

mailto: jef@acme.com
http://www.apache.org/
http://www.mozilla.org/NPL
http://www.modelobjects.com
http://www.adventnet.com
mailto: apache@apache.org
mailto: jef@acme.com
mailto: djacobs@modelobjects.com

Acknowledgements

I'd like to thank all my colleagues who have reviewed this book and given valuable comments
to add clarity to the text and also to point out where | had missed important information.

My thanks also go to the Fathom Management development, quality assurance, and
documentation teams who have worked hard to provide me with invaluable assistance
throughout the writing of this book.

OpenEdge Revealed: Achieving Server Control with Fathom Management

Contents

Preface Preface-1
1. Fathom and OpenEdge Servers Overview.couuiiiiinnnn... 1-1
Architecture of OpenEdge SEIVErS e 1-2
Administration SErver. 1-3
Understanding the ubroker.propertiesfile........................ 1-4

WebSpeed e 1-5

APP S IV . . o 1-7

Fathom integration with OpenEdge servers e 1-10

2. Setup and Configuration of OpenEdge Servers 2-1
General OpenEdge server configurationtasks 2-2
Broker OWNership e 2-4
Request round-trip ProCeSSttt 2-6

No NameServer version of the request round-trip. 2-8

Firewall configuration and debugging i i 2-10
Firewall configuration. 2-10

Debugging firewall configurations 2-15

P ISSUBS ..t 2-24
Domain Name System. 2-24

Multi-homed servers (multiple IP address servers). 2-24

3. Configuration of WebSpeed Servers 3-1
WebSpeed Messenger installation 3-2
General WebSpeed server configuration 3-3
Configuring logging e 3-3

WebSpeed seCuUrity 3-4
Securing your network traffic 3-5

Securing your Web Server. e 3-6

Contents

\Y

Securing your WebSpeed server machine 3-11

Securing your WebSpeed application 3-14

Firewalls. 3-21

Error handling and debugging 3-24

Errorhandling. 3-24

Writing robustcode 3-26

Debugging the application 3-27

Using the AppServer to access the businesslogic 3-34

Examples of simple and complex configurations 3-35

Configuration of the AppServer. e e 4-1

General configuration 4-2

APPSEIVEL SECUINLY . oo vt e e e 4-3

Controlling AppServer entry points.ttt 4-3

Using DBAUTHKEY to lock your r-code to the database. 4-5

Errorhandling 4-6

Coding practicesto avoiddeadlocks 4-7

DEbUGOING . e e 4-8
Using the OpenEdge Application Debugger to debug

AppServer applications 4-8

Using other techniques to debug AppServer applications 4-13

Configuration of the NameServer 5-1

Understanding the NameServer e 5-2

Location independence e 5-3

Load-balancing 5-4

Fault-tolerant NameServer configurations 5-6

NameServer replication i 5-6

NameServer neighborhoods 5-9

Logging levels 5-12

Logfile maintenance 5-12

Performance Considerations 6-1

NameServer performance 6-2

WebSpeed performance 6-2

How requests affect performance 6-2

Browser (HTTP) responsetimesc ... 64

HTTP/S performance e 64

Using different Messengerst 6-5

Multiple Web servers e 6-5

AppServer performancCet e 6—6

How AppServer operating modes affect performance............... 6—6

Using asynchronous AppServercalls. 6-8

Contents

AppServer configuration procedures 6-10
Startup and shutdown procedures, 6-11

Connect and disconnect procedures.ooviiin . 6-11

Activate and deactivate procedures 6-11

Application performance tuning 6-12
Progress 4GL Profiler 6-14

Web server performance 6-15

7. Where to Use Fathom Management when Deploying.................... 7-1
Monitoring AppServer and WebSpeed i, 7-2
Broker and Server Performance views 7-2
Trendingandreportingdata i -4

Setting rules and configuring alerts. 7-5

HTTP MONItOr . . o e e e 7-7

NameServer debuggingt e -7
Memory, CPU, and disk monitoringttt 7-8
Logfile management e 7-8
Using My Fathom e e e e 7-9
INdEX .o Index—1

Vii

Contents

viii

Figures

Figure 1-1:
Figure 1-2:
Figure 1-3:
Figure 2—-1:
Figure 2-2:
Figure 2-3:
Figure 2—-4:
Figure 2-5:
Figure 2—-6:
Figure 2—-7:
Figure 2-8:
Figure 3-1:
Figure 3-2:

Figure 3-3:
Figure 3-4:
Figure 3-5:
Figure 3-6:
Figure 3-7:
Figure 3-8:

Figure 3-9:

Figure 3-10:
Figure 3-11:
Figure 3-12:
Figure 4-1:
Figure 4-2:
Figure 5-1:
Figure 5-2:
Figure 5-3:
Figure 5-4:
Figure 5-5:
Figure 5-6:
Figure 5-7:
Figure 6-1:
Figure 6-2:
Figure 7-1:
Figure 7-2:
Figure 7-3:
Figure 7-4:

Progress OpenEdge application deployment architecture
WebSpeed deployment architecture,
AppServer deployment architecture
Setting broker ownership
Requestround-trip
Configuring No NameServer
Firewall configuration
Setting hostname
Checking NameServer access using the Progress Explorer
Multi-homed server
Register with NameServersetting
WebSpeed configuration with fiveagents
Deployment model with separate machines for the Internet

Production, Intranet Production, and the Development/Test servers . .
Deployment with two NameServerso ..
Setting Production mode for WebSpeed agents
Changing agent parameters to reference web-disp.p
Firewallwith DMZ e
Secure firewall configuration L.
OpenEdge Application Debugger working in a CGI wrapper

S0 o] = 10 P
OpenEdge Application Debugger working in an Embedded

SpeedScript application
WebSpeed server environment variable: DISPLAY
Simple configuration
Complex configuration
AppServer configuration with five agents
Enabling 4GL Debugger for AppServer server
AppServer broker Advanced Featurespage
Setting application service names
Setting Priority weight for an AppServer
NameServer replication
Setting NameServer broadcast properties
NameServer neighborhood
Setting NameServer neighbors in the Progress Explorer
Setting minimum and maximum agents
ASYNChroNOUS reqUESESttt e e e
Broker Performance View
Trending performancedata i
Average Procedure Duration Highrule
My Fathompage e

Contents

Tables

Table 3-1: Redirecting WebSpeed error messagesc..oouuun.. 3-24
Table 5-1: Broker priority weights 5-5
Table 6-1: AppServer configuration procedures and operating modes 6-10

Contents

Examples

Example 1-1: ubroker.propertiesfile 1-4
Example 2-1: Configuring ubroker.properties file for firewall 2-12
Example 2-2: Checking NameServer access using NSMAN -name NS1 -query 2-22
Example 3—1: Default web-disp.p ... 3-17
Example 3—2: Secure web-diSp.p 3-18
Example 3-3: Passing unique identifiers 3-21
Example 3—4: Robust code for passing parameters 3-26
Example 3-5: Setting DISPLAY environment variable in ubroker.properties 3-31
Example 3—6: Enabling 4GL Trace in ubroker.properties 3-32
Example 3—7: WebSpeed agentlogfile 3-33
Example 3—8: WebSpeed agentlogfilelines 3-33
Example 3—9: Code designed to run on Client or AppServer 3-34
Example 4-1: Connect procedure with exportlist 4-4
Example 4-2: Resetting exportlist 4-5
Example 4—-3: Error CoOe e 4-6
Example 4-4: Problematic code without NO-WAIT NO-ERROR 4-7
Example 4-5: Robust code with NO-WAIT NO-ERROR 4-8
Example 4-6: Remote debuggingcode 4-10
Example 4—-7: Enabling 4GL Trace in ubroker.properties 4-14
Example 5-1: Setting NameServer neighbors in ubroker.properties 5-11

Preface

This Preface contains the following sections:

Purpose

Audience

Fathom Management with OpenEdge or Progress
How to use this manual

What will not be covered in this manual
Organization

Typographical conventions

OpenEdge Revealed: Achieving Server Control with Fathom Management

Purpose

Thismanual documentsthe best practicesfor configuring the deployment, maintenance, tuning,
and debugging of your Progress® OpenEdge™ server-based applications.

Additionally, the Fathom™ Management features that can help you maintain, tune, and monitor
the OpenEdge servers are identified at the appropriate times throughout this manual .

Audience

Thismanual is mainly for use by OpenEdge system administrators. Some parts of this manual
pertain to the development and debugging of applications based on the OpenEdge server
technology. These will be of interest to Development and Quality Assurance staff.

Fathom Management with OpenEdge or Progress
Fathom Management Version 3.0A runs against the following:
. OpenEdge 10.0B.
. Progress Version 9.1D and the 9.1D09 service pack.

For the sake of simplicity, the procedures and screen shots provided in this manual refer to
running Fathom against OpenEdge 10.0B. However, be assured that unlessindicated otherwise,
the procedures are the same for both Progress Version 9.1D with the 9.1D09 service pack and
OpenEdge 10.0B. For example, if aprocedure refers to an OpenEdge database, the procedure
appliesto a Progress database as well.

Preface-2

Preface

How to use this manual

Read Chapter 1, “Fathom and OpenEdge Servers Overview,” first because it defines and
describesthe componentsthat make up an OpenEdge server deployment. Then read the sections
of this manual that pertain to your deployment environment.

The goal of thisbook isnot to reiterate what is already documented in the Fathom Management
documentation set, but rather to explain how you can best use Fathom Management to help
manage, maintain, and monitor an OpenEdge application. This manual contains information
gathered from the experience of helping to devel op, debug, and deploy OpenEdge applications.
If Fathom Management had been available when some of these deployments were done, their
successful implementation would have been much easier.

What will not be covered in this manual

The following topics will not be covered in this manual:

. Development configuration

. Other server products

e« TheAppServer Internet Adapter and Secure AppServer Internet Adapter
. Open clients

¢ WebServices Toolkit (WSTK)

Development configuration

This manual is designed to cover the best practices for the deployment and continued running
of Progress OpenEdge server-based applications. Even though we will cover some debugging
and tuning of these applications, the configuration of the development and test servers will not
be covered. Some of the deployment information will be useful for the configuration of a“live”
test environment.

Preface-3

OpenEdge Revealed: Achieving Server Control with Fathom Management

Preface—4

Other server products

The OpenEdge database server, DataServers, and the SonicM Q® 4GL Adapter can all be
managed by the AdminServer. These are not covered in this manual. The database server is
covered in OpenEdge Reveal ed: Mastering the OpenEdge Database with Fathom Management,
and the others are not currently managed or monitored by Fathom Management.

The AppServer Internet Adapter and Secure AppServer
Internet Adapter

The AppServer™ Internet Adapter (AIA) and Secure AppServer™ Internet Adapter (AIA/S)
are designed to allow AppServer clients (either 4GL or open clients) to connect to the
AppServer over HTTP, or in the case of AIA/S over HTTP/S. Thisis done to provide ease of
deployment for extranet solutions where the client might be behind a firewall and cannot
communicate to the AppServer using the normal process. Both adapters are described in
OpenEdge Application Server: Administration.

The AlA and AIA/Swork in avery similar fashion to the WebSpeed Messenger in that they:
* Areaccessed viaaWeb server.

» Takearequest from an external client.

. Find the appropriate AppServer broker and AppServer server to send the regquest to.

. Pass the request through to the AppServer server.

. Send the resulting response to the external client.

The AlA and AIA/S are Java ™ Servlets and run in a Java Servlet Engine (JSE). The JSE can
be either on the same machine as the Web server or another machine.

Connecting fromthe AlA or AIA/Stothe AppServer followsthe same process asthe WebSpeed
Messenger, so any information in this manual regarding firewall configuration to alow
communications between the WebSpeed Messenger and WebSpeed® Transaction Server is
equally applicable to the AIA and AIA/S accessing the AppServer.

Preface

Open clients

Open clients are either Java or COM objects that expose an AppServer process to their parent
language. Open Clientsallow Visual Basic or your Web-enabled applicationswritten in Javato
work with the same business functions used by your OpenEdge enterprise applications. The
process for connecting to the AppServer is the same asfor a4GL client, so the configuration
section of this manual describing 4GL clients connecting to an AppServer is relevant. Open
Clients can also accessthe AppServer viathe AIA or AIA/S. The Open Client isfully described
in OpenEdge Development: Open Client Introduction and Programming.

WebServices Toolkit (WSTK)

The WebServices Toolkit is a product that exposes an AppServer process as a WebService as
defined by the World Wide Web Consortium (http://www.w3c.org).

For more information on the WSTK, please go to the Progress Software Developers Network
(PSDN) Web site (http://psdn.progress.com) and look for “WebServices Toolkit” in the
PSDN library’s “Product and Technology Information” section.

Organization

This manual contains the following chapters:

Chapter 1, “Fathom and OpenEdge Servers Overview”

Provides an overview of the OpenEdge servers, including the OpenEdge Architecture and
how you can integrate Fathom Management with your OpenEdge servers.

Chapter 2, “Setup and Configuration of OpenEdge Servers’

Provides general setup and configuration information that are common to each type of
OpenEdge server, including WebSpeed®, AppServer™, and NameServer. Topics
discussed include broker ownership, the request round-trip process, firewall configuration
and debugging, and IP issues.

Chapter 3, “Configuration of WebSpeed Servers’

Provides setup and configuration information that is specific to WebSpeed. Topics
discussed include general WebSpeed server configuration, installation of the WebSpeed
Messenger, security, error handling and debugging, using the AppServer to access
businesslogic, and simple and complex configurations.

Preface-5

http://www.w3c.org
http://psdn.progress.com

OpenEdge Revealed: Achieving Server Control with Fathom Management

Chapter 4, “Configuration of the AppServer”

Provides setup and configuration information that is specific to the AppServer. Topics
discussed include general AppServer configuration, security, error handling and
debugging.

Chapter 5, “Configuration of the NameServer”

Provides setup and configuration information that is specific to the NameServer. Topics
discussed include an overview of the NameServer, |ocation independence, |oad-balancing,
fault-tolerant NameServer configurations, and NameServer neighborhoods.

Chapter 6, “Performance Considerations’

Provides performance considerations and tuning for WebSpeed, the AppServer, and the
NameServer. It also provides performance tuning information for your applications.

Chapter 7, “Where to Use Fathom Management when Deploying”

Provides guidelines for using several Fathom Management features with OpenEdge
servers. Topics include using Fathom Management to monitor the AppServer and
WebSpeed; debugging the NameServer; monitoring memory; CPU and disks; managing
log files; and using My Fathom.

Typographical conventions

This manual uses the following typographical conventions:

Convention Description

Bold Bold typeface indicates commands or characters the user types, or
the names of user interface elements.

Italic Italic typeface indicates the title of a document, provides
emphasis, or signifies new terms.

SMALL, BOLD Small, bold capital |ettersindicate OpenEdge™ key functions and

CAPITAL LETTERS generic keyboard keys; for example, GET and CTRL.

KEY1-KEY2 A hyphen between key names indicates a simultaneous key

sequence: you pressand hold down thefirst key while pressing the
second key. For example, CTRL-X.

Preface—6

Preface

Convention Description
KEY1KEY2 A space between key names indicates a sequential key sequence:
you press and release the first key, then press another key. For
example, ESCAPE H.
Syntax:

Fixed width

A fixed-width font is used in syntax statements, code examples,
and for system output and filenames.

Fixed-width italics

Fixed-width italics indicate variables in syntax statements.

Fixed-width bold

Fixed-width bold indicates variables with special emphasis.

UPPERCASE
fixed width

Uppercase words are Progress® 4GL language keywords.
Although these always are shown in uppercase, you can typethem
in either uppercase or lowercase in a procedure.

w>

Thisicon (three arrows) introduces a multi-step procedure.

Thisicon (one arrow) introduces a single-step procedure.

Preface-7

OpenEdge Revealed: Achieving Server Control with Fathom Management

Preface—8

Fathom and OpenEdge Servers Overview

This chapter introduces you to Fathom™ and OpenEdge™ servers. It covers the following
topics:

» Architecture of OpenEdge servers

. Fathom integration with OpenEdge servers

OpenEdge Revealed: Achieving Server Control with Fathom Management

Architecture of OpenEdge servers

1-2

The OpenEdge™ servers are the WebSpeed® Transaction Server and the AppServer™. The
NameServer is a separate (and optional in Progress® Version 9.1D and higher) server that is
used by the OpenEdge Server environment. The OpenEdge and NameServersare controlled and
configured by the Administration server.

Figure 1-1 shows the general architecture of a Progress OpenEdge application deployment.

Fathom
OpenEdge Server Management

Host Console

AdminServer €
\4 Progress Explorer

or Management

- NameServer Utilities
OpenEdge *

Cient € - ‘ll
<) Text Editor or
Configuration
Utilities
OpenEdge
> Server Broker
OpenEdge
- Server
Agents/Servers
[

Figure 1-1: Progress OpenEdge application deployment architecture

Fathom and OpenEdge Servers Overview

The Administration server (AdminServer) isthe controlling process for all of the OpenEdge
servers (including databases, NameServers, DataServers, and so on) on aphysical host. The
AdminServer gets configuration information for the OpenEdge servers from the
ubroker.properties file. Y ou can maintain thisfile using either the Progress Explorer tool or
atext editor. Using the Progress Explorer tool is the recommended way to update the
ubroker.properties filebecauseit validates your input, which helpsto alleviate configuration
errors.

Figure 1-1 shows only OpenEdge servers and a NameServer, which are all on the same host.
However, you can install OpenEdge servers and NameServers on different hosts, and in this
case, each host would need its own AdminServer. The solid lines show communication paths
and the dashed line indicates optional communication.

The OpenEdge server can be either a WebSpeed server or an AppServer. In the case of
WebSpeed, the WebSpeed broker will manage WebSpeed agents. For an AppServer, the
AppServer broker will manage AppServer servers.

The NameServer does the following:

¢ Allowslocation independence for OpenEdge servers.
. Provides fault tolerance.

. Provides load balancing for requests.

See Chapter 5, “ Configuration of the NameServer,” for more information.

Administration server

The AdminServer isthe controlling processfor all of the OpenEdge serverson ahost. It allows
the Progress Explorer, command line management utilities, or Fathom Management to start,
stop, or query the status of any OpenEdge server.

Note: Fathom Management can control only OpenEdge databases, AppServers, WebSpeed
servers, and NameServers.

1-3

OpenEdge Revealed: Achieving Server Control with Fathom Management

Starting the AdminServer

Because the AdminServer is the controlling process, it must be started first. On Microsoft
Windows, this is automatically achieved because the AdminServer isinstalled as a Service.

On UNIX, if you want the AdminServer to automatically start, add the proadsv -start
command to ascript inthe rc. d directories. Please consult your UNIX administration guide for
details.

Understanding the ubroker.properties file

If you look at the ubroker.properties file (located the OpenEdge-install/properties
directory) using atext editor, you will see each OpenEdge server that can run on that host.

Example 1-1 shows an example of a WebSpeed server configuration in the
ubroker.properties file

Example 1-1: ubroker.properties file

[UBroker.WS.DemoApp]
srvrAppMode=Production
brokerLogFiTe=C:\DemoApp\Logs\WS_broker.Tog
srvrLogFile=C:\DemoApp\Logs\WS_agent.Tog
srvrMinPort=5321
srvrMaxPort=5325
maxSrvrInstance=5
controllingNameServer=NS1l
srvrStartupParam=-p web\objects\web-disp.p -weblogerror
uuid=527a0623fe008210:67d940:f6484c1312:-7d87
workD1i r=C:\DemoApp

Each broker hasaUniversally Uniqueldentifier (UUID). The UUID must be unique acrossyour
entire configuration in order for the NameServer to function properly. If you want to manually
add anew OpenEdge server totheubroker.properties file, usethe genuuid script to generate
aUUID. The genuuid script islocated in the DLC/bin directory.

For complete details on the ubroker. properties file, see OpenEdge Getting Sarted:
Installation and Configuration for Unix or OpenEdge Getting Started: Installation and
Configuration for Windows.

Fathom and OpenEdge Servers Overview

WebSpeed

WebSpeed® is a devel opment and deployment environment that allows you to build
applicationsthat use HTML, XML, WML, DHTML, and most other mark-up languages (MLSs)
asthe user interface. This means that WebSpeed can be used for applications where users are
accessing the application using:

« A Webbrowser (HTML, DHTML, or XML).
¢« A mobile/cell-phone (HTML, WML).

. A system making requests for information using XML and HTTP or HTTP/S as the
transport protocol.

The WebSpeed language is the Progress 4GL with some extensions. So, generally speaking,
anything that Progress 4GL can do, WebSpeed can do. There are three different development
techniques for WebSpeed applications:

. Embedded SpeedScript
. Mapped Web objects
. CGlI wrappers

Embedded SpeedScript is atechnique whereby Progress 4GL isinserted into HTML by using
special HTML tags. When the WebSpeed compiler compilesthisHTML, it convertsit into a
CGlI wrapper behind the scenes.

Mapped Web objects and CGI wrappers are pure 4GL applications, and the HTML istreated as
“text” within the program. For a complete description of the WebSpeed devel opment
environment and techniques, see OpenEdge Application Server: Developing WebSpeed
Applications.

1-5

OpenEdge Revealed: Achieving Server Control with Fathom Management

WebSpeed server

The WebSpeed server is made up of two components: the WebSpeed broker and the WebSpeed
agents. A third component, called the WebSpeed Messenger, isillustrated in the WebSpeed
architecture diagram, as shown in Figure 1-2.

WebSpeed Server

*ML Client Host

AdminServer
NameServer ubroker .properties
A

v v

v

Internet or
Intranet

e e e e e e - - e - -

> e
Web Server
<+ -
WebSpeed <
Messenger < > WebSpeed OpenEdge
Agents — =P Database or
DataServer

Figure 1-2: WebSpeed deployment architecture

Figure 1-2 shows the compl ete architecture for a WebSpeed deployment environment. The
NameServer isoptional, as described in the “No NameServer version of the request round-trip
section on page 2-8, and if it isused, it may be on another host. The WebSpeed agents are
shown connecting to an OpenEdge database or DataServer. Thisis optional because the
WebSpeed agents can connect to an AppServer to process the business logic. The database or
DataServer, if used, can also be on another host.

7

1-6

Fathom and OpenEdge Servers Overview

WebSpeed broker and agents

The WebSpeed broker manages the WebSpeed agents. When the WebSpeed server is started by
the AdminServer, the WebSpeed broker is started first. Then the AdminServer passes
configuration information to the broker including how many agents to start initially, agent
startup parameters, agent port ranges, and other settings. After the agents are started, the broker
tells the specified NameServer that it is“alive” and able to take requests for the specified
service.

During the lifetime of the WebSpeed server, the broker:

* Tellsthe Messenger which agent is available to handle incoming requests.

. Spawns more agents if needed (up to the specified limit).

e Trims(or kills) agentsif they have not been used for the specified number of seconds.

. Responds to queries from the AdminServer for performance metrics.

e Sendsthe AdminServer information if an event occurs, like starting or trimming agents.

The WebSpeed agents are 4GL clientsthat will accept requests from the WebSpeed M essenger
and run the requested program. The output of the program is sent through aspecial streamto the
Messenger and then through the Web server to the requesting client.

The agent processisinherently stateless. This meansthat the agent is only busy when arequest
is being processed. It will beidle at all other times.

AppServer

The AppServer is adeployment environment that allows Progress 4GL clients to run Progress
4GL businesslogic on a different machine. Examples of 4GL clientsinclude: GUI, Character,
Batch, WebSpeed, and other AppServers, or via the OpenClient Toolkit, Javaor COM clients.

There are two main benefits to having an AppServer in the deployment configuration of an
application:

1. Theuser interface and the business logic are separated, which allows different user
interfaces (such as GUI, Batch, and/or WebSpeed) to share the same business logic.

2. TheProgress 4GL application becomes athin client application—the network traffic
between the client and database is reduced because the only information travelling along
the network is the request and reply.

1-7

OpenEdge Revealed: Achieving Server Control with Fathom Management

1-8

For example, if you used aquery that was not indexed, the client would need to download
all thetable' sinformation and search throughit locally. Whereasin an AppServer version,
the client would send the request to the AppServer, which would access the database
locally and send only the matching records back to the client, thereby reducing the network
traffic.

The AppServer is made up of two components. the AppServer broker and the AppServer
servers, as shown in Figure 1-3.

AppServer Server
Host

AdminServer
4____——-’ NameServer ubroker.properties
4GL or *

OpenClient <

L
|

(I 4

P AppServer Broker

l

> AppServer
Servers -

OpenEdge
Database or
DataServer

Figure 1-3: AppServer deployment architecture

Fathom and OpenEdge Servers Overview

Figure 1-3 shows the complete architecture for an AppServer deployment environment. The
NameServer is optional (as discussed in the “Understanding the NameServer” section on
page 5-2) and if it is used, it may be on another host. The AppServers are shown connecting to
a OpenEdge database or DataServer. Thisis optional because the servers may connect to
another AppServer to process the business | ogic, making an n-tier application. The database or
DataServer, if used, may also be on another host. As ageneral rule, for best performance, the
AppServer and the database/DataServer should be on the same host.

AppServer broker and servers

The AppServer broker performs exactly the same processes as the WebSpeed broker described
in the “WebSpeed broker and agents” section on page 17, but for AppServer servers, not
WebSpeed agents.

The AppServer servers are 4GL clients that accept a RUN request from other 4GL (or Open)
clients. Normally, the client and AppServer are on different machines. ThisRUN command is
syntactically the same as anormal RUN, and can accept both input and output parameters. The
difference is that the RUN command specifies which AppServer to run the procedure on viaa
server handle. For specific details, see OpenEdge Application Server: Devel oping AppServer
Applications.

Y ou can configure the AppServer broker to bein one of the following operating modes:
state-reset, state-aware, or stateless. These are documented in OpenEdge Application Server:
Developing AppServer Applications.

1-9

OpenEdge Revealed: Achieving Server Control with Fathom Management

Fathom integration with OpenEdge servers

1-10

The AdminServer uses server plugins to integrate the OpenEdge components into the
AdminServer framework. Fathomisalsointegrated into thisframework using the same method.
This allows the Fathom server plugin to interrogate the OpenEdge server plugins to gather
information.

Fathom can start, stop, and query the status of the OpenEdge servers as well as display the
broker and server log files. These features are available in the Progress Explorer.

Fathom cannot yet be used to configure the OpenEdge servers, so you will still need to use the
Progress Explorer or edit theubroker.properties filemanually. The ability to use Fathom as
a Progress Explorer replacement is planned for a future release.

The Progress Explorer cannot access the detail of information that Fathom uses to provide
detailed performance statistics from OpenEdge servers. These performance statistics are one of
the most interesting and useful parts of Fathom when used to help monitor deployed OpenEdge
applications.

Setup and Configuration of OpenEdge
Servers

This chapter discusses general configuration tasks that are common to OpenEdge servers, and
contains the following topics:

. General OpenEdge server configuration tasks
. Broker ownership

. Request round-trip process

. Firewall configuration and debugging

. IPissues

For additional configuration tasks and information specific to each type of OpenEdge server,
see

. Chapter 3, “Configuration of WebSpeed Servers’
. Chapter 4, “ Configuration of the AppServer”

. Chapter 5, “Configuration of the NameServer”

OpenEdge Revealed: Achieving Server Control with Fathom Management

General OpenEdge server configuration tasks

2-2

For a deployment host, you should use AdminServer security. When you areinstalling
OpenEdge onto a Windows host, the installation process will prompt you for “ AdminServer
Authorization Options.” If you are installing onto a UNIX host, you apply the AdminServer
security as a post installation procedure. These processes are fully described in OpenEdge
Getting Started: Installation and Configuration for Unix and OpenEdge Getting Started:
Installation and Configuration for Windows.

Whenyouinstall OpenEdge onto aserver, you will get adefault ubroker.properties file. This
file contains an example configuration for each server (evenif you do not have alicensefor that
server).

In adevelopment and test environment, it is safe to use these default server configurations. Ina
deployment environment, do not use any standard OpenEdge server configurations. Thisis
because they use “well-known” ports and are more likely to be left in their default (whichis
unsafe) mode.

Inthe ubroker.properties file, you should delete the asbrokerl, wsbrokerl, ns1,
mssbrokerl, and the others. This can be done through the Progress Explorer or using any text
editor.

When you create the new OpenEdge servers, you should create the NameServer first, and then
the OpenEdge servers so you can set their NameServer to the one you have just created.

Do not use the standard port numbers for the brokers and servers/agents. For example, when
creating a WebSpeed Transaction Server with a maximum of five agents:

» Thebroker uses port 5320.
. The agents will use ports 5321 to 5325, inclusive.

. If you want more agents, just increase the agent port range upper value.

Setup and Configuration of OpenEdge Servers

Later, when you need to configure access to this WebSpeed Transaction Server through a
firewall it will be easier if you keep the port range as small as possible. Y ou should not use
ports that are below 1024 because these are deemed to be system ports and generally have
higher access to the kernel. It is good practice to document the ports you use in the networking
“services’ file. Under UNIX, thisis /etc/services and in Windows thisis
C:\WINDOWS\system32\drivers\etc\services. Progress Explorer will not let you use the
service name, only the number. If you use atext editor to modify the ubroker. properties, you
must also use the number, not the service name.

Notethat thereisabug in Windowsthat will not let thelast line of the servicesfile (or any other
text file) to be read unlessit has a carriage-return/line-feed at the end. Y ou might want to add a
line, such as the following, to the end of the services file to ensure that thereisa
carriage-return/line-feed at the end of each “real” entry in the servicesfile:

Do not delete this Tine

If you do not have a carriage-return/line-feed at the end of the servicesfile, the broker process
will read it incorrectly and you will get errors, such as the following:

Unable to find server XXX with protocol TCP in file SERVICES or SERVICES file
not found in expected location. (5192).

To changetheport used by the AdminServer under Windows:;
1. Inthe Windows Control Panel Services, stop the AdminServer service.

2. RunREGEDIT.You must add the -port argument along with the port number to the end of
the startup and shutdown entriesin your registry. The registry keys that need to be
modified are:

. HKEY_LOCAL_MACHINE\SOFTWARE\PSC\AdminService\OpenEdgeVersion\StartupCmd

. HKEY_LOCAL_MACHINE\SOFTWARE\PSC\AdminService\OpenEdgeVersion\ShutdownCmd

2-3

OpenEdge Revealed: Achieving Server Control with Fathom Management

The following example shows a changed StartupCmd:

"C:\DLC91D\bin\jvmstart" -o eventmgr -w @{WorkPath} @{JAVA\JREHOME}\bin\java
-classpath @{JAVA\JRECP};@{JAVA\PROGRESSCP};@{JAVA\FATHOMCP};@{JAVA\REPLCP}
@{JAVA\JVMARGS} -DInstall.Dir=@{Startup\DLC} -DWork.Dir=@{WorkPath}
-Djava.jvmargs=@{JAVA\JVMARGS} -Djava.security.policy=@{JAVA\JAVAPOLICY}
-Dadmsrv.jvm=@{JAVA\JREHOME}\bin\java -Djvmstart.debug=0
com.progress.chimera.adminserver.AdminServerType -start -service -port 20555

Be careful when you edit the registry manually. Y ou should not change the other parametersin
thisregistry key, or your AdminServer might not start up again.

Under UNIX, usethefollowing command to start the AdminServer where 20555 isthe new port
number:

proadsv -start -port 20555

From thispoint on, you will need to use thisnew port when connecting to the AdminServer from
either the Progress Explorer or the Management Utilities.

Broker ownership

For the AdminServer to work it needs to be run with root or system administrator rights. When
the AdminServer starts an AppServer or WebSpeed server, by default, it aso runs asthe
root/system administrator. This could allow the AppServer or WebSpeed agent to have access
to sensitive data. Y ou can limit what the AppServer or WebSpeed agent can access by adding
ownership information to the broker. The owner specified can then have operating system
privileges reduced to only what is necessary. Be sure to test this thoroughly, as not having
correct permissions can cause many problems.

Setup and Configuration of OpenEdge Servers

Figure 2—1 shows a WebSpeed broker under Windows being allocated to run as aregular user.

This user needs to have certain permissions when running under Windows. Search the

Knowledge Center for “How to start a Broker using Domain\Account.” Y ou can access the
Progress Knowledge Center by going to the following URL:
http://www.progress.com/support/kb.

Sportz2000_W5 Properties

= Braker
- General

& wwner Information:

- Contralling MameServer

- fppService Mame Ligt

- Logging Setting

- Adwanced Features

= Agent

- General

- Logging Setting

- Pool Range

- Adwanced Features

- Environment Wariables

Ll zernarne:

Idomain\user

FPazzward:

Ixxxxx

Canfirm pazsword:

Ixxxxx

o]

Cancel

Resat

Help

Figure 2-1:

Setting broker ownership

When using UNIX or Linux, thefieldson thistab are different. They are User name and Group
Name. Set the Username and Group Nameto that of avalid user with appropriate permissions.

2-5

http://www.progress.com/support/kb

OpenEdge Revealed: Achieving Server Control with Fathom Management

Request round-trip process

To connect to either aWebSpeed agent or an AppServer, the client process goesthrough several
steps. The client process for WebSpeed is the WebSpeed Messenger and a4GL client for the
AppServer. These connection steps are shown in Figure 2-2.

OpenEdge
Client Step3
OpenEdge
Step 3 Server Broker
Step 5

Step 6 ‘
\A OpenEdge

Server
Agent/Servers

Figure 2-2: Request round-trip

Step O

When the broker finishesinitializing, it tells the NameServer that it is ready to accept requests
for specific services and/or be the default service. By default, the broker sends these messages
every 30 seconds. This lets the NameServer know the broker is still alive and able to accept
requests. If the NameServer doesnot get amessage, it will deletethisbroker fromits*“available’
list. The broker/NameServer communications are not part of the request process, but are
required for it to work. The NameServer is covered in more detail in Chapter 5, “ Configuration
of the NameServer.”

2-6

Setup and Configuration of OpenEdge Servers

Step 1

The client makes a request to the NameServer for the location of a broker that can provide a
“service.”

Step 2

The NameServer responds with the broker’s host name or |P address and the broker’s port
number.

Step 3

Using these details, the client connects to the broker and requests a server/agent to be made
available. Thisrequest is put in a queue by the broker, so in peak load times requests are not
lost. If there are requests in the queue, the broker will check to seeif there is an available
server/agent. If there are none free, and the maximum number of servers/agents has not been
reached, the broker will start a new one. When there is a free server/agent, the broker will
allocate this one to the request and mark it as busy.

Step 4

The broker returns the server/agent port number or an error if there were none available.

Step 5

Assuming there is a free agent/server, the client uses the port number returned to make a
connection to the agent/server and passes the application request.

Step 6
The agent/server responds with the results of the request.

If the OpenEdge server is WebSpeed, then the request is compl ete and the agent informs the
broker that it is again free.

In an AppServer environment, it depends on what “state” the AppServer is configured as. In
state-aware or state-reset modes, the AppServer is“tied” to that particular client and can process
more requests without the client following Step 1 through Step 4. When the client istotally
finished, it will disconnect from the AppServer by using the DISCONNECT method. The
AppServer will then become free and inform the broker.

2—7

OpenEdge Revealed: Achieving Server Control with Fathom Management

2-8

In statel ess mode, when the client runsthe CONNECT method, only Step 1 and Step 2 arefollowed.
The client then connectsto the broker and isall ocated aunique CONNECTION-ID. The broker does
not allocate an AppServer until the client executesaRUN ON SERVER command. Then the client
follows Step 3, sending back the CONNECTION-ID, and Step 4 through Step 6 as normal. After
therequest is completed, the AppServer Server will inform the broker it isfree. This meansthat
the client can be all ocated different AppServer serversfor each request, but only from the same
AppServer broker.

The different modes of the AppServer are detailed in OpenEdge Application Server:
Developing AppServer Applications; their effects on performance are covered in the “How
AppServer operating modes affect performance” section on page 6-6 in this manual.

Step 0 through Step 4 create quite small amounts of network traffic, usually lessthan 500 bytes.
The large amounts of data arein the final request and response, Step 5 and Step 6. In an
AppServer environment, the request contains all the input parameters, and this can get quite
largeif there are temp tables being passed asinput parameters. When using WebSpeed, the data
sent from the Messenger to the WebSpeed agent includes all of the environment variables, as
well astheinput parameters from the URL or HTML form. The environment variables alone
can be up to 3000 bytes. The response for an AppServer cal isthe entire amount of data
returned. This could be as simple as an integer, or as complex as multiple temp tables. All this
data can become quite large. When the response comes back from a WebSpeed agent, it could
be asimple HTML page of around 1000 bytes, but it also could be alarge.z1pP fileor similar.
With special programming, WebSpeed can send binary files to the Web browser.

No NameServer version of the request round-trip

The NameServer is used for load balancing, fault tolerance, and location independence of
OpenEdge server applications. These are detailed in Chapter 5, “ Configuration of the
NameServer.” The NameServer uses UDP as a hetwork protocol and some network
administratorsdo not want UDP on their networksfor various reasons, somejustified and others
not. Progress introduced a“No NameServer” connection procedure for OpenEdge server
applicationsin Version 9.1D. Thiswill remove Step 0 through Step 2 of the connection process
above.

Setup and Configuration of OpenEdge Servers

To achieve this, configure the AppServer or WebSpeed broker so that it does not register with
aNameServer by unchecking the Register with NameServer check box in the Controlling
NameSer ver, as shown Figure 2-3. The Registration Modeisirrelevant for aNo NameServer
configuration. The example shows an AppServer configuration, but WebSpeed isidentical.

Sports2000_AS Properties | X|

= Braker
- General [Reaister With MameS erver

- Dwaner Information

& _ontiolling MameServer

- AppService Mame List Cantralling MameServer: NST ﬂ

- Logging Setting

- Adwanced Features

- Server — Registration Mode
- General
- Logging Setting & Use Broker Host IF Address

- Pool Range
- Adwanced Features
- Environment Wariables

© se Broker LocalHost

 Use Host name:

ok I Cancel Reset Help

Figure 2-3: Configuring No NameServer

When using WebSpeed, the WebSpeed M essenger must point directly to a WebSpeed broker.
To configurethis, usethe cgiip.wsc or wspd_cgi.sh mapping, as described in the “Hiding the
CGIIP executable name from the end user ” section on page 3-8. In this case, change the file
contents so that you do not use the -i wsbrokerl format for referencing the broker, asin the
example, but rather the myhost 3090 format, where myhost is the hostname or |P address for
the WebSpeed broker machine and 3090 isthe port number of the broker. It also meansthat you
cannot use thewService=. .. onthe URL.

OpenEdge Revealed: Achieving Server Control with Fathom Management

If you are using the AppServer, the AppServer client application must use adifferent connection
string. The following example showsthe NameServer option. The NameServer host iszeus and
the port the NameServer islistening on is 5162. The requested serviceis inventory:

hAppSrv:CONNECT ("-AppService inventory -H zeus -S 5162").

The following example shows the No NameServer version. In this case, apollo isthe
AppServer Host and 8911 isthe AppServer broker port.:

hAppSrv:CONNECT ("-DirectConnect -H apollo -S 8911").

Firewall configuration and debugging

2-10

If you are deploying a public WebSpeed application or an AppServer Internet Adapter-enabled
AppServer application, then you should be using firewalls to minimize the risk of network
intrusions, as detailed in the “Firewalls” section on page 3-21.

The following sections explain how to configure afirewall to allow WebSpeed to function and
how to debug a nonworking firewall deployment.

Firewall configuration

Using afirewall opens up more configuration issues because you need to configure the firewall
to allow communications between the OpenEdge server host machines on particular portsusing
TCP or UDP protocols. In the “Request round-trip process’ section on page 2—6, the entire
round-trip request is shown. All of these messages need to go through the firewall. Different
firewall configurations are shown in the “ Examples of simple and complex configurations”
section on page 3-35.

Setup and Configuration of OpenEdge Servers

Figure 2—4 illustrates which ports need to be open and what protocol s the messages use. (If you
are using multiple firewalls, asin Figure 3-12, then the same principles apply.)

D)\Y,74 Intemal
Host: webservl
IPaddr:1.1.1.1 . Host inet ns
Na:gg:rver IPaddr 5.5.5.5
Web NS Port: 5678
Server
4
I
WebSpeed :
Messenger |
WebSpeed
Broker
Host: firel
Host: webspeedl
IPaddr: 4.4.4.4
v Broker Port: 7800
WebSpeed Max 5 Agents: 7801-7805
Agent
Host: fire2
IPaddr: 2.2.2.2 onDMZ
and 3.3.3.3 oninternal
Figure 2—4: Firewall configuration

Note: Thefirewall fire2 hastwo network cards, one for the Demilitarized Zone (DMZ) and
one for the Internal network. Each of these hasits own I P address, as shown.

2-11

OpenEdge Revealed: Achieving Server Control with Fathom Management

2-12

In the following sections the hosts fileismentioned. In UNIX or Linux, thisislocated at
/etc/hosts and in Windows NT and higher at C:\WINDOWS\system32\drivers\etc\hosts.

The WebSpeed Messenger ubroker.properties file must have theminNSClientPort and
maxNSCTientPort settingsmodified in the [WebSpeed .Messengers] configuration, asshownin
Example 2-1. The port range must be big enough to cope with all the potential simultaneous
requests from the Internet. In this case, there are 20 ports available. Y ou can make this range
bigger if needed. Also, you must change the setting for the NameServer to point to the correct
host.

Example 2-1: Configuring ubroker.properties file for firewall

[WebSpeed.Messengers]

minNSClientPort=5680
maxNSClientPort=5699
controllingNameServer=InternetNS

[NameServer.InternetNS]

hostName=inet_ns
location=remote
portNumber=5678

Y ou will need to configure the following:
. Between the Internet and Web server webservi:

— Allow inbound and outbound traffic from the Internet on port 80 (the default for
HTTP) to the Web server. Thisisastandard configuration on most firewalls. If you
areusing HTTP/S (HTTP over SSL), then the default port is 443.

. Between the Web server (Messenger) and NameServer:

— Allow UDP from IP Address 1.1.1.1 to 5.5.5.5 on port 5678. Thisis the inbound
NameServer request traffic.

— Allow UDP from IP Address 5.5.5.5t0 1.1.1.1 on ports 5680 to 5699 inclusive
(assuming the above settings in the ubroker.properties file). Thisisthe
NameServer response traffic.

Setup and Configuration of OpenEdge Servers

. Between the Web server (Messenger) and WebSpeed broker:
— Allow TCPfrom IP Address 1.1.1.1 to 4.4.4.4 on port 7800 for the inbound request.
— Allow TCPfrom IP Address 4.4.4.4to 1.1.1.1 on port 7800 for the outbound reply.
. Between the Web server (Messenger) and WebSpeed agents:

— Allow TCP from IP Address 1.1.1.1 to 4.4.4.4 on ports 7801 to 7805 inclusive for
the inbound request.

— Allow TCPfrom IPAddress4.4.4.4t0 1.1.1.1 on port 7801 to 7805 inclusive for the
outbound reply.

Most firewalls will need to do this by using “port forwarding.” This means that when the
firewall receives arequest from ahost on a certain port in the DMZ, it is passed through to a
particular host on the internal network. When the webservl machine makes a request to the
NameServer, it cannot see IP address 5.5.5.5 directly, and it has to pass the request to the
firewall machine fire2. The firewall then makes the request on the internal network to IP
address 5.5.5.5 on its behalf. When the response comes back from the NameServer to the
firewall, thefirewall will send it onto the Messenger on the DM Z network. Asan analogy, think
of thefirewall asalanguageinterpreter where the WebSpeed M essenger speaks English and the
NameServer speaks German. The Messenger needs to talk to the NameServer but cannot do so
directly, so it forwards the request to the interpreter who, in turn, makes a request to the
NameServer on the Messenger’ s behalf. The response is given to the interpreter by the
NameServer, who then forwards it to the Messenger.

Thisis achieved by setting the hosts file on webservl to have the host inet_ns set t0 2.2.2.2,
as shown below. When the Messenger looks for host inet_ns, it usesthe |P address 2.2.2.2,
which isthe firewall host fire2:

127.0.0.1 localhost
2.2.2.2 inet_ns

Note: Youdonot needto havean entry for fire2 inthehosts fileasthe DMZ machines never
communicate with it by name. They think they are communicating with other machines
on the internal network.

2-13

OpenEdge Revealed: Achieving Server Control with Fathom Management

2-14

Similarly, the Messenger cannot communicate directly to the WebSpeed server host webspeedl
at |P address 4.4.4.4 either. So, another entry needs to be made in the hosts file to make the
Messenger communicate with the firewall instead of the “real” host, as shown:

127.0.0.1 Tocalhost
2.2.2.2 inet_ns webspeedl

Because of this, you cannot use the default setting for the WebSpeed broker’ sregistration mode.
The default isto use the broker host IP Address. If you do this, the NameServer will tell the
Messenger to try to contact the broker on |P address 4.4.4.4, which isnot avalid P address in
the DMZ, and it will appear asif the broker has not responded. Y ou need to set the broker to
register using adefined host name, in this case webspeed1. When the NameServer respondsthis
time, it tells the Messenger to try to connect using the host name webspeedl. The Messenger
asksthe operating system on itshost for the | P address of webspeedl. Sincewe set thist0 2.2.2.2
inthe hosts file, thisisthe address that isreturned, and the Messenger will useit. Thefirewall
will then get the request and pass it through. Figure 2-5 shows this configuration setting.

Sports2000_'WS Properties x|
= Braker
- General [+ Reqister with MameServer

Dwner Infnlmatlnn

.-’-‘«ppSerwce Name L|st Controling NameServer: NS1 ﬂ
- Logging Setting
- Adwanced Features

- Agent — Reqistration Mode
- General
- Logging Setting " Use Broker Host IF Address
- Pool Range

. Advanced Features " Use Broker LocalHost

- Environment Wariables

' Use Host name: webspeed]

Ok I Cancel Rezet Help

Figure 2-5: Setting host name

The NameServer and WebSpeed server hosts do not need the firewall 1P addressin their hosts
file because they only respond to requests and do not make them.

Setup and Configuration of OpenEdge Servers

Debugging firewall configurations

After configuring the firewall, you need to test the configuration to seeif it works. The easiest
way to do thisisto try to run the WebSpeed application from the Internet. This probably means
you need to disconnect the test client PC from the internal network and then dial an Internet
Service Provider (ISP) to then act asa“real” internet client.

First, make sure everything works by entering the URL for the application into your Web
browser. If it works, then you are lucky. Normally, the person configuring the firewall has | eft
out one or two ports, or aubroker.properties setting was left unchanged.

If you are like most people, thetest failed. So, where is the problem? To trace where the issue
lies, seethe " Request round-trip process’ section on page 2—6 to remind yourself what theentire
roundtrip processis and test each stage one at atime. The error shown by the Messenger (if it

worked that far) will lead you to the answer as well.

Y ou might want to use asoftware tool like Ethereal (http://www.ethereal.com), to alow you
to see what packets are traversing the network.

If you are using Microsoft Windows 2000 or later to host the Web server, you might find that
UDP or TCP packets are being sent, but they are being ignored by the Web server machine. This
can be caused by incorrectly setting the IP Packet filter. All ports used for the firewall access
must be allowed in the | P Packet filter.

2-15

http://www.ethereal.com

OpenEdge Revealed: Achieving Server Control with Fathom Management

To accessthe | P Packet Filter settings:
1. IntheWindows Control Panel, select the Networ k Connectionsicon.

2. Right-click on your LAN connection and choose Properties from the pop-up menu. The
L ocal Area Connections Properties dialog box appears:

_L Local Area Connection Properties 7 x|

General | Authentication | Advanced |

Connect uging:

I E& 3Com 3C320 Integrated Fast Ethernet Contraller [3C305C-

Configure... |

Thiz connection uzes the following items:

gl:lient for Microsoft Networks
O B File and Printer Sharing for Microsoft Metwark s
O BQDS Packet Scheduler

o |riternat Pic TCPAR)
Inztall... | [rarstall | F'ererties I
 Dezcription "

Transmizzion Control Protocol/lnternet Pratocal. The default
wide area network, protocal that provides communication
across diverse interconneacted networks.

¥ Show icon in notification area when connected

QK. Cancel

2-16

Setup and Configuration of OpenEdge Servers

3. Select the Properties button. The I nternet Protocol (TCP/IP) Properties dialog box
appears:

Internet Protocol [TCP/IP] Properties

2-17

OpenEdge Revealed: Achieving Server Control with Fathom Management

4. Select the Advanced button. The Advanced TCP/IP Settings dialog box appears:

Advanced TCP/IP Settings

DHCP Enabled

R EMBLE:

R EMBLE:

2-18

Setup and Configuration of OpenEdge Servers

5. Select the Optionstab:

Advanced TCP/IP Settings

TCRAP filtering

6. Highlight TCP/IP Filteringinthelist and then select the Pr operties button. The TCP/IP
Filtering dialog box appears.

2-19

OpenEdge Revealed: Achieving Server Control with Fathom Management

2-20

7. Youcan set thefilter to alow all packets as shown, or you can restrict the ports allowed
by adding them into the appropriate areas:

TCP/IP Filtering 7 x|

™ Enable TCP/IP Filtering (&) adapters)

& Permit Al & Permit Al & Permit Al
" Pemit Only " Pemit Only =" Permit Only
TCP Ports LIDP Ports IP Protocols
el sl sl
Eemoye | Femoye | Femoye |

Ok I Cancel |

If you need to use DNS, then you also need to allow UDP port 53 and TCP port 53. For
the Web server, you need port 80. For HTTP/S, you need port 443.

Web server access

Can your Web browser access the Web server? Put atest HTML filein the Web server’s root

directory to seeif you can accessit with http://webserver/test.htm. If you can, then delete
thetest HTML file and move on. If the file does not appear, check to see if the Web server is

running.

WebSpeed Messenger

Does the WebSpeed Messenger run? If you get a“WebSpeed error from messenger process
(6019)” error message, then the WebSpeed Messenger isrunning. If not, you should enable the
Messenger logging function in ubroker.properties as shown in the excerpt below. The
default logging level is 1, which is Errors Only. This setting should suffice to show the issues:

[WebSpeed.Messengers]

logFile=@{WorkPath}\msgr.log
TogginglLevel=1

Setup and Configuration of OpenEdge Servers

Y ou may have received a Web server internal error. Thisis usually caused by aWeb server
misconfiguration related to the “executability” settings for CGI programs. Check your Web

server documentation to make sure you have configured it to run your WebSpeed Messenger
correctly.

If you use the Messenger Administration tool, you can test the configuration of your WebSpeed
application. Thisis covered in the “Minimizing access to the WebSpeed M essenger
Administration tool” section on page 3-10.

NameServer Access

If the Messenger isworking, the next step isto confirm that the NameServer is being accessed.
Set the NameServer'slogging level to 3 (Verbose) using the Progress Explorer or by editing
ubroker.properties manually. To make this take effect, you will need to stop and restart the
NameServer and wait for the WebSpeed broker to inform the NameServer that itisavailable. If
the NameServer does not know about a service, it cannot direct clientsto it. To check the
NameServer to seeif it knows about the WebSpeed server, use either the Status button in the

Progress Explorer as shown in Figure 2—6 or the code NSMAN -name NS1 -query asshownin
Example 2-2.

) Fle Action View ‘Window Help | =181

- BEBDE2Pr0eHEX

(] onsole Roat Name i |

E"__Eggl;jhiﬁlma There are no items to show in this view.
-0 Databases

-] WebSpeed
; NS1 Stat
--{:I AppServer - atus M=

-] Oracle DataServer P
H 5 Dretailz
-0 SorichE Adapter AT |
-2 AppServer Intemet Ad:
;8 NE;:S[;:'; Sme AppService Mame | (H[H][n] | Mame
[Fhws Sports2000_wS5
D Messengers 527a06... WS .Sports2000_wS
I — b
0k | Rehesh |
4] | ©

| | |
Figure 2-6: Checking NameServer access using the Progress Explorer

2-21

OpenEdge Revealed: Achieving Server Control with Fathom Management

Example 2-2: Checking NameServer access using NSMAN -name NS1 -query

C:\>nsman -name NS1 -query
OpenEdge Release 10.0B as of Tues Apr 27 00:31:00 EDT 2004

Connecting to Progress AdminServer using rmi://Tocalhost:20931/Chimera (8280)
Searching for NS1 (8288)
Connecting to NS1 (8276)

NameServer NS1 running on Host nexus Port 5162 Timeout 30 seconds.
Application Service UUID Name Host
Port Weight Timeout

WS.Sports2000_WS
527a0623fe008210:67d940:f6484c1312:-7d87 WS .Sports2000_WS
nexus/192.168.123.121 3055 0 30

Now, try to accessthe application again. After the error isreturned to the WebSpeed Messenger,
check the NameServer’'slog file. Y ou should see something similar to the following:

Thread-0>(26-Ju1-03 18:42:15:107) Request received from 192.168.123.110 2167
for WS.Sports2000_WS. (8201)

Thread-0>(26-Ju1-03 18:42:15:107) AppService = WS.Sports2000_WS Found = true
Number Of Brokers = 1. (8206)

Thread-0>(26-Ju1-03 18:42:15:107) Response sent to 192.168.123.110

If you do not see the “ Request received” in thelog file, then the firewall islosing the inbound
NameServer request. Otherwise, the outbound requestisbeing lost. After debugging thisstage,
make sure to reset the logging setting.

2-22

Setup and Configuration of OpenEdge Servers

Accessing the WebSpeed broker

Thistime, set the WebSpeed broker’ s logging setting to ver bose and make the request. You
should see something similar to the following at atime just after the NameServer log entry:

L-3055>(26-Jul1-03 18:57:53:816) Received connection:: (8125)
C-0001>(26-Ju1-03 18:57:53:836) Client connected : . (8533)
C-0001>ubWSclientThread.processConnRsp(): ubRsp = 0, getNeedNewConnID() =
false

C-0001>(26-Jul1-03 18:57:53:836) The client C-0001 has disconnected from the
broker. (8084)

C-0001>(26-Ju1-03 18:57:53:836) Client disconnected : . (8534)

If the WebSpeed Messenger error saysit could not contact the broker, but the broker log file
says it was contacted, then the fault is on the return path. If there is no contact logged in the
broker log file, then it didn’t receive the message. Either of these will point to the firewall rule
that was left out or misconfigured.

Accessing the WebSpeed agent

Usethe 4GL Trace function to see if the agent received the request. Configuring thisfeatureis
covered in the “ Using other techniques to debug WebSpeed applications’ section on page 3-32.

General notes on debugging

Think through the request process and see what the error messages say. Thiswill lead to the
issue most of the time.

Check thelog files of the firewall itself. These will show what messages are flowing throughiit.
Y ou will probably haveto filter these because a production firewall will have more than just
your WebSpeed requests going through it.

Always use a new Web browser window for each test request. Thisis due to most browsers
trying to speed up requests caching information. This can also be achieved by using the
“Reload” function of the browser. See your browser document for information on setting your
browser to not use cached copies of pages.

2-23

OpenEdge Revealed: Achieving Server Control with Fathom Management

IP issues

2-24

The following sections cover two common | P issues:
. Domain Name System

. Multi-homed servers (multiple | P address servers)

Domain Name System

The Domain Name System (DNS) is one of the very useful, but often misconfigured, parts of
any IP network. Thejob of the DNSisto resolve host namesinto | P addresses (and occasionally
the reverse). If you misconfigure the DNS, then you will get some odd problems. The most
common isthat the client is taking a very long time to connect to the AppServer. Thisis
probably due to a DNSissue where the DNS lookup is going outside your local LAN and onto
your Internet Service Provider’s DNS servers.

If you are experiencing any problems at connect time, it is very important to check that your
DNSisconfigured correctly. To do this, go to aprompt (either UNIX or a Windows Command
prompt) and enter nslookup servername. Thetimeit takesto respond isthe DNS lookup time.
It should be nearly instantaneous. If you are using ahosts file entry to “fix” this problem, then
you really should fix the DNS problem and remove the entry in the hosts file.

Multi-homed servers (multiple IP address servers)
If you have aserver that has more than one network card iniit, it is probably going to have more

than one | P address. Y ou could have problems connecting to the AdminServer and other
OpenEdge serversin thisinstance. An example of amulti-homed server isshown in Figure 2—7.

Setup and Configuration of OpenEdge Servers

Subnet 10.x.x.x

0O O
o T

A
O O 2
Ve — N = N |
Network #2] | —
| g m
Subnet 192.168.x.x
Figure 2—-7: Multi-homed server

The clients on the 10.x.x.x subnet will not be able to access services on the host unlessthey use
the correct |P address 10.1.1.1. Likewise, the 192.168.x.x subnet must use 192.168.123.1. To
make all these clients connect to a single AppServer on the host, set up the hosts file on the
machinesin the 10.x.x.x subnet to read as follows:

127.0.0.1 localhost
10.1.1.1 hydra

And, on the 192.168.x.x subnet to read as follows:

127.0.0.1 localhost
192.168.123.1 hydra

2-25

OpenEdge Revealed: Achieving Server Control with Fathom Management

All AppServer and WebSpeed instances running on hydra must have their Register with
NameServer settings changed so that they do not register with an |P address, but instead with

a host name, as shown in Figure 2-8.

Hydra_AS Properties Ed

= Broker
- General [+ Register With MameServer

- Owarer Information

& Contralling Marne!

- hppService Marme List

- Logaing Setting

- Advanced Features

= Server

- Eeneral

- Logaing Setting

- Pool Range

- Advanced Features

- Erwvironment W ariables

Controling NameS erver: N51 j

— Regiztration Mode

= Use Broker Host [P Address

 Usze Broker LocalHost

& Usze Host name: hydra

Ok I Cancel | Rezet Help

Figure 2-8: Register with NameServer setting

Thisenablesthe NameServer to tell the clients, regardless of what subnet they are on, to connect
to the machine called hydra. It isthen up to the client machine to decide what the appropriate

IP addressis.

2-26

Configuration of WebSpeed Servers

This chapter discusses how to configure WebSpeed servers. It also covers some general
configuration tasks that also apply to the AppServer. The following topics are discussed:

WebSpeed Messenger installation

General WebSpeed server configuration
WebSpeed security

Error handling and debugging

Using the AppServer to access the business logic

Examples of simple and complex configurations

OpenEdge Revealed: Achieving Server Control with Fathom Management

WebSpeed Messenger installation

3-2

Y ou should always have a separate Web server and WebSpeed server when you are deploying
an Internet-based WebSpeed application because of security reasons, as covered in the
“WebSpeed security” section on page 3-4.

Y ou need to install just the WebSpeed M essenger on the Web server. To do this, you will need
to download the appropriate WebSpeed Messenger installation software, serial number, and
control codes from the Progress Software Electronic Download Center. Thisislocated at
http://www.progress.com/esd. You need avalid Progress Software product serial humber
and control codes to download software from this site. Y ou can also download Progress
Software Service packs from this site.

Note: The version of the WebSpeed Messenger must exactly match the version of the
WebSpeed server you want to use.

If your WebSpeed server is the same platform as your Web server, use the OpenEdge
Installation CD to install the WebSpeed Messenger. Y ou will need avalid serial number and
control codesto install the WebSpeed Messenger from the CD.

After you haveinstalled the Messenger, you must configuretheubroker. properties fileinthe
OpenEdge-install/properties directory. If thisfile does not exist, thereis a samplefile
called msngrs.properties. Copy thisfileto ubroker.properties.

http://www.progress.com/esd

Configuration of WebSpeed Servers

General WebSpeed server configuration

When you are configuring aWebSpeed server, it isgood practice to keep the port range for the
agents to the smallest possible range. If you are configuring a WebSpeed server to have up to
five agents, then the port range for the agents should be five.

Figure 3—1 shows an example of a WebSpeed server configuration with only five agents. Note
the values of the Minimum and M aximum port numbers. If you set this port range too small
or if another process uses aport in thisrange, the WebSpeed broker triesto launch a WebSpeed
agent, the agent tries to use one of the currently in-use ports, and fails to start.

Sports2000_'WS Properties x|

[l Braker Agent executable file:
- General . I"@{Slarlup\DLE}\bin'\ivalarl.exe" -0 eventmgr -p newConsole "E{Startupt,
- Owarer Information
- Cantraling MameServer | Agent startup parameters:
- hppService Marme List |-|:| web'objectz\web-disp.p -weblogerror
- Logaing Setting
- Advanced Features FROPATH:

- Agent I Browsze |
W Minimum port number:
- Logging Setting |5321—
- Pool Range
. iidvanced Features M axirurn part nurmber:

- Environment Wariables |5325

Agent application mode
’7 ' Development & Production

Ok I Cancel | Rezet Help

Figure 3-1: WebSpeed configuration with five agents

Configuring logging

There are three different logging settings for the WebSpeed broker: Error Only, Terse, and
Verbose. The default is Ter se, which provides enough information to be practical. Y ou should
leave the setting at Ter se, unless you need to debug access to this WebSpeed server. Later in
this manual, when we discuss how to configure a firewall-enabled deployment, Verbose
logging is used.

3-3

OpenEdge Revealed: Achieving Server Control with Fathom Management

The WebSpeed agent has four settings for logging: Error Only, Terse, Verbose, and a
“hidden” level of 4GL Trace. 4GL Trace can only be set by using atext editor and modifying
theubroker.properties file, asdiscussed in the “Using other techniquesto debug WebSpeed
applications’ section on page 3-32.

Managing log file size

Thelog files for the broker and agents can become quite large, especially during debugging
sessions. You can view the log files using the Fathom Management console and use Fathom's
File Monitoring feature to alert you if these files get too big.

To keep the log files to a manageable size, there are two options:

. Overwrite the log file every time the WebSpeed server is started. To do this, you deselect
the Append to ... log file check box on the Broker and Agent L ogging Setting tab.

. Shut down the WebSpeed server, archivethe current log file by moving it somewhere safe,
and then restart the WebSpeed server. Thisis the recommended option because you can
lose valuable historic information from thelog fileif it is overwritten each time the server
starts. If you periodically shut down the WebSpeed server for maintenance, thisisthe
opportune time to do the archiving. Furthermore, you can use the Fathom Job features to
automate the process of archiving log files.

WebSpeed security

When using WebSpeed to allow access to your enterprise database over the Internet, the issues
that should be foremost in your deployment plan are security, closely followed by performance.
Providing access to your corporate data for “unknown” users without providing adequate
security is akin to leaving the computer room door unlocked and displaying asign saying
“Please Steal Me” on the door.

Many people think that using afirewall alone will provide adequate security. However, using
afirewall isjust the first small step in providing secure access to your data.

Tofully secure your deployment, you al so need to secureyour network traffic, your Web server,
your WebSpeed server, and lastly, your application. Each of thesetopicsis covered in detail in
the following sections.

Configuration of WebSpeed Servers

Securing your network traffic

When accessing a Web site, the content of the Web page that is returned is sent across the
network in plaintext. If you have anetwork sniffer, either ahardware device or software tools
like Ethereal (http://www.ethereal.com), you can capture all the network traffic that passes
your device.

If your Web siteis on the Internet, atechnician sitting in your Internet Service Provider’'s site
can see the data passing between your Web server and whoever isaccessing it. If your Web site
isan Intranet, then anyone on the same physical network, in other words, most employees, can
see the data.

If the datais private or confidential, then you should secureit from prying eyes. On an Internet
site, confidential information might be credit card details or customer information; on an
Intranet site, it might be salary details or bank account information if you are using aWeb-based
HR/Payroll application.

Securing thistraffic isfairly easy; you need to enable HTTP/S or Secure Socket Layer (SSL)
for HTTP on your Web server. HTTP/S encrypts the data flowing between your Web server
and the client process (normally a Web browser) using Public Key Cryptography. Y ou will
need a Digital Certificate to allow this encryption to take place.

Y ou can purchase SSL certificates for a public Web site from Verisign
(http://www.verisign.com), Thawte (http://www.thawte.com), GeoTrust
(http://www.geotrust.com), and others. These sitesal so have documentation explaining SSL
and the process for purchasing, installing, and configuring SSL on many popular Web servers.

Y ou should purchase the highest level of encryption possible for your locality. Most countries
now allow 128-bit SSL, while some are still limited to 40-bit. The Digital Certificate provider
will let you know the highest level that you can purchase.

If you are hosting a private Web site or an Intranet, then you can generate your own certificates.
This has the benefit of being free, but the users of your site will have to accept their Web
browser’ s warning that the certificate from your siteis not trusted. To generate your own
certificates, see your Web server’ s documentation.

3-5

http://www.ethereal.com
http://www.verisign.com
http://www.thawte.com
http://www.geotrust.com

OpenEdge Revealed: Achieving Server Control with Fathom Management

3-6

After you have enabled SSL, you can use https instead of http asthe URL protocol for your
Web site, and then the data will be encrypted. For example, if your Web site address was:

http://www.mysite.com

Y ou can now Uuse:

https://www.mysite.com

Securing your Web server

Since your Web server isthe first computer that users access, it is also the first machine you
should start securing. From asecurity point of view, there is much discussion regarding which
platform is better to run a Web server on, either Windows or UNIX/Linux. Theredlity isthat
both platforms have bugs that need to be patched. Do not get a false sense of security by using
one platform over the other. Do not run an “ out-of-the-box” version of either platform. Also,
make sure that any operating system and application patches applicable to your Web server are
applied as soon as they become available.

For a publicly accessible Web site, you should minimize the other services running on this
machine. This provides better security, as the fewer things running on this machine, the fewer
things can go wrong or be compromised.

Y ou should also read all the Web server’s documentation that deals with security. Most Web
servers ship with most security settings disabled. Y ou should go through all the settingsand turn
off any Web server features that you do not need.

Configuration of WebSpeed Servers

Hiding your Web server type and version

Itisgood practiceto hide the “brand” and version of your Web server processto makeit harder
for “script-kiddies’ to find out which Web server you are using.

To see how your Web server responds, use a Telnet session to access the port that the Web
server islistening to. The default port is 80. The following procedure shows the commands to
type. Replace the hostname with your Web server’ s name. Y ou might find that when you type
GET / HTTP/1.0 it might not be echoed back to you:

To check your Web server response:

1. Typetelnet hostname 80 and pressENTER.

2. TypeGET / HTTP/1.0 and pressENTER twice.

Note: Besureto type aspace preceding and following thefirst / intheGET / HTTP/1.0
command.

The following is echoed back to you:

HTTP/1.1 200 OK

Server: Microsoft-IIS/5.1

Date: Fri, 11 Jul 2003 16:59:53 GMT
Content-Type: text/html

. HTML text of the default page . . .

In the previous example, you can easily see that the Web server is Microsoft’s Internet
Information Server (11S) Version 5.1.

If you can modify the HTTP headers, make the Server setting return a generic name, like
WebServer. Consult your Web server’ s documentation to seeif it is possible and how to modify
the HTTP headers.

37

OpenEdge Revealed: Achieving Server Control with Fathom Management

3-8

Changing your script directory names

Y ou should not use the standard script directory names. If you have an Apache server, do not
use cgi-bin. If you are using Microsoft’s I1S, do not use Scripts. See your Web server
documentation for instructions on how to create a different script directory.

Most Web servers also ship with default home pages, as well as demonstration scripts. These
generally should be disabled or deleted.

Hiding the CGIIP executable name from the end user

Hiding the WebSpeed Messenger name from the end user also provides alevel of security.
When you access a WebSpeed application, the URL used will look similar to the following if
you are using Windows as the Web server:

http://www.mysite.com/scripts/cgiip.exe/WService=0rders/main.r

If you are using UNIX, then it will look similar to the following:

http://www.mysite.com/cgi-bin/wspd_cgi.sh/WService=0rders/main.r

Using the default names is bad security practice because it |ets people know what application
server you are using, in this case WebSpeed. For example, if you perform a Google search for
wspd_cgi.sh or cgiip.exe, you will find many sites using WebSpeed. Some of these are not
securely deployed.

Microsoft IS

If you are using Microsoft 11S, then Progress Software has shipped an example file explaining
how you can hide the Messenger’ sname. It iscalled cgiip.wsc and by default islocated in the
C:\InetPub\Scripts directory. It is recommended that you rename the file to something that
ismeaningful only toyou, for example, orders.inet. Theextension (.inet) must be an unused
extension on your machine. Y ou should also delete the cgiip.exe and wsisa.d11 Messenger
filesinthe Scripts directory.

Configuration of WebSpeed Servers

If you open the orders.inet fileusing atext editor, you will see instructions on how to
configure IS to run this script when it is part of the URL.

Note: If youareusing 1S 4.x or 5.x, you might find that the Configuration button mentioned
intheinstructionsisdisabled. To enablethe Configuration button, click onthe Create
button just aboveit.

Use the extension you have chosen (for example, .1inet) instead of the .wsc extension
mentioned in the instructions.

At the end of the newly created orders.inet file, change the WebSpeed service name from
wsbrokerl. For the example above, use Orders.

All lines beginning with # are comments. The only required line is the one that references the
service name or host and port of the WebSpeed broker.

Assuming that you have changed the Scripts directory to be web, the URL would become:

http://www.mysite.com/web/orders.inet/main.r

If you have more than one WebSpeed service, then you will need a .inet file for each service.

UNIX

There are many different Web serversavailable for the UNIX platform. To find out which Web
servers Progress Software has tested and certified, search the Knowledge Center. You can
access the Progress Knowledge Center at the following URL.:
http://www.progress.com/support/kb

Each of these has different configuration instructions. Y ou should read the documentation
supplied by the Web server vendor to determine how to enable CGI applications. Rename the
Progress-supplied wspd_cgi . sh to something that is meaningful only to you and change the
WebSpeed service namefromwsbroker1. If you have changed the cgi -bin directory toweb and
alowed. inet scriptsto be run as CGI programs, then the URL you would use is:

http://www.mysite.com/web/orders.inet/main.r

3-9

http://www.progress.com/support/kb

OpenEdge Revealed: Achieving Server Control with Fathom Management

3-10

Minimizing access to the WebSpeed Messenger Administration tool

If the Messenger Administration tool is enabled, users can see your configuration information.
This information can then be used to compromise your application.

To disable thisfeature, you can do one of two things: either disable the feature totally or allow
only “trusted” IP addresses to access the Messenger Administration tool.

To totally disable the feature, edit the ubroker. properties file on the Web server and make
surethat the A1TowMsngrCmds isset to 0 (zero) inthe [WebSpeed.Messengers] section and that
it isnot overridden in any of the [WebSpeed.Messengers.CGIIP],
[WebSpeed.Messengers.WSASP], [WebSpeed.Messengers.WSISA], Or
[WebSpeed.Messengers.WSNSA] sections.

To adlow alist of IP addresses to access the Messenger Administration tool, edit the
ubroker.properties file on the Web server and set the A11owMsngrCmds to 1 (one) and the
wsmAdmIPL1ist to acomma-separated list of |P addresses that are permitted to access the
Messenger Administration tool. This needs to be done in the appropriate Messenger section:
[WebSpeed.Messengers.CGIIP], [WebSpeed.Messengers.WSASP],
[WebSpeed.Messengers.WSISA], Or [WebSpeed.Messengers.WSNSA].

If the Messenger Administration tool is enabled, you can change the default WebSpeed
Messenger Error Messages, as described in the “Error handling” section on page 3-24.

Y ou can aso verify your WebSpeed configuration. Use the following URL s to see the
Messenger Administration tool:

http://www.mysite.com/scripts/cgiip.exe?WSMAdmin

or

http://www.mysite.com/cgi-bin/wspd_cgi.sh?WSMAdmin

Configuration of WebSpeed Servers

Securing your WebSpeed server machine

Having secured your Web server machine, it istimeto move one machine closer to the database.
Y ou now need to secure your WebSpeed server. Thismachine has, at least, an AdminServer and
aWebSpeed server running on it. When you installed OpenEdge on this machine, you should
have also enabled the AdminServer security mentioned in the “General OpenEdge server
configuration tasks” section on page 2—2. Y ou should make sure that all the vendor’ s security
patches for this operating system have been applied, and check to see that the latest Progress
Service Pack has also been installed. Asyou did with the Web server, you should aso minimize
other services running on this machine. This provides better security, as the fewer things
running on this machine, the fewer things can go wrong.

The WebSpeed broker’ s configuration should al so specify an owner. Thisallowsthe WebSpeed
broker and agents to be started with the specified user’ s rights, not the root or system
administrator’ srights. See the “Broker ownership” section on page 2—4 for details.

Y ou should always have a separate WebSpeed server for development/testing and production.
These should a so use different Web server machines and be assigned to different NameServers.
If you do this, then the chance of outside access to the devel opment machine is greatly reduced.

Figure 3—2 shows a deployment model that uses separate machines for the Internet production,
intranet production, and the devel opment/test servers. The databases are all installed on the
same machine as the WebSpeed servers. Thisis the preferred route if your machine has the
capacity to host both, asit will provide the best performance.

3-11

OpenEdge Revealed: Achieving Server Control with Fathom Management

Internet/Untrusted Zone

C-e

Demilitarized Zone
ove)

Intemet
Web Server

Intranet/Trusted Zone
Internet
Intemet Pr:chon
NameServer rver
Intemet -
WebSpeed |« » Intemet
Server Database
Intranet
Intranet Intranet Production
NameServer Web Server Server
A \ Users
Intranet D D
WebSpeed Intranet P e
Server [€—| Database A
Development
DeviTest €—P» Test
Name WDEVQ:St Server
Server e rver
A Developers &
Testers
Dev/Test
WebSpeed Dev/Test
Server <P Database

Figure 3-2:

3-12

Deployment model with separate machines for the Internet Production, Intranet
Production, and the Development/Test servers

Configuration of WebSpeed Servers

Figure 3—3 shows a deployment model that uses two NameServers and puts all the production
databases on one machine. Thisis useful because the Intranet and Internet applications might
be using the same databases, and it lets you split the number of agents between Internet and

Intranet access, saving license fees.

!
————
<

Internet/Untrusted Zone

Demilitarized Zone
(4]

Intemet
Web Server

e

Intranet/Trusted Zone
- Production
> N Intemet Intemet Server
ameServer Database
Intemet Intranet
g WebSpeed WebSpeed Intranet
Server Server Database
Users
Intranet Server @
Intranet Intranet —
NameServer Web Server
Developers &
Testers
’ \
)
Development /Test Server
\ 4
Dev/Test 4>
WebSpeed Dev/Test
Server €| Database

Figure 3-3:

Deployment with two NameServers

3-13

OpenEdge Revealed: Achieving Server Control with Fathom Management

3-14

All accessfrom the Internet goesthrough the Internet NameServer, and al Intranet access (both
production and devel opment/test) goes through the Intranet NameServer. This means that the
Internet NameServer only knows about the Internet applications and cannot hand requeststo the
Intranet production or devel opment/test WebSpeed servers.

Using an AppServer to run your business logic allows you to place another level of indirection
between your application and the database. This enhances the security of the application, asthe
WebSpeed server does not directly connect to the database; it accesses the data through the
AppServer. See the “Using the AppServer to access the business logic” section on page 3-34
for information on how this can be achieved.

Securing your WebSpeed application

The application itself is probably the easiest place to make sure that it is secure. Y ou should
follow these rules to make sure that your application is as secure as possible.

Using DBAUTHKEY to lock your r-code to the database
An under-used feature of OpenEdge is the DBAUTHKEY (and RCODEKEY) features of PROUTIL.

With DBAUTHKEY, you assign a key to the database and then any code compiled against that
database will have the key in it. When it comes time to run the code, if the key in the database
does not match the key in the r-code, you will get an error similar to the following:

*% CRC for table does not match CRC in program. Try recompiling. (1896)

If you already have r-code deployed, use the RCODEKEY function of PROUTIL to tag the existing
r-code without the need to recompile.

See OpenEdge Data Management: Database Administration for moreinformation on using the
DBAUTHKEY and RCODEKEY features of PROUTIL.

Configuration of WebSpeed Servers

Use the agent’s production setting

For production environments, either Internet or Intranet, you should set the agent application
modeto Production. Y ou set this option in the Properties dialog box, as shown in Figure 3-4.
After setting this, you should stop and start the WebSpeed service to activate the change.

Sports2000_W5 Properties
[l Braker Agent executable file:
- General . I"@{Slarlup\DLE}\bin'\ivalarl.exe" -0 eventmgr -p newConsole "E{Startupt,
- Owarer Information
- Cantraling MameServer | Agent startup parameters:
- hppService Marme List |-|:| web'objectz\web-disp.p -weblogerror
- Logaing Setting
- Advanced Features FROPATH:

El- Agent I Browse

| # _ Mirirnurn part number:
- Logaing Setting £
- Pool Range -
. ddvanced Features Maximum port number;

- Erwvironment W ariables |5325

".t’-‘-.gent application mode

' Development £+ Production

ok I Cancel | Reset | Help

Figure 3—-4: Setting Production mode for WebSpeed agents

Modifying web-disp.p

By default, the agentsrunweb/objects/web-disp.p astheir startup program. Each request that
isissued to an agent runs through this code. Thisis the best place to control what happensto
each request.

Modify web-disp.p to:

. Make sure that certain r-code can only be run by certain users.
. Turn off the PING or DEBUG facilities.

. Connect to a database every time arequest comes through.

. Check for a user timing out.

3-15

OpenEdge Revealed: Achieving Server Control with Fathom Management

3-16

Because each request must go through this code, any changes made to web-disp.p are system
wide.

If you want to change this code, you should move it into your application’s source tree and
renameit. Thisway, when Progress Software ships anewer version of web-disp.p inaservice
pack, your changes will not be overwritten. Y ou should also compare your code with the new
code shipped in the service pack to make sure you aso incorporate any bug fixes or
enhancements.

Example 3-1 shows a simplified version of the default WebSpeed 3.1D (Progress 9.1D)
web-disp.p.

Configuration of WebSpeed Servers

Example 3-1: Default web-disp.p

/* Set the web-request trigger. */
ON "WEB-NOTIFY":U ANYWHERE DO:
OUTPUT {&WEBSTREAM} TO "WEB":U.

/* Parse the request/CGI from the web server. */
RUN init-cgi IN web-utilities-hdl.

/* Initialize for web-request. */
RUN init-request IN web-utilities-hdl.

AppProgram = (IF AppProgram
(IF AppProgram
(IF AppProgram
AppProgram))).

"debug":U THEN "webutil/debug.p":U ELSE
"ping":U THEN "webutil/ping.p":U ELSE
"reset":U THEN "webutil/reset.p":U ELSE

RUN run-web-object IN web-utilities-hd1l (AppProgram) NO-ERROR.

/* Run clean up and maintenance code */
RUN end-request IN web-utilities-hdl NO-ERROR.

/* Output any pending messages queued up by queue-message() */
IF available-messages(?) THEN
output-messages("all", ?, "Messages:").

OUTPUT {&WEBSTREAM} CLOSE.
END. /* ON "WEB-NOTIFY" */

/* Wait for a web-request to come in */

WAIT-FOR-BLOCK:

REPEAT ON ERROR UNDO WAIT-FOR-BLOCK, LEAVE WAIT-FOR-BLOCK
ON QUIT UNDO WAIT-FOR-BLOCK, LEAVE WAIT-FOR-BLOCK
ON STOP UNDO WAIT-FOR-BLOCK, NEXT WAIT-FOR-BLOCK:

WAIT-FOR "WEB-NOTIFY":U OF DEFAULT-WINDOW.
END. /* WAIT-FOR-BLOCK: REPEAT... */

Note: Example 3—-1 codewill not run. Much of the code has been removed. The purpose of this
example isto show program flow.

Example 3-2 shows asimplified, secureweb-disp.p. Again, this code will not run; you would
need to insert the bold text into the original web-disp.p replacing the “AppProgram = ...”
code.

This code stops PING, DEBUG, and RESET, changes the extension of any requested program into
r-code, checks that the r-code file exists, and verifiesif thisr-code isvalid for this user by

3-17

OpenEdge Revealed: Achieving Server Control with Fathom Management

3-18

looking up a database table called UserPrograms. Y ou will need to create atable called
UserPrograms containing (at least) both thesefields. Also UserID isavariable that you must
instantiate.

Y ou would usually use a cookie, hidden fields, or URL parameters to hold the user’sID. This
should be encrypted in asuitable manner. Seethe“ Parameter passing” section on page 3-20 for
an example of encrypting this|D.

Example 3-2: Secure web-disp.p (1of2)

/* Set the web-request trigger. */

ON "WEB-NOTIFY":U ANYWHERE DO:
DEFINE VARIABLE vLocn AS INTEGER NO-UNDO.
OUTPUT {&WEBSTREAM} TO "WEB":U.

/* Parse the request/CGI from the web server. */
RUN 1init-cgi IN web-utilities-hdl.

/* Initialize for web-request. */
RUN init-request IN web-utilities-hdl.

/* Remove current extension */

vLocn = R-INDEX (AppProgram, ".").
IF vilocn > 0
THEN

AppProgram = SUBSTR (AppProgram, 1, vlocn - 1).

/% Add a .R */
AppProgram = AppProgram + ".r".

/* Can this User run this program OR does it exist? */

IF NOT CAN-FIND (UserPrograms WHERE UserPrograms.UserID = UserID
AND UserPrograms.Program = AppProgram)
OR
SEARCH (AppProgram) = ?
THEN

AppProgram = "NotValidProgram.r".

Configuration of WebSpeed Servers

Example 3-2: Secure web-disp.p (2 0f 2)

RUN run-web-object IN web-utilities-hd1l (AppProgram) NO-ERROR.

/* Run clean up and maintenance code */
RUN end-request IN web-utilities-hdl NO-ERROR.

/* Output any pending messages queued up by queue-message() */
IF available-messages(?) THEN
output-messages("all", ?, "Messages:").

OUTPUT {&WEBSTREAM} CLOSE.
END. /* ON "WEB-NOTIFY" */

After you have created your new-web-disp.p, you need to change the agent parameters to
reference it, as shown in Figure 3-5.

Sportz2000_W5 Properties X

[l Braker Agent executable file:

general . I"@{Slarlup\DLE}\bin'\ivalarl.exe" -0 eventmgr -p newConsole "@{Startuphl
- Owarer Information

- Cantraling MameServer | Agent startup parameters:

- hppService Marme List |-|:| syshnew-web-disp.p -weblogernar

- Logaing Setting

- Advanced Features FROPATH:

= Agent I Browze |

Gene_ral _ Mirirnurn part number:
- Logaing Setting £
- Pool Range -
. ddvanced Features Maximum port number;

- Erwvironment W ariables |5325

Agent application mode
’7 ' Development £+ Production

ok I Cancel | Reset | Help |

Figure 3-5: Changing agent parameters to reference web-disp.p

3-19

OpenEdge Revealed: Achieving Server Control with Fathom Management

3-20

Minimize the PROPATH

It is essential that the PROPATH is kept to a minimum, both for performance and security. The
OpenEdge-install/tty directory and all the r-code libraries (*.PL) in the
OpenEdge-install/tty directory are added to the end of your PROPATH setting by default. This
means that there are many programsin your PROPATH that you didn’t write and anyone can run
these programs by adding them to the end of your URL.

To avoid this, simply rename the OpenEdge-install/tty directory to
OpenEdge-install/tty_save. Then, copy all ther-codefilesyou useto anew directory called
tty in your deployment area and add this to the end of your PROPATH. Remember that some of
ther-code filesWebSpeed might useareinthe . PL files, and you will need to extract them using
the PROLIB utility documented in OpenEdge Deployment: Managing 4GL Applications.

Parameter passing

If you want to pass parameters between Web requests, you can use hidden fieldson forms, URL
parameters, cookies, or a combination of each technique. Each technique has pros and cons.
Hidden fields only work on forms, URL parameters are visible to the end user, and cookies are
not allowed by some users.

The simplest way to pass many parameters between Web requests is to use the database. You
pass a unique identifier for each user or session between requests, and use thisas akey into a
“state” table held in the database. This technique requires that only a small token be passed
between requests, as the mgjority of the datais safe and secure in the database.

Do not pass the unique identifier in plain text. Doing so makesit very easy for an end user to
changethevalue (evenin hidden fields or cookies) and become someone el se. Use code, similar
tothe code shown in Example 3-3, to prevent people from changing the uniqueidentifier, unless
they know the hidden words, in this case “Web” and “ Speed.”

Configuration of WebSpeed Servers

Example 3-3: Passing unique identifiers

/*
** This code assumes that the Unique ID will not contain
** any colons (:).

*/

DEFINE VARIABLE vToken AS CHAR NO-UNDO.
DEFINE VARIABLE vUniqueID AS CHAR NO-UNDO.

/* WebEncode function */
FUNCTION WebEncode RETURNS CHAR (pUniqueID AS CHAR):

RETURN pUniqueID + ":" + ENCODE ("Web" + pUniqueID + "Speed").
END.

---- Use this to encode the Unique ID, then pass as parameter ----

/* Encode Unique ID */
vToken = WebEncode (vUniquelD).

---- Use this to decode the token passed as a parameter ----

/* Decode and check Token */

vUniqueID = ENTRY (1, vToken, ":").
IF vToken = WebEncode (vUniqueID)
THEN

/* vToken has not been modified */
ELSE

/* ERROR - vToken has been modified */

Firewalls

A firewall isthe first line of defense for basic network security. It isusualy a separate device
that sits between the untrusted network (the Internet) and the trusted network (the Intranet). The
role of afirewall isto stop unauthorized access of information in the trusted network by
individualson the untrusted network, but allow defined accessfrom the trusted to the untrusted.
An analogy for afirewall isamoat around a castle with the drawbridge being the firewall
device. Thedrawbridge is controlled by guards who only allow certain traffic in, usually after
inspecting it, and will allow outbound traffic if it has permission.

Thereisusualy athird network called the DMZ or Demilitarized Zone. Thisnetwork isseparate
from both the others, but it can communicate with both. Thisis a semi-trusted areathat is
protected by the firewall, so only certain traffic can comein. Any traffic coming from the DMZ
into the trusted network has strict rules placed upon it, so errant requests are denied. There are
three physical network ports on a DMZ-enabled firewall, one for each of the networks.

3-21

OpenEdge Revealed: Achieving Server Control with Fathom Management

3-22

Figure 3-6 shows afirewall withaDMZ. Thisisthe usual configuration for afirewall.

- mamim
o LU T

=S ==
)
0 O
= = -
- | | Ul -||||
000 =i

Configuration of WebSpeed Servers

Figure 3—7 shows amore secure firewall configuration. The reason for having two firewall
devices from different manufacturersistwo-fold. First, having only one device means that any
bugs or security holesin the firewall software could allow direct connection between the
untrusted and trusted networks. Second, using different manufacturers’ hardware/software
combinations stops hackers from using the same exploit or security hole on both devices.

O O

==
|
&)

|
00O

| — 1
C by C by C hY

Figure 3-7: Secure firewall configuration

3-23

OpenEdge Revealed: Achieving Server Control with Fathom Management

Firewalls can beimplemented in either hardware or software. A hardwarefirewall isamachine
that has a proprietary operating system and software for providing the service. Any patches
provided by the firewall supplier should be applied as soon as possible to minimize the risk of
attack.

A software firewall is a program that is|oaded onto a general purpose computer, usualy a PC,
to provide the service. To be effective, software firewalls rely on the underlying operating
system to be secure, so you should make sure that all the operating system manufacturer’s
patches are applied along with any updates to the firewall software. Y ou should avoid running
anything else on a software firewall’ s host machine. Some software firewalls do not use an
underlying general purpose operating system; they use standard hardware, but load their own
proprietary operating system along with the firewall software.

Error handling and debugging

3-24

When you are running a WebSpeed application in production, you should make sure that at no
time does the user see any OpenEdge error messages, either from the WebSpeed M essenger or
from your code. Y ou must code your application in a manner that is very robust and will cope
with varying input parameters. It isvery easy to write code with WebSpeed, but it isabit harder
to write reliable, robust code.

Error handling
To make the WebSpeed Messenger return more “attractive” error messages, use the WSMAdmin

option on the URL to configure the Messenger to redirect the user to a static HTML page for
certain errors. At a minimum you should redirect the errors shown in Table 3—1.

Table 3-1: Redirecting WebSpeed error messages (1of2)
Message Meaning

Connection failure for host The messenger could not connect to the
hostname port portnumber transport specified NameServer.
UDP. (9407)
NameServer at Host hostname Port The messenger could not connect to the
portnumber is not responsive. specified NameServer.
(8239)

Configuration of WebSpeed Servers

Table 3-1:

Redirecting WebSpeed error messages

(2 0f 2)

Message

Meaning

Msngr: the specified service name
does not exist or has a bad format.
(5825)

The NameServer could not find the specified
service.

Msngr: Disconnecting - all agents
are currently busy, please try
again later. (5832)

TheMessenger could not be allocated an agent
to run the request.

Msngr: Disconnecting with no header
on WTA output web stream. (5814)

The agent has died somehow. Usually caused
by shutting the database down and not
stopping the WebSpeed server.

WebSpeed Agent Error: Agent did not
return an HTML page. (6383)

Y our application failed somewhere before it
even started to output theHTML. Thiscan be
due to records not being available before
accessing them, arun-time error caused by a
parameter mismatch, or arun-time error
caused by afailing INT conversion.

To access the Error Customization Utility, use a URL similar to one of the following:

http://www.mysite.com/scripts/cgiip.exe?WSMAdmin

or:

http://www.mysite.com/cgi-bin/wspd_cgi.sh?WSMAdmin

The Error Customization Utility is documented in OpenEdge Application Server: Developing

WebSpeed Applications.

3-25

OpenEdge Revealed: Achieving Server Control with Fathom Management

3-26

Writing robust code

In your application you should always verify that the parameters passed are sensible. Thisis
because the parameters passed on the URL, using hidden fields or cookies, can be modified by
the user. For example, if you are expecting an integer parameter such as a page number, then
the parameter might be passed on the URL like this:

http://www.mysite.com/web/orders.inet/show_results.r?page=3

If the user modifies the URL to have xyz instead of 3 as the page number parameter, your
application might crash. To avoid this, you can use a section of code similar to the codein
Example 3—4. Y ou might also want to verify that the page number iswithin limits using the MIN
and MAX functions.

Example 3-4: Robust code for passing parameters

DEFINE VARIABLE vPage AS INTEGER NO-UNDO.
ASSIGN vPage = INT (get-field ("page")) NO-ERROR.

IF ERROR-STATUS:ERROR /* Did the INT fail? */

THEN
/* Sensible Default */
vPage = 1.

ELSE

/* Limit vPage to between 1 and vMaxPageNum */
ASSIGN vPage = MIN (vPage, vMaxPageNum)
vPage = MAX (1, vPage).

When writing WebSpeed applications, you should also make sure you check that records are
available before accessing them, just as you do when using GUI, character, or batch
programming.

Configuration of WebSpeed Servers

Debugging the application

There are two main ways to debug an application: the first involves accessing the source code

for the application and the second does not.

Using the OpenEdge Application Debugger to debug WebSpeed applications

Tousethe OpenEdge™ Application Debugger with aWindows version of WebSpeed, you need

to be using the machine where WebSpeed is installed.

If you add the following lines into a WebSpeed application, the Debugger window will appear

when these lines are executed:

DEBUGGER: INITIATE Q).
DEBUGGER:SET-BREAK ().

Figure 3-8 shows the Debugger working in a CGl Wrapper program.

File Edit Search Yiew Debug Djagnostics Data Window Help

=

8

Plg|= @8

=

M W] N L) B

DEFINE VARIAELE hidppirv 43 HANDLE NO-TUNDO. P C:\TMP\p5246]1_main.ped|

CREATE SERVER happSrv.
happSrv: CONNECT ("-App3ervice SportszZ000_457).

RUN foo.p ON happ3rv (l5) NO-EEROR.

hippSrv: DISCONNECT () NO-ERROR.
DELETE OEJECT hippSrv NO-ERROR.

)

| Type Marne

Walue

[WIDGET-HANDLE

Yariahles | Eluffersl Parametersl Temp Tablesl

Figure 3-8:

OpenEdge Application Debugger working in a CGl wrapper program

The Debugger will work with any WebSpeed development environment. If you use Embedded

SpeedScript and you want to see source code in the Debugger, you need to compile the

application in WebTools, as described below.

3-27

OpenEdge Revealed: Achieving Server Control with Fathom Management

To see Embedded SpeedScript source code in the Debugger:

1. InWebSpeed WebTools, compile the application using the Compile optionin File T ools:

Eﬁs o%elg'b ﬁ File Tools - c:\wswork

Tools: |Q? ‘g @ %);H

Application MWanager Compile
Data Browser

Editor |
File Tools

05 Cornmand

Scripting Lab

Directories ‘ Files Filters

File:
WA <t il 11

Parent directory

Reference: Files of Type:

A gent Variables All Sources fw* o htm®) j
Databases
Iessages
Obiect State
ProPath

Virtual System Tables

Other:
Developer Corner

Web2peed Home

Help
Copyright®

3-28

Configuration of WebSpeed Servers

2. Choosethe Save icon to keep a copy of the generated . w file:

WebSpeed i WebSpeed: Compile File
WebTools Generating SpeedScript file for CusiomerLisi kine...

Tools: SpeedScript file generated. Click €yl to save this temporary file.
Application Manager

Data Browser o i Save Generated File
Editor Compiling Custemerdist. kim...

File Tools
08 Command Mo errors found. Click K to run this web object.

Scripting Lab fiun

Reference:

Agent Vanables

Databases

Ifessages

Obiect State
ProPath

Wirtual Systemn Tables

Other:

Developer Comner
TWebSpeed Home

Help
Copyright©

3-29

OpenEdge Revealed: Achieving Server Control with Fathom Management

Figure 3-9 shows the Debugger working with the Embedded SpeedScript application.

File Edit Search “iew Debug Diagnostics Data Window Help
|| 8| el @[ns
764 TUT SIREAN Uebstreaw UNFORMATIED '<htwle-mi' . 1= webhobiecta\web-diap.p{)
;:g PUT STEEAM WebStream UNFORMATTED '<heads-;'. webbobjectatweb-diap.p SYSTEM-TRIGGER|)
767 PUT STREAM WebStream UNFORMATTED '<titlexCustomer List</titler.n'. web/objects /web-util.p nun-web-object|
768 PUT STEEAM Weh3tream UNFORMATTED '</head:-n'. web/objects /stateaware.p run-web-object|
769 = Customerlist.htm{ |
770 PUT STREAM Webitream TUNFORMATTED '<body-=-n'.
771 PUT STREAM Webitream TNFORMATTED ' <div align="center"=-n'.
e PUT STREAM WebStream UNFORMATIED ' <center>-nm'.
773 PUT 5TREAM WebhStream UNFORMATTED ' <hlrCustomer Lizt</hlx-n'.
774 PUT STREAM Webfitream TNFORMATTED ' <table border="3" cellpadding=
775 PUT 3TREAM Webjitream UNFORMATTED ' <LrE-n'.
776 PUT STEEAM WehStream UNFORMATTED ! <th align="left":=Custoner
777 PUT STREAM WebStreawm TNFORMATTED ' <th align="left">Custoner
78 PUT 3TREAM Webjitream UNFORMATTED ' <th align="left">Fhone Hun
778 PUT STREAM WebStream UNFORMATTED ! LA s
780
751 SFTag=<!--W35*/
782 DEEUGGER: INITIATE ().
783 DEBUGGER: SET-EREAK ().
TG4
9?85 for each customer where customer.name beginz 'L' no-lock:
786 FFTag=—-->%/
g7
788 PUT STREAM WebStream UNFORMATTED ! <ELr=-mn'.
7589 PUT STEEAM Webitream UNFORMATTED ' <th align="left">' /*Tag= _|
780 PUT 3TREAM Webjitream UNFORMATTED ' <th align="left">' ;/*Tag="
791 PUT STREAM WebStream UNFORMATTED ! <th align="left">' /*Tag="+
IR _>l_I
MName Yalue Type Marne Walue
GATEWAY INTERFACE |["CGI/1.1" CHARACTER :I
SEEVER_50FTWARE "Microsoft-II53/. .. |[CHARACTER J
SERVEE. PROTOCOL "HTTFA1.1" CHARACTEE.
SERVEER._NAME "localhost™ CHARACTER
SEEVER_PORT rgor CHARACTER
FEQUEST METHOLD "GET™ CHARACTEE.
SCRIPT NAME "/3cripts/cgiip. .. |CHARACTER
PATH_INFO " /MAervice=W3Wo. .. |[CHARACTER ll
“ariables | Eluﬁers| Parametersl Temp Tablesl

Figure 3-9:

3-30

application

OpenEdge Application Debugger working in an Embedded SpeedScript

Configuration of WebSpeed Servers

The Debugger isavailable with someversions of UNIX. Linux isnot currently supported. If you
are using an X-Windowsterminal and you want to use the Debugger with WebSpeed, you need
to set avariable in the WebSpeed server’s Environment Variables area, as shown in Figure
3-10. The DISPLAY setting is described in your UNIX documentation. DISPLAY refersto the
X-Windows machine that will display graphical output. After you make this change, you must
stop and restart the WebSpeed server.

wsbrokerl Properties B3
= Broks
- Broker Mame | Walue |
- General 5
DISPLAY yourmachine: 0

- Owner Information

- Contralling MameServer
- AppService Mame List
- Logging Setting

- &dvanced Features

- Agent

- General

- Logging Setting

- Pool Range

Name [DisPLay

Walue Iyourmachine:ﬂ

fdd Dz |

QK I Cancel | Feset | Help |

Figure 3-10: WebSpeed server environment variable: DISPLAY

If you cannot use the Progress Explorer to update the DISPLAY settings, then modify the
ubroker.properties file and add or modify the following settings, as shown in Example 3-5.

Example 3-5: Setting DISPLAY environment variable in ubroker.properties

#

WebSpeed Broker definition
#

[UBroker.WS.brokername]

environment=brokername

#

Environment for Broker: brokername

#

[Environment.brokername]
DISPLAY=yourmachine:0

3-31

OpenEdge Revealed: Achieving Server Control with Fathom Management

Using other techniques to debug WebSpeed applications

If you do not have access to the source code, then there are afew options you can use to see
what is happening in the code. Y ou can:

. Use the 4GL Trace option.
. Look in the agent log file.

The 4GL trace feature will log RUN statements, user-defined FUNCTION calls, and PUBLISH and
SUBSCRIBE to the AppServer log file.

To enable the 4GL trace feature, you must manually modify the ubroker.properties fileand
add the srvrLogginglLevel and the srvrLogEntries parameters to the WebSpeed server's
configuration. An excerpt of an entry is shown in Example 3-6. Stop and restart the WebSpeed
server to start the logging.

Example 3-6: Enabling 4GL Trace in ubroker.properties

[UBroker.WS.DemoWS]
srvrLogginglLevel=4
srvrLogEntries=2
srvrAppMode=Production
brokerLogFile=C:\DemoApp\Logs\WS_broker.Tog
srvrLogFile=C:\DemoApp\Logs\WS_agent.Tog
srvrMinPort=5321
srvrMaxPort=5325
maxSrvrInstance=5
controllingNameServer=NS1l
srvrStartupParam=-p web\objects\web-disp.p -weblogerror
uuid=527a0623fe008210:67d940:f6484c1312:-7d87
workDi r=C:\DemoApp

3-32

Configuration of WebSpeed Servers

The agent’slog file contains warning and error messages, as well as the output from the 4GL
MESSAGE statement. Make sure that the -weblogerror parameter isin the agent’s startup
parameters. Example 3—7 shows an excerpt from an agent’slog file. It contains errors

(“** Invalid character ..."),MESSAGE output (“MyAppMesg”), aswell asthe output from the
4GL trace.

Example 3-7: WebSpeed agent log file

WTA server initialising. (8835)

Connected to database sports2000, user number 9. (9543)

Run util/style.w PERSIST [Main Block - xxx.r]

Func checkAppMode "PRODUCTION" [Main Block - xxx.r]

Run process-web-request [Main Block - xxx.r]

Run outContType in util/util.p "text/html" [process-web-request - xxx.r]
Run GetField in webutil/webstart.p "html " [process-web-request - xxx.r]
* Invalid character in numeric input x. (76)

Run showpage.r [Main Block - showdetails.r]

** "showpage.r" was not found. (293)

Run destroyObject in webutil/ping.p [destroy - web2/admweb.p]

Run deleteOffsets in webutil/ping.p [destroyObject - web2/admweb.p]

Run SUPER [destroyObject - web2/admweb.p]

MyAppMesg : Before Processing

Run doProc.p [Main Block - main.r]

MyAppMesg : After Processing

Thelinesin the agent’slog file are preceded with the agent number, the date and time, and the
Operating System’ s Process | D of the agent. This makes it easy to determine which WebSpeed
agent is running which code. Example 3-8 shows compl ete lines from the log file.

Example 3-8: WebSpeed agent log file lines

S-0001>(22-Jul-03 16:19:12:021) [124] MyAppMesg : Before Processing
S-0001>(22-Jul-03 16:19:12:021) [124] Run doProc.p [Main Block - main.r]
S-0001>(22-Jul-03 16:19:13:821) [124] MyAppMesg : After Processing

Since the timeis given, you can gain arough estimate of how long each procedure took to run,
if you surround the RUN command with MESSAGE statements. Y ou can also usethe {&FILE-NAME}
and {&LINE-NUMBER} preprocessor variablesto show which line of code the MESSAGE statement
ison and which fileitisin.

However, making the agent log all the RUN commands by using the 4GL trace option will cause
the agent log file to grow quite quickly. Y ou should enable this logging only when necessary.

3-33

OpenEdge Revealed: Achieving Server Control with Fathom Management

Using the AppServer to access the business logic

3-34

Because WebSpeed agents are Progress 4GL clients, they can also use the AppServer to run the
business logic for the application. This allows devel opers to share business logic with other
Progress 4GL clients. This future-proofs your application’s business logic.

When you design your application, al code that heeds to access a database should be put into
separate . P filesto be (possibly) run on an AppServer. If you design your application thisway,
you can deploy your application with, or without, an AppServer very easly.

Example 3-9 shows code that will run on the client, and if thereisan AppServer to processthe
logic, it will run it on the AppServer. If thereis no AppServer, the code will run locally. This
meansthat the samer-code filesmust beinstalled on the AppServer aswell asontheclient. The
easiest way to do thisisto user-code libraries: one procedure library for the client r-code files
and one for the business logic r-code files. Y ou would then deploy both procedure libraries to
the client, and only the business logic procedure library to the AppServer.

Example 3-9: Code designed to run on Client or AppServer

DEFINE VARIABLE hAppSrv AS HANDLE NO-UNDO.
DEFINE VARIABLE vConnected AS LOGICAL NO-UNDO.

CREATE SERVER hAppSrv.

vConnected = hAppSrv:CONNECT ("-AppService Sports2000_AS") NO-ERROR.
IF NOT vConnected

THEN
DO:
DELETE OBJECT hAppSrv. /* Tidy up memory */
hAppSrv = SESSION. /* Make the hAppSrv handle "local" */
END.
RUN foo.r ON hAppSrv. /* Run the application */
IF vConnected /* Release the connection and memory */
THEN
DO:

hAppSrv:DISCONNECT () NO-ERROR.
DELETE OBJECT hAppSrv NO-ERROR.
END.

Configuration of WebSpeed Servers

If you don’t want to use the AppServer to run your code but want to share your code with
AppServer clients, you just need to put the business logic procedure library in the WebSpeed
agent’ s PROPATH and use a normal run command.

For information on how to develop AppServer applications, see OpenEdge Application Server:
Developing AppServer Applications. R-code libraries are documented in OpenEdge
Deployment: Managing 4GL Applications.

Examples of simple and complex configurations

The simplest configuration, shown in Figure 3-11, isnormally used by developers. It hasall the
components on one machine. Thistype of configuration is usually on a Windows platform that
has al the tools needed to devel op and test WebSpeed and AppServer applications. The
Windows platforms supported by WebSpeed and AppServer in development mode are
Windows NT or higher, not Windows 98 or ME.

Note: In Figure 3—-11 and Figure 3-12, the shaded areas denote a physical machine.

3-35

OpenEdge Revealed: Achieving Server Control with Fathom Management

N

NameServer AppServer
Broker
Web Server A ¢
Web
Browser
K WebSpeed AppServer
Messenger

WebSpeed
Broker Procedure
i Libraries
WebSpeed
Agent

Database

Procedure
Libraries

Figure 3-11: Simple configuration

Note: The components shown in Figure 3—-11 are contained in OpenEdge Studio. Y ou need to
make sure you install the OpenEdge Development Server.

3-36

Configuration of WebSpeed Servers

The most complex configuration, shown in Figure 3-12, is when you have all the components
on separate machines and are using firewalls. In the complex example, the WebSpeed server is
using the Internet NameServer to announce its availability, but the 4GL code that runs on the
WebSpeed server uses the Intranet NameServer to find the appropriate AppServer.

In the complex configuration (Figure 3-12), the rightmost firewall is probably overkill. Y ou
would generally not useit in the real world, but it will make the deployment that tiny bit more
secure.

The areas separated by the firewalls may be considered a*“site.” This shows which components
should be located together. The bandwidth required between the sitesis much lower than the
bandwidth needed within the sites. Thisis due to the fact that more information is moved
between the components on one site, than between components on separate sites. See the
“Request round-trip process’ section on page 2—6 for details of the network traffic.

3-37

OpenEdge Revealed: Achieving Server Control with Fathom Management

Web Server

WebSpeed
Messenger

Internet
NameServer,

A

WebSpeed
Broker

Intranet
Name
Server

!

WebSpeed
Agent

AppServer
Broker

Procedure
Libraries

:

AppServer
Server

Database

Procedure
Libraries

Figure 3-12:

3-38

Complex configuration

Configuration of the AppServer

This chapter discusses how to configure an AppServer. It includes the following topics:
. General configuration

e AppServer security

. Error handling

* Debugging

OpenEdge Revealed: Achieving Server Control with Fathom Management

General configuration

The AppServer is configured in avery similar way to the WebSpeed server. Asin WebSpeed,
it isgood practice to keep the port range for the AppServers to the smallest possible range. If
you are configuring an AppServer to have up to five servers, then the port range for the servers
should be five.

Figure 4—1 shows an example of an AppServer configuration having only five servers. Notethe
Minimum and M aximum port numbers. If you set this port range too small or if another
process uses aport in this range, then when the AppServer broker triesto launch an AppServer
server, the server will try to use one of the currently in-use ports and fail to start.

Sportz2000_AS Properties X

= Braker
- General

- Dwaner Information

- Contralling MameServer

- fppService Mame Ligt

- Logging Setting

- Adwanced Features FROPATH:

= Server
S E— I Browse |

-~ Logging Setting Minimum part number:
- Pool Range %1
- Adwanced Features

- Environment Wariables

Server executable file:
I"@{Startup\D LCMbint_proapsy.exe"

Server startup parameters:

I-pf . Szorptzconnect, pi

b axirnurn port number:

|9815

Ok I Cancel | Rezet Help

Figure 4-1.: AppServer configuration with five agents

The AppServer broker and server logging settings, issues, and recommendations are the same
as for WebSpeed, so the same comments and recommendations apply. See the “General
WebSpeed server configuration” section on page 3-3 for details.

Configuration of the AppServer

AppServer security

The measurestaken to secure an AppServer application are equally asimportant asthe measures
to secure a publicly facing WebSpeed application. It is easier to control an AppServer
application when there is no direct interaction with the end user. The AppServer broker’s
configuration should also specify an owner. Thiswill alow the AppServer broker and servers
to be started with the specified user’ s rights, not the root or system administrator’ srights. This
is covered in the “ Broker ownership” section on page 2—4.

Controlling AppServer entry points

By default, the client process of an AppServer can run any code that exists on the PROPATH of
the AppServer. To maximize security, you should limit the procedures that can be run. Y ou can
control AppServer entry points for an application server process at run time using the EXPORT
method on the SESSTON handle. AppServer entry points are the pathnames of proceduresin the
AppServer PROPATH that a client application can execute as remote procedures (persistently or
nonpersistent). The EXPORT method establishes entry points by allowing you to set and maintain
an export list that contains the pathnames of authorized remote procedures.

Setting theexport list isusually donein the CONNECT procedure of the AppServer if you areusing
astate-aware or a state-reset AppServer configuration. If you are using a statel ess AppServer
configuration, the export list istypically set in the ACTIVATE procedure. The different states of
an AppServer and the CONNECT/ACTIVATE procedures are discussed in the “ AppServer
configuration procedures’ section on page 6-10.

To set the export list, the AppServer code passes acomma-separated list of procedures that the
AppServer can accessto the EXPORT method. Thelist can contain wild cardsto makeit easier to
add entiredirectoriesor r-code Libraries. If you want to allow total accessto all procedures, just
call the EXPORT method without any parameters.

4-3

OpenEdge Revealed: Achieving Server Control with Fathom Management

Example 4-1 shows a CONNECT procedure that implements an export list. More detailed
information isin OpenEdge Application Server: Developing AppServer Applications.

Example 4-1: Connect procedure with export list

DEFINE INPUT PARAMETER pUserId AS CHARACTER NO-UNDO.
DEFINE INPUT PARAMETER pPassword AS CHARACTER NO-UNDO.
DEFINE INPUT PARAMETER pAppServerInfo AS CHARACTER NO-UNDO.

/* Authenticate user */
FIND FIRST AppUser WHERE AppUser.AppUserId
AND AppUser.AppPasswd
NO-LOCK.
IF NOT AVAILABLE AppUser
THEN
RETURN ERROR "Invalid UserId or Password".

pUserId
ENCODE (pPassword)

/* Authorize access to particular procedures */
IF NOT SESSION:EXPORT (AppUser.ValidProcs)
THEN
DO:
/* If the EXPORT fails, log and refuse the connection */
MESSAGE "Can’t set export Tlist for" AppUser.AppUserId.
RETURN ERROR "Can’t set export Tlist".
END.

4-4

Configuration of the AppServer

Later in the application, if you want to clear the export list and set it to a different one, just
invoke the EXPORT method again, as Example 4—2 shows.

Example 4-2: Resetting export list

/* Clear the export Tist to allow all procedures */
IF NOT SESSION:EXPORT ().
THEN
DO:
/* log failure and return */
MESSAGE "Can’t clear export 1list at {&LINE-NUMBER} in {&FILE-NAME}".
RETURN ERROR "Can’t clear export Tist".
END.

/* Reset export Tist */
IF NOT SESSION:EXPORT ("accnts/*.r,common/qry*.r,system.pl<<*>>")
THEN
DO:
/* log failure and return */
MESSAGE "Can’t set export 1list at {&LINE-NUMBER} in {&FILE-NAME}".
RETURN ERROR "Can’t set export Tist".
END.

Using DBAUTHKEY to lock your r-code to the database

An underused feature of OpenEdge isthe DBAUTHKEY (and RCODEKEY) features of PROUTIL. With
DBAUTHKEY, you assign akey to the database and then any code compiled against that database
will havethekey init. When it istimeto run the code, if the key in the database does not match
the key in the r-code, then you will get an error similar to the following:

% CRC for table does not match CRC in program. Try recompiling. (1896)

If you already have r-code deployed, you can use the RCODEKEY function of PROUTIL to tag the
existing r-code without having to recompile.

See OpenEdge Data Management: Database Administration for moreinformation on using the
DBAUTHKEY and RCODEKEY features of PROUTIL.

OpenEdge Revealed: Achieving Server Control with Fathom Management

Error handling

An AppServer application is more easily controlled than a WebSpeed application. Thisis
because the user does not interact with any application parameters being passed when using the
AppServer. WebSpeed applications need to use URL parameters, cookies, or hidden fields to
pass parameters, and these can be modified by the user.

Asamatter of course, you should always check parametersfor “ sensibleness.” Thiscould be as
simple as arange check or as complex as making sure records match a passed ROWID.

Making sure that errors do not occur is easier than trying to track them down after the event.
Use the MESSAGE statement to track down errors that should not occur. If you are expecting to
receive an integer between 1 and 9 and instead you get 15, then log this with aMESSAGE and
return to the calling procedure by passing an ERROR on the RETURN statement.

Example 4-3 shows how to run a procedure and then check to see if an error was returned. It
also shows how to pass back a message with the error.

Example 4-3: Error code

/* Calling Program */
RUN foo.p ON hAppSrv (15) NO-ERROR.

IF ERROR-STATUS:ERROR
THEN
DO:
/* Check for Progress errors first, Tike (293) */
IF ERROR-STATUS:NUM-MESSAGES > 0
THEN
DO vLoop = 1 TO ERROR-STATUS:NUM-MESSAGES:
MESSAGE ERROR-STATUS:GET-MESSAGE (vLoop)
VIEW-AS ALERT-BOX ERROR.
END.
ELSE
MESSAGE RETURN-VALUE VIEW-AS ALERT-BOX ERROR.
END.

/% foo.p */
DEFINE INPUT PARAMETER pIn AS INTEGER NO-UNDO.
IF pIn <1 OR pIn > 9

THEN
RETURN ERROR "Invalid Parameter Passed".

Configuration of the AppServer

A STOP condition on the AppServer causes the remote procedure request (persistent or
nonpersistent) to terminate and will propagate the STOP condition to the client application. Y ou
can avoid this by handling the STOP condition on the AppServer with an ON STOP statement. A
QUIT condition causesthe remote procedure request to terminate and return successfully without
any propagated condition to the client. However, the broker also terminates the client
connection to the AppServer. Likewise, an ON QUIT statement can override this behavior. See
OpenEdge Application Server: Developing AppServer Applications for more information.

Coding practices to avoid deadlocks

If you do not use good coding practices, there is a distinct possibility that you could lock
yourself when accessing records in a database used by the client and the AppServer. Since the
client and AppServer use two distinct connections, if you lock arecord on the client and then
try to access it on the AppServer, you will get a deadlock. It will appear that the AppServer
process has hung. If two clients did the same thing, the following message would appear:

filename in use by user on tty. Wait or choose CANCEL to stop. (2624)

Since there is no user interface when running code on an AppServer, this error cannot be seen
or acted on by anyone.

The Lock Wait Timeout (- Tkwtmo) parameter alleviates thisissue. If the processtriesfor alock
and the time spent waiting exceeds the number of seconds specified inthe -Tkwtmo parameter,
then the code will raisethe STOP condition. This can have very bad side effectsif you expect the
record to be available after afind. To avoid this, you should always write code that will use
NO-WAIT NO-ERROR and check to seeif therecord is available.

Example 4—4 and Example 4-5 show the before and after code.

Example 4-4: Problematic code without NO-WAIT NO-ERROR

DO TRANSACTION:
FIND FIRST Customer WHERE Customer.CustNum = 3
EXCLUSIVE-LOCK.
Customer.Balance = Customer.Balance + 20.00.
END.

4-7

OpenEdge Revealed: Achieving Server Control with Fathom Management

Example 4-5: Robust code with NO-WAIT NO-ERROR

DO TRANSACTION:
FIND FIRST Customer WHERE Customer.CustNum = 3
EXCLUSIVE-LOCK NO-WAIT NO-ERROR.
IF AVAILABLE Customer
THEN
Customer.Balance = Customer.Balance + 20.00.
ELSE
DO:
IF LOCKED Customer
THEN
RETURN ERROR "Customer Locked".
ELSE
RETURN ERROR "Customer Not Found".
END.
END.

Debugging

There are two main ways to debug an application. The first method involves accessing the
source code for the application and the second method does not.

Using the OpenEdge Application Debugger to debug
AppServer applications

The OpenEdge Application Debugger allows you to debug AppServer code from the client
machine. If you start a debugging session on the GUI client and the code runs a procedure on
the AppServer, the Debugger displays this code and alows you to control it.

Configuration of the AppServer

To enable debugging, check the4GL debugger enabled check box in the Advanced Features
for the AppServer, as shown Figure 4-2.

Sports2000_AS Properties | x|
- Broker ¥ 4GL debugger enabled
- General
- Dwaner Information Pracedures
I:Dntmllinlg NameSerlver Activate: I
- fppService Mame Ligt
-~ Logging Setting D eactivate: I
- Adwanced Features
- Server Connect: I
- General
-~ Logging Setting Disconnect: I
- Pool Range
B - cvanced Features Startup: I
- Environment Wariables
Shutdawr: I
Farameters

for startup procedure:

QK I Cancel | Reset Help

Figure 4-2; Enabling 4GL Debugger for AppServer server

4-9

OpenEdge Revealed: Achieving Server Control with Fathom Management

Remote debugging

Themain.p code in Example 4—6 shows an example of remote debugging. In this example, the
main.p codeison aWindows GUI client, the AppServer code (foo. p) isin the PROPATH for the
AppServer Sports2000_AS.

Example 4-6: Remote debugging code

/* main.p */
DEFINE VARIABLE hAppSrv AS HANDLE NO-UNDO.

CREATE SERVER hAppSrv.
hAppSrv:CONNECT ("-AppService Sports2000_AS").

RUN foo.p ON hAppSrv (15) NO-ERROR.

hAppSrv:DISCONNECT () NO-ERROR.
DELETE OBJECT hAppSrv NO-ERROR.

/* foo.p */
DEFINE INPUT PARAMETER pIn AS INT NO-UNDO.

MESSAGE "{&FILE-NAME} Passed " pIn.

To use the Debugger, from the Procedure Editor, choose the Compile menu option and then
choose Debug.

4-10

Configuration of the AppServer

The Debugger screens that follow show a sequence of events after every Step Into [F7]
command:

1. Thefollowing figure showstheinitial state of the debugger. It has paused at the first
executable line of code:

File Edit Search Yiew Debug Diagnostics Data Window Help

s[u|e] e[| @| 8] ||

DEFINE VARIABLE hippSrv A% HANDLE NO-UNDO. b C:3THPApS246]1_main.pedi |

-

CEEATE SERVER hippSrv.
hippSrw: COMNECT ("-AppService SportszZ000_A57).

RUN foo.p ON happSrw (15) NO-ERROR.

hippSrw:DISCONNECT () NO-ERROR.

1
z
3
4
5
G
7
g
a DELETE OBJECT hipp3rv NO-ERROR.

| Tyne | Mame | Value |

|WIDGET-HANDLE |

variables | Buffers | Parameters | Temp Taples|

2. Thefollowing figure shows the Debugger after the first step:

File Edit Search “iew Debug Diagnostics Data MWindow Help

SR EEEICONEY |

DEFINE VARTAELE happ3rv A3 HANDLE NO-TNDO. b C:3THPYp5246]1 main.ped(|

L J CREATE SERVER hippSrv.
b hippSrv: COMNECT ("-AppService Sportsz000_A357).
RUN foo.p ON hipp3rw (15) NO-ERROR.

happSrv:DISCONNECT () MO-ERROR.
DELETE OBJECT hippSrv NO-ERROR,

1
z
3
4
5
6
7
g
a

Marne | Valug | Tyne | Mame | Value |
haippsry |1158 |VIDGET-HANDLE | [|

Variahles | Eluffersl Parametersl Temp Tablesl

4-11

OpenEdge Revealed: Achieving Server Control with Fathom Management

4-12

Next, you are connected to the AppServer and are about to run foo. p:

Flle Edit Search Wiew Debug Diagnostics Data Window Help

SR IR

DEFINE VARIABLE hippSrv 4% HANDLE NO-UNDO.

CREATE 3ERVER hAppSrv.
happSrv: CONNECT ("-AppService Sports2000_A3").

Yy ¢

[P R R TN SRRy A

RUN foo.p ON happSrv (15) NO-ERRCOR.

hAppSrv:DISCONNECT () NO-ERROR.
DELETE OBJECT hAppSrw NO-ERROR.

Mame | Walue | Type |

b C:VTMEWVp5246]1_main.ped()

Marre |

value |

happSry |1158 [WIDGET-HANDLE |

Variables | Buffers | Parameters | Temp Tables |

Next, you are in the code that is running on the AppServer. The right side of the window
shows a procedure call stack. Note that the Server is 1158, which isthe server held in the
WIDGET-HANDLE that pointsto 1158. This WIDGET-HANDLE is hAppSrv on the client. The

parameter(s) are shown on the tab folder in the lower left corner of the window.

File Edit Search Yiew Debug Diagnostics Data Window Help

Walue | Type

Marng |

S AR IEEY ||
1 f% foo.p %/ C:yTHPApSE46]l_main.pedi)
H DEFINE INPUT PARAMETER pIn A3 INT HO-TWDO. - foo.p{ ... |:4 ON SERVER 'sl158'
3

bil MESSAGE ".\foo.p Passed " plIn.

Value |

|15 |TmPUT

Configuration of the AppServer

5. Finally, the code has returned to the calling procedure, and it will now continue on to the
next lines of code:

File Edit Search “iew Debun Diagnostics Data Window Help
z| %8| a|=|0|n|a]

DEFINE VARIAELE hippSrv A% HANDLE NO-UNDO. b C:\THPYp5246]1_main.ped()

CREEATE SERVER hippSrv.
hiappSrviCONNECT ("-AppService Sportsz2000_A57).

RN foo.p ON happSrv (15) NO-ERROR.

hippSrv:DISCONMECT () NO-ERROR.
DELETE OBJECT hippSrv NO-ERROR.

Tupe | Name | value |
|WIDBET-HANDLE |

Variables | Bufiers | Parameters | Temp Tables|

Using other techniques to debug AppServer applications

If you do not have access to the source code, then there are two options you can use to see what
is happening in the code:

. Use the 4GL Trace option.
. Look in the server log file for errors.

The 4GL trace feature will log RUN statements, user-defined FUNCTION calls, and PUBLISH and
SUBSCRIBE to the AppServer log file.

The 4GL tracefeature will work for the GUI or Character client connected to an AppServer. To
enableit for aGUI or Character client, add the following command line options. In this
example, the log file will be in the working directory and be called mylog.1g:

-clientlog mylog.lg -logginglevel 4 -logentrytypes 2

4-13

OpenEdge Revealed: Achieving Server Control with Fathom Management

To enable the 4GL trace feature for the AppServer, you must manually modify the
ubroker.properties fileand add the srvrLoggingLevel and the srvrLogEntries parameters
to the AppServer’s configuration. An excerpt of an entry is shown in Example 4—7. Stop and
restart the AppServer to start the logging.

Example 4-7: Enabling 4GL Trace in ubroker.properties

[UBroker.AS.DemoAppSrv]
srvrLogginglLevel=4
srvrLogEntries=2
operatingMode=State-aware
brokerLogFiTle=C:\DemoApp\Logs\AS_broker.Tog
srvrLogFiTle=C:\DemoApp\Logs\AS_server.log
srvrMinPort=5521
srvrMaxPort=5525
maxSrvrInstance=5
controllingNameServer=NS1
PROPATH=.
uuid=527a0623fe008210:67d940:f6484c1312:-7d87
workDi r=C:\DemoApp

If you use aMESSAGE statement in AppServer code, then the message will appear in the
AppServer’'slog file. Thefollowing line of codein afile called foo.p inthe As directory when
run on the AppServer will put the line after itin thelog file. The preprocessor parameters show
the current filename and line number within that file:

MESSAGE "{&FILE-NAME} {&LINE-NUMBER} Before Command".

[03/07/23@22:10:54.991+0100] P-002592 T-002596 0 AS -- .\AS\foo.p 1 Before
Command

4-14

Configuration of the AppServer

The AppServer log filefields are;

« Dateand Timewith offset from GMT.

. Process ID of the AppServer server (P-002592).

e TheJavaThread ID.

e The Severity of the message. If you use the 4GL MESSAGE statement, the Severity is 0.
e The ASshowsthat thisis AppServer.

. Two hyphens.

e The message text.

4-15

OpenEdge Revealed: Achieving Server Control with Fathom Management

4-16

Configuration of the NameServer

This chapter discusses how to configure the NameServer. It contains the following topics:
. Understanding the NameServer

. L ocation independence

. L oad-balancing

o Fault-tolerant NameServer configurations

. NameServer neighborhoods

OpenEdge Revealed: Achieving Server Control with Fathom Management

Understanding the NameServer

5-2

The NameServer is an optional but integral part of the OpenEdge platform. The ability to
providelocation independence, load balancing, and connection-timefail-over isprovided by the
NameServer service. It can also be asingle point of contention or failure if not configured

appropriately.

When the NameServer is being used by the OpenEdge servers, they will inform the
NameServer, by default every 30 seconds, that they are till alive and able to process requests.
The Registration retry entry on the OpenEdge Server Broker Advanced Featur es page sets
this time period.

If the NameServer does not receive the broker’ s message within the NameServer's
brokerKeepATiveTimeout period, the broker isremoved from the Available Broker list within
the NameServer. To be usable, set the OpenEdge server’ sRegistration retry setting to be equal
to or lessthan the NameServer' sbrokerKeepAliveTimeout. ThebrokerKeepAliveTimeout iS,
by default, set to 30 seconds. To alter this, you will need to edit the ubroker.properties file
manually.

If the broker is removed from the Available Broker list, the NameServer will no longer tell
clients to connect to this broker, thereby providing connection-time fail-over.

Configuration of the NameServer

Location

The Advanced Featur es page of an AppServer broker is shown in Figure 5-1. The WebSpeed

broker page isidentical.

Sports2000_AS Properties x|

= Broker
- Eeneral

- Owarer Information

- Contralling MarmesS erver

- hppService Marme List

- Logaing Setting

B " Jvanced Features

= Server

- Eeneral

- Logaing Setting

- Pool Range

- Advanced Features

- Erwvironment W ariables

Maximum client instances:
Fricrity weight;
Registration retrmy:

Server startup timeout;
Request timeout;

Auto trim timeout:

512

[o]

Cancel | Reset | Help

Figure 5-1:

independence

AppServer broker Advanced Features page

Because the OpenEdge clients send a message to the NameServer requesting the address of a
broker to handle their application request, it means that the host machine for the OpenEdge
server can be changed without affecting the application source code.

Conversely, if you do not use aNameServer, you will need to change the client deployment,
either source code or configuration file to point to the new broker’s address. Using a“No
NameServer” deployment is covered in the“No NameServer version of the request round-trip”

section on page 2-8.

OpenEdge Revealed: Achieving Server Control with Fathom Management

Load-balancing

Sofar, all of the examples show asingle OpenEdge server servicing the client’ srequests. If this
server becomes overwhelmed with requests, performance will drop. The solution to thisisto
allow load-balancing.

To provideload-balancing, you configure two (or more) OpenEdge serversthat would be set up
with identical Progress 4GL application code and database connections. These would normally
reside on separate host machines for performance reasons.

Each of the OpenEdge servers would have its own unique name, but would also be configured
to respond to a common service name. Thisisdone in the AppService Name List page of the
broker configuration. Figure 5-2 showsan AppServer broker that will respond to its own name,
as well as the common name Accounts.

Sportz2000_AS Properties X

=l Broker
- General Application service names:

- Dwaner Information 7
) coounts
- Contralling MameServer Sports2000_AS
5 -2 Name List
- Logging Setting
- Adwanced Features
= Server
- General
- Logging Setting
- Pool Range
- Adwanced Features
- Environment Wariables

2|

[~ Supports default service

Ok I Cancel Rezet Help

Figure 5-2: Setting application service names

Setting more than one application service name for abroker allows the NameServer to forward
requests for al the listed services to that OpenEdge server.

Y ou might want to allocate priority for each OpenEdge server to enable alarger machine with
more WebSpeed agents or AppServer serversto be given more requeststhan asmaller machine.
To do this, set the Priority weight on the Advanced Featur es page for the OpenEdge broker,
as shown in Figure 5-3.

Configuration of the NameServer

The number of requests sent to each broker is decided by apro-rataformula. The percentage of
all requests sent to a broker is calculated by taking the priority weight of the broker, dividing it
by thetotal of all the priority weightsfor brokersable to respond to the request, and multiplying
by 100.

Table 5-1 shows an exampl e of three brokerswith differing priority weights and the associated
percentage of requests they will each service.

Table 5-1: Broker priority weights

Broker name Priority weight Percentage requests
Broker 1 10 18.2%
Broker 2 15 27.3%
Broker 3 30 54.5%

The NameServer will adjust these percentages each time a new broker joins or leaves the pool
of brokers able to respond to the same request.

Figure 5-3 shows the priority weight being set on the Sports2000_AS AppServer.

Sports2000_AS Properties x|
= Broker b awirnurn clisnt instances: Bz
- General

- Dwaner I.nfculmatinn Prinrity weight Im—
- Contralling MameServer

ﬁDpS_erwce Hame List Registration retry: IS‘D—
- Logging Setting

g v anced Features Server startup imeout: |3—
= Server

- General Request imeout: |15—

- Liogging S etting

-+ Pool Range At trirn tirneout: |1 00
- Advanced Features

- Environment Wariables

Ok I Cancel | Rezet Help

Figure 5-3: Setting Priority weight for an AppServer

5-5

OpenEdge Revealed: Achieving Server Control with Fathom Management

Thisfunctionality is available only if you have licensed a 50- or 250-agent WebSpeed
Transaction Server or if you have licensed the L oad Balancing NameServer.

Fault-tolerant NameServer configurations

5-6

Having only one NameServer on a network that is responsible for allocating brokersto handle
requests can cause performance issues and al so becomes a single point of failure. These issues
can be solved by setting up multiple NameServers using one of both of the following
configurations:

. NameServer replication
. NameServer neighborhoods

For more information on setting up fault-tolerant NameServers, see OpenEdge Getting Sarted:
Installation and Configuration for Unix or OpenEdge Getting Started: Installation and
Configuration for Windows.

NameServer replication
Because the protocol used by the NameServer is UDP, it allows broadcast messages to be sent

to al machines on the same subnet. Setting up two or more machines on the same subnet and
having a NameServer on them provides for resilience using NameServer replication.

Configuration of the NameServer

To configure this, put the NameServers on different machines listening on the same UDP port
and the client and OpenEdge servers broadcasting the requests to the subnet. Figure 54
illustrates this configuration.

This network’s subnet mask is: 255.255.255.0
The broadcast address is: 192.168.123.255

Host: Nexus6
IP: 192.168.123.213 Host:Rachel Host: Deckard
[Ubroker.AS.Accounts] IP:192.168.123.001 IP:192.168.123.101
appserviceNameList=Accounts
AppServer controllingNameServer=NS1 NameServer NameServer
Accounts portNurber=8011 NS1 NS1
Port 8011 [NameServer.NS1] Port 5162 Port 5162
hostname=192.168.123.255

location=remote
portNumber=5162

Host: Bryant
IP:192.168.123.044

hAppSrv:CONNECT (“-AppService Accounts -H 192.168.123.255 -S 5162").

Figure 5-4: NameServer replication

5-7

OpenEdge Revealed: Achieving Server Control with Fathom Management

5-8

In this example, the NameServer hosts are Rachel and Deckard, and each has a NameServer
configured and listening on UDP port 5162. The AppServer ison Nexus6 and is listening on
TCP port 8011. The AppServer will send its registration message to the network subnet
broadcast address 192.168.123.255 on UDP port 5162. Any NameServer on this subnet
listening on port 5162 will receive this message and register this broker.

When the client makes a NameServer request to find a broker capable of servicing accounts
requests, it also broadcasts to 192.168.123.255. All the NameServers will receive the request

and respond. The client will just take the first positive response it receives. The others will be
ignored.

Another benefit of using a broadcast message isthat if you decide to move Deckard from
192.168.123.101 to 192.168.123.131 and stay within the same subnet, then you do not need to
change any configuration on either the AppServer or the client code.

To make the AppServer broker broadcast its registration messages to the subnet, you need to
configure the appropriate NameServer in the Progress Explorer, as shown in Figure 5-5, or edit
ubroker.properties manually and enter the settings, as shown in Figure 5-4.

?n proexpl2 - [Console Root\Progress Explorerslocalhost\NameServerANS1] o [w] £
E& File Acton View ‘Window Help | - ﬂlil
¢ 0E PRIREX
1 Console Rioot Mamne |
=] Progress Explarer -
E@ﬂ \acalhast NS51 Properties
-7 Databases B - :
-7 WebSpeed MameServer location

- General
Logging Setting) Logal senice
Advanced Features

- Enwitanment ariables

m-C AppServer

{211 Oracle DataServer

-2 Sonich Adapter

{271 AppServer Intemet Adapter
B NameServer

% Hast name:

-1 Messengers

%) BEmote senvice

|1 52.168123.265

Port number:

[s162

ak, I Cancel | Reset | Help |

Figure 5-5: Setting NameServer broadcast properties

Configuration of the NameServer

NameServer neighborhoods

NameServer neighbors are alternate NameServers that you specify as part of a NameServer
configuration. When a NameServer receives a client connection request that it cannot resolve,
it automatically passes the request to the specified NameServer neighbors to attempt the

resol ution.

To achieve this, add the neighboring NameServers to the ubroker .properties file as remote
NameServers by using the Progress Explorer or atext editor. Then, add the list of neighboring
NameServersto the primary NameServer’s configuration.

For example, Figure 5-6 shows three NameServers in different subnets. The NameServer on
Roy is neighbored to the other two NameServers. Note that the configuration file on Roy does
not use the correct names for the other two NameServers. It does not need to. Aslong asthe
hostname and port number are correct, the nameisirrelevant. In thisway, al the NameServers
are NS1, but there is no confusion. The AppServersin each subnet only have their local
NameServer configured. The client also only connectsto itslocal NameServer, but will get
allocated any of the AppServers. This alocation is aresult of the NameServers passing the
request on if they cannot respond locally.

5-9

OpenEdge Revealed: Achieving Server Control with Fathom Management

Host: Deckard
Host: Nexus6 IP: 192.168.100.101
IP: 192.168.200.213
[Ubroker .}_\S .Accout_its] r\lameserver
AppServer | o noNameServesoNST 1 NSt
- Accounts portNumber=8011 Port 5162
Port 8011 [N;meServer.NSl]
hostname=192.168.200.101
location=remote
r mber=5162
pomtiumbe Host: Tyrell
IP: 192.168.100.089

[Ubroker.AS.OrderEntry]
appserviceNameList=OrderEntry
controllingNameServer=NS1

AppServer

HOStZ Roy — Orda'Entry portNumber=6122
IP: 192.168.200.101 [NameServer.NS1] Port 6122 [NameServer .NS1]
leEnher=ileEnil hostnéme=192.168.100.101
NameServer portNumber=5162 location=remote
| NS1 neighborNameServers=NS_100,NS_150 portNumber=5162
[NameServer .NS_100]
Port 5162 hostname=192.168.100.101
location=remote
portNumber=5162
[NameServer .NS_150]
hostname=192.168.150.101
location=remote
portNumber=5162
Host: Rachel
IP: 192.168.150.101
NameServer
— NS1
Port 5162
Host: Bryant Host: Pris
IP: 192.168.200.044 it G U e
appserviceNameList=Payroll
Amsa‘va controllingNameServer=NS1
|| OrderEntry portNumber=4341
[NameServer .NS1]
N
hostname=192.168.150.101
location=remote
portNumber=5162
hApPSIV:CONNECT (“~AppService Payrall -H Roy -S 5162).

Figure 5-6: NameServer neighborhood

5-10

Configuration of the NameServer

Figure 5—7 shows how to configure NS1 using the Progress Explorer. Example 5-1 shows the
matching ubroker.properties file.

F'I proexpl2 - [Console Root\Progress Explorerilocalhost\NameServerANS1] _ Ol x
Eﬁ File Action View ‘indow Help ‘ - ﬁ'lﬂ
eoam BRI2Pr00=X
1 Console Rioat Name % |
=] Progress Explorer =
E‘@ﬁ \ocalhost N51 Properties
Databases
% ‘wehSpeed Eocatloln Meighbaring NameServers:
H i Eners
D AppServer - Logaging Setting
-0 Oracle DataServer nced Features
D Sonichil Adapter L. Environment ¥ ariables
{2 AppServer Internet Adapter
Bl {1 MameServer
oM@
5 M52
i % NS
-1 Messengers
ak I Cancel | Reset | Help |

Figure 5-7: Setting NameServer neighbors in the Progress Explorer

Note: In the Progress Explorer, you need to highlight which NameServers you want to set as
the local NameServer’s neighbors.

Example 5-1: Setting NameServer neighbors in ubroker.properties

[NameServer.NS1]
autoStart=1
Tocation=1local
portNumber=5162
neighborNameServers=NS2, NS3
srvrLogFiTle=@{WorkPath}\NSl.ns.log

[NameServer.NS2]
hostName=Deckard
portNumber=5162
Tocation=remote

[NameServer.NS3]
hostName=Rachael
portNumber=5162
location=remote

5-11

OpenEdge Revealed: Achieving Server Control with Fathom Management

5-12

Logging levels

There are three different logging settings for the NameServer: Error Only, Terse, and Verbose.
The default is Terse, which provides enough information to be practical. Y ou should leave the
setting at Terse unlessyou need to debug access to OpenEdge servers. Earlier in thismanual we
discussed how to configure a firewall-enabled deployment, where Verbose logging is used.

Log file maintenance
Like the OpenEdge servers, the NameServer also has alog file that will grow over time. The

same comments and recommendations apply equally to the NameServer. See the “ General
configuration” section on page 4-2 for details on maintaining the NameServer log file.

Performance Considerations

This chapter discusses the following topics:
. NameServer performance

* WebSpeed performance

e AppServer performance

* AppServer configuration procedures

* Application performance tuning

Note: For information on database performance tuning using Fathom, see OpenEdge
Revealed: Mastering the OpenEdge Database with Fathom Management.

OpenEdge Revealed: Achieving Server Control with Fathom Management

NameServer performance

The NameServer addsasmall amount of timeto each request made. Thisamount of timeisvery
small and should not impact performance. There are other parts of the entire request that will
cause more performance degradation than the NameServer. The NameServer provides many
useful functions and unlessit isreally going to cause a problem, you should use the
NameServer.

However, there is one feature of the NameServer that might cause some overhead: Broadcast
UDP. Thisisdiscussed in the “NameServer replication” section on page 5-6. If you use the
broadcast method of communications, then all the hosts on the subnet will receive the message
and must handleit. Thiscan cause slow or overworked hoststo become even slower. Do not use
Broadcast UDP unlessit isessential for redundancy or if you have asmall number of machines
on the subnet.

WebSpeed performance

6-2

This section discusses the following WebSpeed performance issues:
. How requests affect performance

. Browser (HTTP) response times

. HTTP/S performance

. Using different Messengers

* Multiple Web servers

How requests affect performance

If yourecall inthe " Request round-trip process’ section on page 2-6, there are quite afew steps
that make up the entire round-trip process and possibly quite afew separate machines, ranging
from the Web server, firewalls, NameServer, WebSpeed server (broker and agents) and
probably a database as well. Each of these steps introduces performance challenges of their
own. The Web server must cope with not only the WebSpeed requests, but the normal HTML
requests as well. Firewalls can introduce network latency, as some will inspect each packet to
make sureit is“alowed” before passing it through to the next machine in the process. The
NameServer performance issues are covered in the previous section.

Performance Considerations

The WebSpeed broker and agents have arole to play in performance as well. The broker
launches and configures new WebSpeed agents before they are needed. This enables the
requeststhat are being received to wait as short atime as possiblein the broker’ s request queue.
Thelaunching of anew agent will take aperiod of time—the agent itself needsto beloaded into
memory, possibly run some application code to create super procedures, and connect itself to
the database. To keep free agents, you should set the Minimum agentsto anumber higher than
0. Thissetting controls how many agentsthe broker will keep free, up to the Maximum agents.

AsFigure 6-1 shows, the broker will start five agentsas soon asit is started. It will keep at |east
two free agents at al times unlessit has already launched the maximum number of agents,
which is 10. Agents that are not used for a period of time will bekilled. The Auto Trim
Timeout setting in the broker’ s Advanced Featur estab controlsthistime period and is entered
as anumber of seconds, so the default of 1800 is equivalent to 30 minutes.

Sports2000_'WS Properties x|
= Broker
. General Initial number of agents to start: |5
- Owarer Information
- Controlling NameServer | Minimum agents: |2
- hppService Marme List
- Logging Setting Maximum agents: I'I 0
- Advanced Features
= Agent
- Eeneral

- Logging Setting

- Adwanced Features
- Environment Wariables

Ok I Cancel | Rezet Help

Figure 6-1: Setting minimum and maximum agents

OpenEdge Revealed: Achieving Server Control with Fathom Management

Browser (HTTP) response times

Having agood responsetime for aWeb siteis very important. Making sure that the Web server
is configured well and has enough memory and CPU performance isimportant in providing
good response times.

Hosting static images and HTML on the Web server alows the Web server to cache these and
provide better performance.

Using the HTTP network monitoring feature of Fathom Management lets you to track the
performance (average responsetimes) of your Web site. Seethe Resource Monitoring Guidefor
more information.

HTTP/S performance

Using HTTP/S to encrypt the traffic between the Web browser and the Web server provides
very good security for the data, but it also introduces a performance hit. In general, for each
request that is made to the Web server, the Web browser and Web server must go through at
least 8 and up to 13 handshake messages before the actual datais sent. Also, one of these
handshake messages needs the Web browser to generate along random number, whichisaslow
process.

Because aWeb page is usually made up of multiple requests, using HTTP/S as the protocol
slows down the Web page being displayed. For example, a Web page with 15 imageson it will
mean 16 individual requests to be made to the Web server.

HTTP/1.1 hasfeatures that should alow one connection with multiple requeststo work, but the
implementation into the Web servers and the Web browsers has not been completed. There are
hardware SSL accelerators on the market that will alleviate most of the performance issueson
the Web server side when using SSL.

At present, Fathom Management cannot use HTTP/S as a protocol for the HTTP monitoring
feature.

Performance Considerations

Using different Messengers

Throughout this manual, the WebSpeed Messenger that has been described is cgiip or
cgiip.exe. Depending on your Web server, there are alternate WebSpeed Messengers. If you
are using a Microsoft I1S Web server, you can use thewsisa.d11 Messenger, and if you are
using the Netscape/iPlanet Web server, which is now part of SunOne, you can use the
nsapi.dll.

Each of these M essengers actsin exactly the sameway as cgiip, but because they are Dynamic
Link Libraries (DLL’s), they stay in memory and are faster to execute the next time they are
called.

BeingaDL L doeshaveadrawback. If the Web server gets confused, thereisastrong possibility
that the Messenger processwill stop working. The only way to correct thisisto restart the Web
server process on the Web server machine; sometimes thisinvolves a reboot.

Duetothe cgiip Messenger being loaded each time arequest ismade, it isslower thanthe DLL
versions, but it is also more reliable. Since the time it takes the cgiip Messenger to load itself
into memory is quite small, using cgiip isagood ideafor production Web sites, as the
performance overhead is dight, but the reliability is high. Y ou should test each possible
Messenger for performance and determine which one you want to use. During testing,
remember to time the entire application, not just the Messenger load times.

Multiple Web servers

One way to increase the throughput of the Web server isto have more than one and share the
load. Thisiseasily achieved using WebSpeed, because the Messenger configurationisidentical
on each Web server. To make more than one Web server respond to requests for the same Web
site, you can use DNS round-robin aliases or a hardware redirection. For more information see
your router or DNS documentation.

6-5

OpenEdge Revealed: Achieving Server Control with Fathom Management

AppServer performance

6—6

This section discusses the following AppServer performance topics:
. How AppServer operating modes affect performance.

* Using asynchronous AppServer calls.

How AppServer operating modes affect performance

In the “ Reguest round-trip process’ section on page 2-6, the request/response round-trip was
described. The AppServer operating mode has a bearing on performance and network traffic.
The AppServer operating mode is determined at application design-time. The operating mode
cannot be changed without rewriting the application so it can to use different modes. For
example, you cannot just change the operating mode from state-aware to stateless unless the
application has been designed to work in both modes.

Understanding state-reset, state-aware, and stateless operating modes

State-reset and state-aware are similar operating modes. They both preserve the AppServer's
state between client requests. Thisis achieved by allocating one AppServer to each client
connection. Thisallowsthe client to keep transactions open, have queries maintained, and have
temp tables and variables avail able over multiple AppServer requests. The difference between
thetwo modesisthat when the client disconnects, astate-reset AppServer will returnto the state
it wasin when it was first started—the same databases will be connected (if you disconnected
or connected others), the same persistent-procedures will be started, and so on. In state-aware
mode, the AppServer isleft asis. This can be agood thing because records you have added to
temp tables remain for the next client. This allows you to cache records for reuse.

Statel ess AppServersare atotaly different scenario. When the client connectsto the AppServer
with the CONNECT method, it only connectsto the broker and isallocated aClient ID. Every time
aRUN ON SERVER command is performed, the client connects to the broker to be allocated a
server. When the request is finalized, the client disconnects from the server, which then
becomes available for other clientsto use.

To retain state information between client requests, the developer can use the
SERVER-CONNECTION-CONTEXT attribute on the SESSTON handle in the AppServer server to keep
character information or use the SERVER-CONNECTION-ID attribute on the SESSION handlein the
AppServer as akey into adatabase “ state” table. These techniques are discussed in the
“AppServer configuration procedures’ section on page 6-10.

Performance Considerations

The fastest operating mode for an AppServer is state-aware. Thisis because it does not need to
tidy up after the client disconnects, and it isalwaysallocated to the AppServer client. Therefore,
you do not have the overhead of the client asking the broker for a server which occurs with
statel ess. The second fastest modeis state-reset, becauseit needsto reset itself to theinitial state
it wasinwhen it wasfirst started — the same SESSION attributes, the same databases connected,
and so on. The slowest mode is statel ess because it has alarge amount of communications
overhead and usually more application code to keep state when needed.

If you are making several related requests very close to each other, you can increase the
performance of a stateless AppServer by making the server bound. When you are bound to an
AppServer, you are allocating the server to be accessed only by the one client in the same
manner as state-aware until you become unbound. Y ou can bind the client to the server by
setting the SERVER-CONNECTION-BOUND-REQUEST attribute on the SESSION handle in the
AppServer to TRUE.

Using stateless mode

Generally, you should always design the AppServer application asdeployablein statelessmode,
but deploy the application in a state-aware mode for performance. So, when should you use
stateless mode AppServers? The answer is when the machine hosting the AppServer becomes
resource-bound and slows down. Thiswill usually occur when the machine runs out of real
memory and startsto use virtual memory. When you have alarge number of AppServer clients
connected to a state-aware or state-reset AppServer, there will be one server for each client, so,
for example, 500 AppServer clients means 500 serversin memory. Each AppServer can use a
large amount of memory depending on your application.

When you use stateless mode, you will usually need much fewer serversto cope with the same
number of clients. Thisis because most of the time the AppServer is not doing anything, andin
stateless mode it can be used by another client during this slack time. Having fewer servers
running results in a proportionate saving in memory use.

By using stateless AppServers to aleviate the memory load on the machine, it will start to
perform better, and the overhead of using stateless AppServers becomes much less than using
aslow machine. The number of database connections will also decrease when you moveto a
stateless AppServer environment, thereby making the database machine less |oaded as well.

Y ou can monitor your system memory usage with Fathom Management’ s System Resource
monitor. Y ou can monitor the amount of memory consumed by the AppServer using Fathom
Management’ s OpenEdge Server Resource monitor.

6—7

OpenEdge Revealed: Achieving Server Control with Fathom Management

6-8

Using asynchronous AppServer calls

Another way to achieve perceived performance gains when accessing the AppServer isto use
asynchronous AppServer calls. The application code on the AppServer does not need to be
altered at all; thisis purely a client-side programming construct.

Synchronous requests (the default) occur when the client blocks and waits for the result of the
remote request before continuing execution.

Asynchronous requests occur when the client continues execution after initiating the request
and processes the result whenever the AppServer makes it available. See the “ Example of
asynchronous requests” section on page 6-8 for when you might want to use this type of call.

Example of asynchronous requests

If you are hosting a Web site that needs to gather live information on the quantity of anitemin
each of anumber of warehouses, you might develop an architecture that looks like Figure 6-2.
In this diagram, WebSpeed uses reguests to each AppServer to return the number of items at
each warehouse. If each request takes 3 seconds, then using synchronous requests will take a
total of 5 times 3 seconds, resulting in approximately 15 secondstotal for the request, allowing
for some network overhead. If you used asynchronous requests, then the total time would be
dlightly longer than 3 seconds and nowhere near 15 seconds.

For more details on how to write asynchronous AppServer programs, see OpenEdge
Application Server: Developing AppServer Applications.

Performance Considerations

Warehouse #2

AppServer

AppServer

Warehouse #1

AppServer

AppServer

Warehouse #3
AppServer
A
Warehouse #4
\
WebSpeed \
%ihouse #5
]

Figure 6-2: Asynchronous requests

69

OpenEdge Revealed: Achieving Server Control with Fathom Management

AppServer configuration procedures

6-10

AppServer configuration procedures are Progress 4GL procedures that you can specify when
you configure an AppServer and that run at specific timesduring an AppServer’ slifetime. There
are three types of procedures:

. Startup and shutdown procedures
. Connect and disconnect procedures
e Activate and deactivate procedures

Each of these proceduresisrun at specific times during the lifetime of an AppServer process
with the idea of simplifying the process of deploying an application with the AppServer.

Becausethese procedures are standard 4GL programs, they can do anything the devel oper wants
to do. But, this can cause performance issues if the devel oper adds too much code, or the code
takes along time to run, because some of these procedures are executed regularly.

All of these procedures are optional and, depending on the AppServer operating mode, some
cannot be used. Table 6-1 shows which procedures you can use for each AppServer operating
mode.

Table 6-1: AppServer configuration procedures and operating modes
AppServer Startup/ Connect/ Activate/
operating mode shutdown disconnect deactivate
state-reset No Yes No
state-aware Yes Yes No
stateless Yes Yes Yes

For detailed information on these procedures and how to implement them, see OpenEdge
Application Server: Developing AppServer Applications.

Performance Considerations

Startup and shutdown procedures

Startup and shutdown procedures encapsulate logic that executes during the startup and
shutdown of an AppServer. This occurswhen the AppServer broker launches or killsan server.
Functionality that might go in astartup procedure includes connecting to databases, |oading the
contents of temporary tables to provide a cache, and instantiating certain local persistent
procedures and super procedures. In a shutdown procedure, the functionality might include
disconnecting databases, saving the contents of temp tables, del eting persistent procedures, and
general tidying up of the environment.

The startup procedureis run persistently, so it will stay in the AppServer’s memory and can be
accessed by the client and AppServer procedures. On the other hand, the shutdown procedure
is run nonpersistently, just before the server iskilled.

Connect and disconnect procedures

CONNECT and DISCONNECT procedures encapsulate logic that executes when a client application
establishes and terminates a connection with an AppServer. The CONNECT procedureis usually
used to authenticate the AppServer client user. See the “ Controlling AppServer entry points”
section on page 4-3 for an example of a CONNECT procedure that validates a user. User-specific
databases and temp tables can also be created and deleted in these procedures.

The CONNECT procedure is run persistently for state-reset and state-aware modes and
nonpersistently for stateless. The DISCONNECT procedure is always run nonpersistently.

Activate and deactivate procedures

When aclient application sends remote procedure requests to a statel ess AppServer, each
request might execute on a different server. To maintain application continuity between
requests, you might need to establish some application-specific resources or context before each
request and discard the resources and context after each request. The Activate and Deactivate
procedures help to manage these resources and context more easily.

6-11

OpenEdge Revealed: Achieving Server Control with Fathom Management

Application performance tuning

6-12

Itisgood practice to make sure that the database is performing adequately, and then move your
tuning focus to the application. Y ou might get a 15-20% benefit from a database server tweak,
but you can gain a 100% benefit from a code or database schema change.

Trying to improve performance of a WebSpeed application mainly deals with making the
application scalewell. Theuser at the other end of adial-up modem will usually not notice small
performance issues as the Internet itself is probably the slowest link in the entire process. But,
allowing the agent to quickly finish its request and be ready for the next allows for better
scalability. If aWebSpeed program takes five secondsto run, it is quite fast, and the customer
will be happy. If it could finish in 2.5 seconds, then the customer will till be happy, and the
WebSpeed server could cope with twice as many requests per minute than before. Thisiswhat
you should be aiming for: high performance WebSpeed applications that allow good scalability.

AppServer applications tend to be more interactive so scalability is not normally the highest
goal—outright speed is. Making the application faster is usually a combination of
understanding the database structures and writing efficient code to access these structures. Plus,
you need agood understanding of how the AppServer works, so callsto the AppServer are kept
to aminimum.

Two very simple things can make adifference to the performance of aWebSpeed or AppServer
application. Thefirst isto use shared r-code libraries and have these on alocal disk; and the
second is to move the WebSpeed agent or AppServer temporary files onto a separate disk for
other high accessfiles, like the UNIX swap area, or the database’ sBI files. R-codelibrariesare
documented in OpenEdge Deployment: Managing 4GL Applications. Making these “ shared”
will minimize the amount of machine memory used by WebSpeed agents and/or AppServers.
Thisis because shared r-code libraries are |oaded into memory once and all the clients
(WebSpeed, AppServer, batch, and host-based) will share the one copy. Standard r-code
libraries are loaded by each client that accesses them, so a IMB r-code library used by 25
WebSpeed agents and 100 AppServers will save around 124MB of main memory. Use the
-makeshared option on the PROLIB command to turn a standard r-code library into a shared
r-code library.

Fathom Management has facilities to measure and report on the performance of WebSpeed and
AppServer application code. The WebSpeed/AppServer Application Profilereport showsthe
application codethat has run and the maximum and average execution times. Thisisagood start
in finding under-performing application code.

Performance Considerations

Y ou should review the application code to determineif it is using standard practice for writing
good code:

. Does the code use NO-UNDO variables wherever possible?

. Does the code use ASSIGN commands to group micro-transactions?

. Does the code keep transactions and record scopes as small as possible?
. Does the code use DO, instead of REPEAT, unless transactions are needed?

. Does the code use avariable, instead of calling a function, over and over again? An
example follows:

DEFINE VARIABLE vParam AS CHAR NO-UNDO.
DEFINE VARIABLE vLoop AS INT NO-UNDO.

vParam = INT (GET-FIELD ("Param")).
DO vLoop = 1 TO vPARAM:

/* CODE */
END.

Thislist is not all-encompassing, but it isagood start. The last item is probably where most
performance improvements will be gained.

Also check that al the queries, FOR EACH and FIND use indexes. Before putting code into
production, compile the code using the XREF option. Then, examine the XREF file for correct
index usage. OpenEdge Data Management: Database Design describes how to read the XREF
output, and OpenEdge Development: Progress 4GL Reference details the XREF option on the
COMPILE statement.

6-13

OpenEdge Revealed: Achieving Server Control with Fathom Management

6-14

Progress 4GL Profiler

A much underused utility that Progress providesisthe Profiler. This utility will tell you:
. How long each line of code took to run.

. How many times each procedure or function has been called.

. What percentage of the total time was spent in each procedure.

The Profiler will work with any Progress 4GL client that is Version 8.2A or later. The Profiler
tool is supplied as source code and isin the OpenEdge-install/src/samples/profiler
directory. There is aWord document explaining how to set up and run the utility.

For example, at a customer’s site, the Profiler was used to determine why a WebSpeed
application would not scale. After running the application for aperiod of time and investigating
the Profiler output, it was found that the URL-ENCODE function was being called numeroustimes
and was consuming around 30% of the total request time. After removing callsto the
URL-ENCODE function, where they were not needed, and speeding up the function aswell, it
ended up consuming less than 5% of the total request time and the WebSpeed application
scaled.

When you use the Profiler with WebSpeed or AppServer, make sure that only one AppServer
server or WebSpeed agent isrunning. The output log file for the Profiler is sent to ahard-wired
filename. If multiple clientstry to writeto thisfile, it will cause problems. To force the number
of agents/serversto be 1, set the Initial, Minimum, and Maximum server settings equal to 1
on the Agent/Server Pool Range tab in the Progress Explorer.

Performance Considerations

Web server performance

To make the Web server perform faster, make sure that the machine it is running on is not
overloaded and that the Web server software is configured appropriately.

Using HTTP compression

Many Web pagestoday are at least 25K B in size, and some are as large as 100KB. And thisis
just the HTML! When you add in the images, most will bein the range of 100 to 150K B.
Sending thisinformation down to a Web browser over a dial-up modem will be very slow, as
most modems will do around 40K B per second. This meansthat 150KB will take, at best, 35
seconds to download.

Thereisasolution to thisissue and it does not require any changes to the application or to
WebSpeed. The solution is called HTTP compression and it is available in most modern Web
browsers and Web servers. It isdescribed in an article at thisURL:
http://www.webreference.com/internet/software/servers/http/compression/index.h
tm1. Check your Web server documentation on how to enable HT TP compression and it should
increase performance without impacting too much on the Web server.

Alleviating CPU load

Using HTTP/S to encrypt access to the Web site might cause the CPU in the Web server to
become overloaded. Thisis because the encryption requires alot of mathematics. To alleviate
the CPU load, you can use hardware SSL accelerators.

6-15

http://www.webreference.com/internet/software/servers/http/compression/index.html
http://www.webreference.com/internet/software/servers/http/compression/index.html

OpenEdge Revealed: Achieving Server Control with Fathom Management

6-16

Where to Use Fathom Management when
Deploying

This chapter highlightsthe areas of Fathom Management that should be used during application
deployment. It includes the following topics:

. Monitoring AppServer and WebSpeed
. NameServer debugging

. Memory, CPU, and disk monitoring

. L og file management

. Using My Fathom

For compl ete instructions on using Fathom Management features, see the Fathom Management
documentation set.

OpenEdge Revealed: Achieving Server Control with Fathom Management

Monitoring AppServer and WebSpeed

7-2

Several Fathom Management features can be used to monitor AppServer and WebSpeed,
including:

. Broker and Server Performance views
e Trending and reporting data
. Setting rules and configuring alerts

. HTTP monitor

Broker and Server Performance views

The following Fathom Management views can be used to monitor AppServer and WebSpeed
server and broker performance:

. Broker Performance View — Shows overall broker information and provides a good
genera view of how the AppServer/WebSpeed service is running. You should use the
Broker Performance View to get arough overview of throughput (Broker Requests
Completed and the Aver age Busy Time). If there are any requeststhat have been queued,
then thisis ahint that you might need to allocate more serversto the pool or increase the
speed of the application.

. Server Performance View — Showsthetotal number of servers/agents, the number free,
and the number of locked or busy serverg/agents, along with the CPU and memory
consumption of the servers/agents. The Server Performance View can be used to see if
the servers are leaking memory and steadily growing in size or if they are consuming too
much CPU time.

Where to Use Fathom Management when Deploying

Figure 7—1 shows WebSpeed Broker and Agent (server) views. The AppServer views are
identical in content.

(3 WebSpeed: dougmerrett.Sports2000_WS
Broker Performance View
26-Aug-03 23:31:51

Broker Requests Client Connections
Completed: 11598 Current: 0
Queued: a Total: 11598
Rejected: 0
Average Busy Time (s): 0.036
Average Locked Time (s): 0.0

WS Broker Request Activity

E00

Go0 I Completed
I Received

[k T T 1
22:00 22:30 23:00 23:30 w

WS Broker Activity Status

100
80 .

o I Fejected (%)
a0 I Queued (%1
20

0T T T 1

22:00 22:30 23:00 23:30 w

Client Connections

600 | crients Total
I Clients Current

22:30 23:00 w

Progress Sofhware Corporation (o, progress. com)

Figure 7-1: Broker Performance View

7-3

OpenEdge Revealed: Achieving Server Control with Fathom Management

Trending and reporting data

All of thisinformation can be saved in the FathomTrendDatabase, and reports can be run to
show historical comparisons to see if thereis a general slowdown, or if at certain times of the
week/month, CPU usage is extreme. Make sure you have checked the Trend Performance
Data check box in the monitoring plan to capture this data, as shown in Figure 7—2. Although
this example shows aWebSpeed server, the AppServer setting is configured in exactly the same
way.

(3 Edit Default_Schedule Monitoring Plan for:
(2| Sports2000_WS

Cancel |

Monitoring plan definition
Ayailable Schedules: |Defau|t_ScheduIe j
Polling Interval: |5— lm
Alerts Enabled: [
Trend Performance Data: W\ Advanced Settings |
)

Rules selected for this plan

Name Status Severity
EE Default_wS_RuleSet
@ WebSpeed Abnormal Shut Down Passed

AddRule | Select Rule Sets |

Figure 7-2: Trending performance data

Where to Use Fathom Management when Deploying

The Application Profile Report is avery powerful report that shows the number of times
programs are run and the average and maximum time taken for each program. The names of the
programs can be configured by using the “matches,” “begins with,” or “literal” values. Use
“matches*” to get all programs. Sincethe FathomTrendDatabase isan OpenEdge database, you
can also write your own reportsif the standard reports do not suit your needs. The source for the
standard reports isincluded in the FATHOM/src/fathom4gl-p.p1 file.

Y ou will need to copy thisfile to atemporary directory and then extract the .P filesusing the
PROLIB utility documented in OpenEdge Deployment: Managing 4GL Applications. Use these
programsas an example, or just modify them. Seethe Reporting Guide for moreinformation on
customizing Fathom reports.

Setting rules and configuring alerts

After gathering thisinformation for a number of weeks or months, you will have built up a
knowl edge base from which you can then determinethe standard for average run times, memory
utilization, and CPU utilization.

This information can then be used to set rules that will alert you to excessive procedure
execution time, CPU utilization, queue length, or other key performance indicators.

For the important procedures in your application, configure the Aver age Procedure Duration
High ruleto aert you to excessive procedure execution times for the WebSpeed or AppServer
procedure. By default, thisrule is not configured because you need to set it for individual
procedures. Y ou can add theruleto theDefault_AS_RuleSet and theDefault_WS_RuleSet, Or
create your own rule set.

7-5

OpenEdge Revealed: Achieving Server Control with Fathom Management

An example of setting thisruleisshown in Figure 7-3. It showsthat the Default_Mail_Action
action will be thrown after one poll where the average duration for DoSearch.p exceeds 75
milliseconds.

Rule: Average Procedure Duration High
Rule zet: Default_WS_RuleSet

Save | Cancel |

Defined Procedures

Threshold (in
milliseconds)

DoSearch.p |?5 Add/Update Remove

Procedure name

Alert severity: |Err0r j

Throw alert after: |1 failed pollis)

On alert perform action: |Defau|t_MaiI_Al:ti0n j

Clear alert after: ID successful pall(s)

On clear perform action: |N0ne j

Rule description

The average time spent executing a procedure during the polling intereal exceeded
the threshold. Separate thresholds can be established for each procedure run (or
to be run). This could indicate a bottleneck in the application or other unforeseen
events inhibiting the offending procedure from executing as quickly as expected.

Figure 7-3: Average Procedure Duration High rule

The following rules might also be useful in a deployment environment to help you identify a
possible runaway process or a possible memory leak: Process CPU High, Process Resident
Memory High, and Process Virtual Memory High.

7—6

Where to Use Fathom Management when Deploying

The Queued Request Percent High ruleis very useful for checking that the AppServer or
WebSpeed servers are not being overloaded with requests. The Queued Request Per centage
should be kept aslow as possible. If the queueis caused by the agents or serverstaking too long
to return aresponse, then you need to determine why—is it because the application is running
slowly (average procedure duration), or isit due to amachine overload (CPU/Memory usage)?
To reduce the queue length, you will need to increase the number of AppServers or WebSpeed
agents that the broker can launch and/or increase the speed of the application code by adding
more memory, CPU, or modifying the code or database structure to make the code run faster.

Using the Configuration Advisor

Y ou can calculate the values used to set the comparisons for all the above rules by yourself or
you can use the Configuration Advisor tool. Thistool usesdata collected over aperiod of time
and recommends settings for the selected rules. Y ou should use the Advisor’ s settings until you
get a better feel for the way the application is running.

HTTP monitor

The Fathom resource monitor for HTTP lets you monitor the state of the Web server and
WebSpeed application. You can configure the monitor to check if the Web server isalive and
also check if it isreturning correct information by using the Content rule definition section of
the monitoring plan.

For information on how to configure these Fathom features, see the Resour ce Monitoring Guide
and the OpenEdge Server Management Guide.

NameServer debugging

There are a number of rules that will aid in the debugging of OpenEdge server-based
applications when using the NameServer. These are the Duplicate Broker UUID, Broker
Timeout, and the AppService Not Found rules.

The Duplicate Broker UUID ruleisvery useful if you need to edit the ubroker.properties
file manually, because it will alert you if you' ve forgotten to use genuuid to create the UUID
when creating a new broker.

77

OpenEdge Revealed: Achieving Server Control with Fathom Management

Broker Timeout alerts occur when the broker does not send the keep-alive message within the
timeout period. This communications process is covered in Chapter 5, “Configuration of the
NameServer.” Thisalert usually meansthat the broker has died and has not tidied up after itself.

The AppService Not Found alert occurs when clients are requesting services that are not
provided by any brokers that are registered with the NameServer. This can be caused by a
misconfiguration of the client application in the case of AppServer requests and from
malformed URL swhen using WebSpeed. If you are hosting a public Web site using WebSpeed
and you are receiving these alerts, it might be because hackers are probing to find which
WebSpeed servers are enabled.

Memory, CPU, and disk monitoring

The memory, CPU and disk monitoring featureis useful for tracking usage trends over time. If
the virtual memory used is constantly high, adding more real memory to the machine would
help with performance as swapping is reduced. Likewise, if the CPU is constantly running at
100%, then adding more CPUs (or better coding) can aid inincreasing performance. In general,
more CPUs are better than faster CPUs. The reason is that with more CPUs you get better
parallelism. Disk storage prices have tumbled and the size of disks hasincreased dramatically.
Having many disks and alarge amount free space on these disks will improve performance.
Putting high-access parts of your system onto separate disks will increase throughput. Adding
hardware RAID 0/1 (mirroring and striping) will also help. Configuring the monitoring of these
resources is covered in the Resource Monitoring Guide. See OpenEdge Revealed: Mastering
the OpenEdge Database with Fathom Management for a detailed discussion of RAID.

Log file management

7-8

Log file management isafeature that should be used. The ability for Fathom to keep acheck on
thelog file size and look for errors within the log files is very important when running a
production system. It allows the administrator to concentrate on doing real work, rather than

scanning files for errors. Log file configuration, management, and alerting are covered in the
Resource Monitoring Guide.

Where to Use Fathom Management when Deploying

Using My Fathom

The My Fathom feature can be used to show the WebSpeed and AppServer throughput graphs,
CPU, and database graphs that allow the administrator to see, in asingle glance, if the
throughput of any application is starting to fall.

Thisis done by setting the customized view to show the appropriate graphs from the viewlets
available. Figure 7—4 show an example My Fathom page, which was configured to detail
memory usage. For detailed information about the My Fathom page and collections, see the
Resource Monitoring Guide.

chimay: admin

£ My Fathom | jiAlerts (1 unseen) | Resources | [[jLibrary | EiReports | &Jobs | ¥jOptions | 2 Help

My Fathom

= & Home

=3 My Collections

{og} My Collections.Home:Default

Collection View

{=3 Shared Collections

o & FathomTrendD

@ [§ FathomTrendD

@ = Diskfd

] ashrokert

o ¢ Fathom_Projec
Ay o [} CPU

] @ wsbroker1

@ 5= Memory

@ = Diskdad?

® 3 SMTP_MAIL

T ¢ biglock_locktat

@ [§ test_fathom

@ () NSt

@ = Disk-sd0

® ¥ FileSys-_usri

@ [§ biglock

Jun 3, 2004 10:11:29 AM

Resources with alerts =
Rescurce First Alert Last Alert Total
A fchimay. CPU Jun 3, 2004 2:40:43 AM Jun 3, 2004 2:41:43 AM 1

] chimay.CPU: CPU {general
User: 13.3% jop
System: 16.7%

50 ‘ussls I“?I
40 averags!
30.0% N =ystem (%)
[average]

busy
10:00 - - - threshaki

250

@ Passed &

Total:

9:43

10:15

Resource status
@ Pass

& Fail

o Mot Checked

(=] chimay.wsbroker1: WS Total Agents Memory 9 Passed O]

| Total Agents Memory (ME) [average]

o
10:0010:0210:0410:0610:0810:1010:12

@ chimay.asbrokeri: AS Total Servers Memory @ Passed O
207 &
=7 Total Servers hemory (MB)
107 laverage]

10:00 10004 10:02 10:12

@ Mot Running
@ Disabled
@ Inactive
2 Oftline
Alert severity
O Severe
< Warning
Ay Emor
(@ Information
s chimay.Memory: Memory used @ Passed O
Virtual: 1.3GB 1gp H
Usage: 27.7% g0 —
60 wirtual

. _ 40 usad (%)
Physical: 512.0 MB 0 e averags]
Usage: 95.2% pul . . . uzr;,ﬂs;:l

9:20 2:45 10:00 10:15 Jlaverage]

Figure 7-4:

My Fathom page

7-9

OpenEdge Revealed: Achieving Server Control with Fathom Management

7-10

Index

Numbers

4GL Trace option 3-32, 4-13

A

Accessing
I P Packet Filter settings 2-16
Web server 2-20
WebSpeed agent 2-23
WebSpeed broker 2-23

Activate and deactivate procedures 6-11

AdminServer
changing port used under UNIX 24
changing port used under Windows 2—3
overview 1-3
starting 1-4

Alerts 7-5
Application service names 54

AppServer
activate and deactivate procedures 6-11
asynchronous calls 6-8 to 6-9
broker 1-9
configuration procedures 6-10 to 6-11
configuration with five agents 4-2
connect and disconnect procedures 6-11

Connect procedure with export list 44

controlling entry points 4-3

deadlocks 4-7

debugging 4-8 to 4-15

deployment architecture 1-8

log file 4-13, 4-15

operating modes 6-6 to 67

overview 1-7to 1-9

performance 6-6 to 6-9

security 4-3to 4-5

server 1-9

setup and configuration 4-1 to 4-15

startup and shutdown procedures 6-11

using OpenEdge Application Debugger
4-8t04-13

using to access business logic 3-34 to
3-35

AppServer Broker Advanced Features 5-3

AppServer Internet Adapter (AlA)
Preface—4

AppServer Server configuration procedures
and operating modes 6-10

Architecture of OpenEdge servers 1-2
Asynchronous reguests 6-9

Average Procedure Duration High rule 7-6

OpenEdge Revealed: Achieving Server Control with Fathom Management

B

Broker ownership
setting 2-5

Broker Performance View 7-3
Broker Priority weights 5-5
Browser (HTTP) response times 64

Businesslogic
using AppServer for 3-34 to 3-35

C

CGlI wrapper 1-5, 3-27

CGlIP executable name
hiding 3-8

cgiip.wsc 2-9

Changing
agent parametersto reference web-disp.p
3-19
script directory names 3-8

Codedesigned torun on client or AppServer
334

Complex configuration 3-38

Configuring
ubroker.propertiesfile for firewall 2-12
WebSpeed broker logging 3-3to 34
WebSpeed servers 3-1to 3-38

Connect and disconnect procedures 6-11
CPU load 6-15
CPU monitor 7-8

D

Database
locking r-code 3-14, 4-5

Index—2

DBAUTHKEY 3-14,4-5

Debugging
applications 3-27 to 3-33
AppServer 4-8 to 4-15
enabling 4-9
firewall configurations 2-15 to 2—23
using OpenEdge Debugger 3-27
WebSpeed 3-24 to 3-33
with Fathom 7—7

Deployment model 3-12, 3-13
Development configuration Preface-3
Disk monitor 7-8

DMz 3-21

Domain Name System 2-24

E

Embedded SpeedScript 1-5, 3-28
Error code 46
Error Customization Utility 3-25

Error handling
AppServer 4610 4-8
WebSpeed 3-24 to 3-25

Example of asynchronous requests 6-8

F

Fathom
alerts7-5
Configuration Advisor 7-7
HTTP monitor 7—7
integration with OpenEdge servers 1-10
monitoring AppServer 7-2 to 7—7
monitoring CPU 7-8
monitoring disks 7-8
monitoring memory 7-8
monitoring WebSpeed 7-2 to 7-7

Index

My Fathom 7-9

performance views 7-2

rules 7-5

where to use when deploying 7-1 to 7-9

Fault-tolerant NameServer configurations
56t058

Firewalls
configuration 2-10 to 2-14
configuring ubroker.properties for 2-12
debugging 2-15 to 2-23
withDMZ 3-22

H

Host name
setting 2-14

HTTP compression 6-15
HTTP monitor 7-7
HTTP/S performance 64

I

inet_ns2-13

IP issues 2—-24

| P Packet Filter settings

accessing 2-16

L

L oad-balancing 54 to 56
L ocation independence 5-3

Log file management 7-8

Logging

configuring WebSpeed broker 3-3to 34

M

Mapped Web objects 1-5
Memory monitor 7-8
Microsoft 11S 3-8

Monitoring
AppServer 7-2to 7-7
WebSpeed 7-2 to 7—7

Multi-homed servers 2—24 to 2—-26

Multiple | P address servers, see
Multi-homed servers

Multiple Web servers 6-5
My Fathom 7-9

N

NameServer

application service names 54

checking access using NSMAN -name
NS1 -query 2-22

checking access using the Progress
Explorer 2-21

debugging with Fathom 7-7

load balancing 54 to 5-6

location independence 5-3

log file maintenance 5-12

logging levels 5-12

neighborhoods 56 to 5-8

performance 6-2

replication 5-6 to 5-8

setting broadcast properties 5-8

setup and configuration 5-1 to 5-12

understanding 5-2

NameServer neighborhoods 5-9
NameServer replication 5-6

Index—3

OpenEdge Revealed: Achieving Server Control with Fathom Management

Network traffic
securing 3-5

No NameServer
version of the request round-trip 2-8

NSMAN -name NS1 -query 2—21

O

Open client Preface-5

OpenEdge Application Debugger 3-27
using to debug AppServer applications
4-8t04-13
working in a CGl wrapper program 3-27
working in an Embedded SpeedScript
application 3-30

OpenEdge Debugger
using 4-10

OpenEdge servers
genera configuration tasks 2—-2

Other OpenEdge server products Preface—4

Overview
Fathom and OpenEdge 1-1
OpenEdge servers 1-1

P

Parameters
passing 3-20

Passing unique identifiers 3-21

Performance
application tuning 6-12 to 6-15
AppServer 6-6 to 6-9
browser response times 64
HTTP/S64
multiple Web servers 6-5
NameServer 6-2
WebSpeed 6-2 to 6-5
WebSpeed Messengers 6-5

Performance considerations 6-1 to 6-15

Index—4

Priority weights 5-5

Problematic code without NO-WAIT
NO-ERROR 4-7

Progress 4GL Profiler 6-14

Progress OpenEdge application deployment
architecture 1-2

PROPATH
minimizing 3-20

R

Register with NameServer setting 2—26
Remote debugging 4-10

Reporting data 7—4

Request round-trip 2-6

Resetting export list 4-5

Rules 7-5

S

Script directory names
changing 3-8

Secure AppServer Internet Adapter (AIA/S)
Preface—4

Secure firewall configuration 3-23

Security
AppServer 4-3t04-5
AppServer Connect procedure 44
changing script directory names 3-8
controlling AppServer entry points 4-3
Firewalls 3-21 to 3-24
hiding CGIP executable name 3-8
locking r-code to the database 3-14
Microsoft 11S 3-8
modifying web-disp.p 3-15 to 3-19
network traffic 3-5
passing parameters 3-20

Index

PROPATH 3-20

Web server 3-6

WebSpeed 34 to 3-24

WebSpeed agent production setting 3-15

WebSpeed application 3-14 to 3-21

WebSpeed Messenger Administration
tool 3-10

WebSpeed server 3-11 to 3-13

Setting

application service names 54

DISPLAY environment variablein
ubroker.properties 3-31

host name 2-14

minimum and maximum agents 6-3

NameServer broadcast properties 5-8

NameServer neighborsin the Progress
Explorer 5-11

NameServer neighborsin
ubroker.properties 5-11

Production mode for WebSpeed agents
3-15

rules7-5

Setup and configuration
AppServer 4-1to ?7?
NameServer 5-1 to 5-12

Setup and Configuration of OpenEdge
servers 2-1to 2-26

ShutdownCmd 2-3

Starting the AdminServer 1-4

Startup and shutdown procedures 6-11
StartupCmd 2-3

T

Trending data 7—4

Trending performance data 7—4

U

ubroker.properties 2-12, 2-21
configuring for firewall 2-12
enabling 4GL Trace 3-32, 4-14
modifying 2—2
modifying for firewall 2-12
setting NameServer neighbors 5-11
understanding 1-4
WebSpeed Messenger logging 2—20

Understanding state-reset, state-aware, and
statel ess operating modes 6-6

UNIX
Web server security 3-9

Using other techniquesto debug AppServer
applications 4-13

Using statel ess mode 67

wW

Web server
checking response 3-7
hiding type and version 3-7
multiple 6-5
performance 6-15
securing 3-6
UNIX 3-9

web-disp.p 3-15
WebServices Toolkit (WSTK) Preface-5

WebSpeed
agents 1-7
application security 3-14 to 3-21
broker 1-7
changing script directory names 3-8
debugging 3-24 to 3-33
debugging applications 3-27 to 3-33

Index—5

OpenEdge Revealed: Achieving Server Control with Fathom Management

Index—6

deployment architecture 1-6

error handling 3-24 to 3-25
firewalls 3-21 to 3-24

hiding CGIIP executable name 3-8
Microsoft 11S 3-8

minimizing PROPATH 3-20
modifying web-disp.p 3-15 to 3-19
overview 1-5

passing parameters 3-20
performance 6-2 to 6-5
redirecting error messages 3-24
securing network traffic 3-5
securing Web server 3-6

security 3-4to 3-24

server, overview 1-6

UNIX Web servers 3-9

writing robust code 3-26

WebSpeed Agent
accessing 2-23
changing parameters 3-19
log file 3-32, 3-33
production setting 3-15

WebSpeed broker
accessing 2-23
logging 3-3to 34

WebSpeed Messenger
debugging 2—-20
installation 3-2
performance 6-5

WebSpeed server
configuring 3-1 to 3-38
DISPLAY environment variable 3-31
security 3-11to 3-13

wspd_cgi.sh 2-9

	Preface
	Purpose
	Audience
	Fathom Management with OpenEdge or Progress
	How to use this manual
	What will not be covered in this manual
	Development configuration
	Other server products
	The AppServer Internet Adapter and Secure AppServer Internet Adapter
	Open clients
	WebServices Toolkit (WSTK)

	Organization
	Typographical conventions

	Fathom and OpenEdge Servers Overview
	Architecture of OpenEdge servers
	Administration server
	Understanding the ubroker.properties file
	WebSpeed
	AppServer

	Fathom integration with OpenEdge servers

	Setup and Configuration of OpenEdge Servers
	General OpenEdge server configuration tasks
	Broker ownership
	Request round-trip process
	No NameServer version of the request round-trip

	Firewall configuration and debugging
	Firewall configuration
	Debugging firewall configurations

	IP issues
	Domain Name System
	Multi-homed servers (multiple IP address servers)

	Configuration of WebSpeed Servers
	WebSpeed Messenger installation
	General WebSpeed server configuration
	Configuring logging

	WebSpeed security
	Securing your network traffic
	Securing your Web server
	Securing your WebSpeed server machine
	Securing your WebSpeed application
	Firewalls

	Error handling and debugging
	Error handling
	Writing robust code
	Debugging the application

	Using the AppServer to access the business logic
	Examples of simple and complex configurations

	Configuration of the AppServer
	General configuration
	AppServer security
	Controlling AppServer entry points
	Using DBAUTHKEY to lock your r-code to the database

	Error handling
	Coding practices to avoid deadlocks

	Debugging
	Using the OpenEdge Application Debugger to debug AppServer applications
	Using other techniques to debug AppServer applications

	Configuration of the NameServer
	Understanding the NameServer
	Location independence
	Load-balancing
	Fault-tolerant NameServer configurations
	NameServer replication

	NameServer neighborhoods
	Logging levels
	Log file maintenance

	Performance Considerations
	NameServer performance
	WebSpeed performance
	How requests affect performance
	Browser (HTTP) response times
	HTTP/S performance
	Using different Messengers
	Multiple Web servers

	AppServer performance
	How AppServer operating modes affect performance
	Using asynchronous AppServer calls

	AppServer configuration procedures
	Startup and shutdown procedures
	Connect and disconnect procedures
	Activate and deactivate procedures

	Application performance tuning
	Progress 4GL Profiler
	Web server performance

	Where to Use Fathom Management when Deploying
	Monitoring AppServer and WebSpeed
	Broker and Server Performance views
	Trending and reporting data
	Setting rules and configuring alerts
	HTTP monitor

	NameServer debugging
	Memory, CPU, and disk monitoring
	Log file management
	Using My Fathom

	Index
	Numbers
	A
	B
	C
	D
	E
	F
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W

