
OpenEdgeTM Revealed:
Achieving Server Control with
FathomTM Management

Doug Merrett Expert Series

©2004 Progress Software Corporation. All rights reserved.

Progress® software products are copyrighted and all rights are reserved by Progress Software Corporation. This manual is also copyrighted and
all rights are reserved. This manual may not, in whole or in part, be copied, photocopied, translated, or reduced to any electronic medium or
machine-readable form without prior consent, in writing, from Progress Software Corporation.

The information in this manual is subject to change without notice, and Progress Software Corporation assumes no responsibility for any errors
that may appear in this document. The references in this manual to specific platforms supported are subject to change.

Allegrix, A [Stylized], ObjectStore, Progress, Powered by Progress, Progress Fast Track, Progress Profiles, Partners in Progress, Partners en
Progress, Progress en Partners, Progress in Progress, P.I.P., Progress Results, ProVision, ProCare, ProtoSpeed, SmartBeans, SpeedScript, and
WebSpeed are registered trademarks of Progress Software Corporation or one of its subsidiaries or affiliates in the U.S. and/or other countries.
AccelEvent, A Data Center of Your Very Own, Allegrix & Design, AppsAlive, AppServer, ASPen, ASP-in-a-Box, BusinessEdge, Business
Empowerment, Empowerment Center, eXcelon, Fathom, Future Proof, IntelliStream, ObjectCache, OpenEdge, PeerDirect, POSSE, POSSENET,
Progress Business Empowerment, Progress Dynamics, Progress Empowerment Center, Progress Empowerment Program, Progress for Partners,
Progress OpenEdge, Progress Software Developers Network, PSE Pro, PS Select, SectorAlliance, SmartBrowser, SmartComponent,
SmartDataBrowser, SmartDataObjects, SmartDataView, SmartDialog, SmartFolder, SmartFrame, SmartObjects, SmartPanel, SmartQuery,
SmartViewer, SmartWindow, Technical Empowerment, WebClient, and Who Makes Progress are trademarks or service marks of Progress
Software Corporation or one of its subsidiaries or affiliates in the U.S. and other countries.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

Any other trademarks or service marks contained herein are the property of their respective owners.

Fathom Management includes software developed by the Apache Software Foundation (http://www.apache.org/). Copyright © 1999 The Apache
Software Foundation. All rights reserved (Xalan XSLT Processor) and Copyright © 2000-2002 The Apache Software Foundation. All rights
reserved (Jakarta-Oro). The names “Apache,” “Xerces,” “Jakarta-Oro,” and “Apache Software Foundation” must not be used to endorse or
promote products derived from this software without prior written permission. Products derived from this software may not be called “Apache” or
“Jakarta-Oro,” nor may “Apache” or “Jakarta-Oro” appear in their name, without prior written permission of the Apache Software Foundation. For
written permission, please contact apache@apache.org. Software distributed on an “AS IS” basis, WITHOUT WARRANTY OF ANY KIND,
either express or implied. See the License for the specific language governing rights and limitations under the License agreement that accompanies
the product.

Fathom Management includes software developed by ACME Labs. Copyright © 2000 by Jef Poskanzer <jef@acme.com>. All rights reserved.
Software distributed on an “AS IS” basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License for the specific
language governing rights and limitations under the License agreement that accompanies the product.

Fathom Management includes software developed by Sun Microsystems, Inc. Copyright © 2003 Sun Microsystems, Inc. All Rights Reserved.
Software distributed on an “AS IS” basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License for the specific
language governing rights and limitations under the License agreement that accompanies the product.

Fathom Management includes the Jetty Package Copyright © 1998 Mort Bay Consulting Pty. Ltd. (Australia).

Fathom Management includes software developed by the ModelObjectsGroup (http://www.modelobjects.com). Copyright © 2000-2001
ModelObjects Group. All rights reserved. The name “ModelObjects” must not be used to endorse or promote products derived from the SSC
Software without prior written permission. Products derived from the SSC Software may not be called “ModelObjects”, nor may “ModelObjects”
appear in their name, without prior written permission. For written permission, please contact djacobs@modelobjects.com.

Fathom Management includes files that are subject to the Netscape Public License Version 1.1 (the “License”); you may not use this file except in
compliance with the License. You may obtain a copy of the License at (http://www.mozilla.org/NPL). Software distributed under the License is
distributed on an “AS IS” basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License for the specific language
governing rights and limitations under the License. The Original Code is Mozilla Communicator client code, released March 31, 1998. The Initial
Developer of the Original Code is Netscape Communications Corporation. Portions created by Netscape are Copyright © 1998-1999 Netscape
Communications Corporation. All Rights Reserved.

Fathom Management contains copyright material licensed fromAdventNet, Inc. http://www.adventnet.com. All rights to such copyright material
rest with AdventNet.

Fathom Management includes the RSA Data Security, Inc. MD5 Message-Digest Algorithm. Copyright © 1991-2, RSA Data Security, Inc.
Created 1991. All rights reserved.

Product Code: 4010

Release: V3.0A

Item Number: 101212

August 2004

mailto: jef@acme.com
http://www.apache.org/
http://www.mozilla.org/NPL
http://www.modelobjects.com
http://www.adventnet.com
mailto: apache@apache.org
mailto: jef@acme.com
mailto: djacobs@modelobjects.com

Acknowledgements

I'd like to thank all my colleagues who have reviewed this book and given valuable comments
to add clarity to the text and also to point out where I had missed important information.

My thanks also go to the Fathom Management development, quality assurance, and
documentation teams who have worked hard to provide me with invaluable assistance
throughout the writing of this book.

OpenEdge Revealed: Achieving Server Control with Fathom Management
iv

Contents
Preface . Preface–1

1. Fathom and OpenEdge Servers Overview . 1–1
Architecture of OpenEdge servers . 1–2

Administration server. 1–3
Understanding the ubroker.properties file . 1–4
WebSpeed . 1–5
AppServer . 1–7

Fathom integration with OpenEdge servers . 1–10

2. Setup and Configuration of OpenEdge Servers . 2–1
General OpenEdge server configuration tasks . 2–2
Broker ownership . 2–4
Request round-trip process . 2–6

No NameServer version of the request round-trip. 2–8
Firewall configuration and debugging . 2–10

Firewall configuration. 2–10
Debugging firewall configurations . 2–15

IP issues . 2–24
Domain Name System. 2–24
Multi-homed servers (multiple IP address servers) 2–24

3. Configuration of WebSpeed Servers . 3–1
WebSpeed Messenger installation . 3–2
General WebSpeed server configuration . 3–3

Configuring logging . 3–3
WebSpeed security . 3–4

Securing your network traffic . 3–5
Securing your Web server . 3–6

Contents

vi
Securing your WebSpeed server machine . 3–11
Securing your WebSpeed application . 3–14
Firewalls . 3–21

Error handling and debugging . 3–24
Error handling. 3–24
Writing robust code . 3–26
Debugging the application . 3–27

Using the AppServer to access the business logic . 3–34
Examples of simple and complex configurations . 3–35

4. Configuration of the AppServer. 4–1
General configuration . 4–2
AppServer security . 4–3

Controlling AppServer entry points. 4–3
Using DBAUTHKEY to lock your r-code to the database. 4–5

Error handling . 4–6
Coding practices to avoid deadlocks . 4–7

Debugging . 4–8
Using the OpenEdge Application Debugger to debug

AppServer applications . 4–8
Using other techniques to debug AppServer applications 4–13

5. Configuration of the NameServer . 5–1
Understanding the NameServer . 5–2
Location independence . 5–3
Load-balancing . 5–4
Fault-tolerant NameServer configurations . 5–6

NameServer replication . 5–6
NameServer neighborhoods . 5–9

Logging levels . 5–12
Log file maintenance . 5–12

6. Performance Considerations . 6–1
NameServer performance . 6–2
WebSpeed performance . 6–2

How requests affect performance . 6–2
Browser (HTTP) response times . 6–4
HTTP/S performance . 6–4
Using different Messengers . 6–5
Multiple Web servers . 6–5

AppServer performance . 6–6
How AppServer operating modes affect performance 6–6
Using asynchronous AppServer calls. 6–8

Contents
AppServer configuration procedures . 6–10
Startup and shutdown procedures . 6–11
Connect and disconnect procedures. 6–11
Activate and deactivate procedures . 6–11

Application performance tuning . 6–12
Progress 4GL Profiler . 6–14
Web server performance . 6–15

7. Where to Use Fathom Management when Deploying. 7–1
Monitoring AppServer and WebSpeed . 7–2

Broker and Server Performance views . 7–2
Trending and reporting data . 7–4
Setting rules and configuring alerts. 7–5
HTTP monitor . 7–7

NameServer debugging . 7–7
Memory, CPU, and disk monitoring . 7–8
Log file management . 7–8
Using My Fathom . 7–9

Index . Index–1
vii

Contents

viii

Figures

Figure 1–1: Progress OpenEdge application deployment architecture 1–2
Figure 1–2: WebSpeed deployment architecture . 1–6
Figure 1–3: AppServer deployment architecture . 1–8
Figure 2–1: Setting broker ownership . 2–5
Figure 2–2: Request round-trip . 2–6
Figure 2–3: Configuring No NameServer . 2–9
Figure 2–4: Firewall configuration . 2–11
Figure 2–5: Setting host name . 2–14
Figure 2–6: Checking NameServer access using the Progress Explorer 2–21
Figure 2–7: Multi-homed server . 2–25
Figure 2–8: Register with NameServer setting . 2–26
Figure 3–1: WebSpeed configuration with five agents . 3–3
Figure 3–2: Deployment model with separate machines for the Internet

Production, Intranet Production, and the Development/Test servers . . 3–12
Figure 3–3: Deployment with two NameServers . 3–13
Figure 3–4: Setting Production mode for WebSpeed agents 3–15
Figure 3–5: Changing agent parameters to reference web-disp.p 3–19
Figure 3–6: Firewall with DMZ . 3–22
Figure 3–7: Secure firewall configuration . 3–23
Figure 3–8: OpenEdge Application Debugger working in a CGI wrapper

program . 3–27
Figure 3–9: OpenEdge Application Debugger working in an Embedded

SpeedScript application . 3–30
Figure 3–10: WebSpeed server environment variable: DISPLAY 3–31
Figure 3–11: Simple configuration . 3–36
Figure 3–12: Complex configuration . 3–38
Figure 4–1: AppServer configuration with five agents . 4–2
Figure 4–2: Enabling 4GL Debugger for AppServer server 4–9
Figure 5–1: AppServer broker Advanced Features page . 5–3
Figure 5–2: Setting application service names . 5–4
Figure 5–3: Setting Priority weight for an AppServer . 5–5
Figure 5–4: NameServer replication . 5–7
Figure 5–5: Setting NameServer broadcast properties . 5–8
Figure 5–6: NameServer neighborhood . 5–10
Figure 5–7: Setting NameServer neighbors in the Progress Explorer 5–11
Figure 6–1: Setting minimum and maximum agents . 6–3
Figure 6–2: Asynchronous requests . 6–9
Figure 7–1: Broker Performance View . 7–3
Figure 7–2: Trending performance data . 7–4
Figure 7–3: Average Procedure Duration High rule . 7–6
Figure 7–4: My Fathom page . 7–9

Contents

ix

Tables

Table 3–1: Redirecting WebSpeed error messages . 3–24
Table 5–1: Broker priority weights . 5–5
Table 6–1: AppServer configuration procedures and operating modes 6–10

Contents

x

Examples

Example 1–1: ubroker.properties file . 1–4
Example 2–1: Configuring ubroker.properties file for firewall . 2–12
Example 2–2: Checking NameServer access using NSMAN -name NS1 -query 2–22
Example 3–1: Default web-disp.p . 3–17
Example 3–2: Secure web-disp.p . 3–18
Example 3–3: Passing unique identifiers . 3–21
Example 3–4: Robust code for passing parameters . 3–26
Example 3–5: Setting DISPLAY environment variable in ubroker.properties 3–31
Example 3–6: Enabling 4GL Trace in ubroker.properties . 3–32
Example 3–7: WebSpeed agent log file . 3–33
Example 3–8: WebSpeed agent log file lines . 3–33
Example 3–9: Code designed to run on Client or AppServer 3–34
Example 4–1: Connect procedure with export list . 4–4
Example 4–2: Resetting export list . 4–5
Example 4–3: Error code . 4–6
Example 4–4: Problematic code without NO-WAIT NO-ERROR 4–7
Example 4–5: Robust code with NO-WAIT NO-ERROR . 4–8
Example 4–6: Remote debugging code . 4–10
Example 4–7: Enabling 4GL Trace in ubroker.properties . 4–14
Example 5–1: Setting NameServer neighbors in ubroker.properties 5–11

Preface
This Preface contains the following sections:

• Purpose

• Audience

• Fathom Management with OpenEdge or Progress

• How to use this manual

• What will not be covered in this manual

• Organization

• Typographical conventions

OpenEdge Revealed: Achieving Server Control with Fathom Management
Purpose
This manual documents the best practices for configuring the deployment, maintenance, tuning,

and debugging of your Progress® OpenEdge™ server-based applications.

Additionally, the Fathom™ Management features that can help you maintain, tune, and monitor
the OpenEdge servers are identified at the appropriate times throughout this manual.

Audience
This manual is mainly for use by OpenEdge system administrators. Some parts of this manual
pertain to the development and debugging of applications based on the OpenEdge server
technology. These will be of interest to Development and Quality Assurance staff.

Fathom Management with OpenEdge or Progress
Fathom Management Version 3.0A runs against the following:

• OpenEdge 10.0B.

• Progress Version 9.1D and the 9.1D09 service pack.

For the sake of simplicity, the procedures and screen shots provided in this manual refer to
running Fathom against OpenEdge 10.0B. However, be assured that unless indicated otherwise,
the procedures are the same for both Progress Version 9.1D with the 9.1D09 service pack and
OpenEdge 10.0B. For example, if a procedure refers to an OpenEdge database, the procedure
applies to a Progress database as well.
Preface–2

Preface
How to use this manual
Read Chapter 1, “Fathom and OpenEdge Servers Overview,” first because it defines and
describes the components that make up an OpenEdge server deployment. Then read the sections
of this manual that pertain to your deployment environment.

The goal of this book is not to reiterate what is already documented in the Fathom Management
documentation set, but rather to explain how you can best use Fathom Management to help
manage, maintain, and monitor an OpenEdge application. This manual contains information
gathered from the experience of helping to develop, debug, and deploy OpenEdge applications.
If Fathom Management had been available when some of these deployments were done, their
successful implementation would have been much easier.

What will not be covered in this manual
The following topics will not be covered in this manual:

• Development configuration

• Other server products

• The AppServer Internet Adapter and Secure AppServer Internet Adapter

• Open clients

• WebServices Toolkit (WSTK)

Development configuration
This manual is designed to cover the best practices for the deployment and continued running
of Progress OpenEdge server-based applications. Even though we will cover some debugging
and tuning of these applications, the configuration of the development and test servers will not
be covered. Some of the deployment information will be useful for the configuration of a “live”
test environment.
Preface–3

OpenEdge Revealed: Achieving Server Control with Fathom Management
Other server products
The OpenEdge database server, DataServers, and the SonicMQ® 4GL Adapter can all be
managed by the AdminServer. These are not covered in this manual. The database server is
covered in OpenEdge Revealed: Mastering the OpenEdge Database with Fathom Management,
and the others are not currently managed or monitored by Fathom Management.

The AppServer Internet Adapter and Secure AppServer
Internet Adapter
The AppServer™ Internet Adapter (AIA) and Secure AppServer™ Internet Adapter (AIA/S)
are designed to allow AppServer clients (either 4GL or open clients) to connect to the
AppServer over HTTP, or in the case of AIA/S over HTTP/S. This is done to provide ease of
deployment for extranet solutions where the client might be behind a firewall and cannot
communicate to the AppServer using the normal process. Both adapters are described in
OpenEdge Application Server: Administration.

The AIA and AIA/S work in a very similar fashion to the WebSpeed Messenger in that they:

• Are accessed via a Web server.

• Take a request from an external client.

• Find the appropriate AppServer broker and AppServer server to send the request to.

• Pass the request through to the AppServer server.

• Send the resulting response to the external client.

The AIA and AIA/S are Java ™ Servlets and run in a Java Servlet Engine (JSE). The JSE can
be either on the same machine as the Web server or another machine.

Connecting from the AIA or AIA/S to the AppServer follows the same process as the WebSpeed
Messenger, so any information in this manual regarding firewall configuration to allow
communications between the WebSpeed Messenger and WebSpeed® Transaction Server is
equally applicable to the AIA and AIA/S accessing the AppServer.
Preface–4

Preface
Open clients
Open clients are either Java or COM objects that expose an AppServer process to their parent
language. Open Clients allow Visual Basic or your Web-enabled applications written in Java to
work with the same business functions used by your OpenEdge enterprise applications. The
process for connecting to the AppServer is the same as for a 4GL client, so the configuration
section of this manual describing 4GL clients connecting to an AppServer is relevant. Open
Clients can also access the AppServer via the AIA or AIA/S. The Open Client is fully described
in OpenEdge Development: Open Client Introduction and Programming.

WebServices Toolkit (WSTK)
The WebServices Toolkit is a product that exposes an AppServer process as a WebService as
defined by the World Wide Web Consortium (http://www.w3c.org).

For more information on the WSTK, please go to the Progress Software Developers Network
(PSDN) Web site (http://psdn.progress.com) and look for “WebServices Toolkit” in the
PSDN library’s “Product and Technology Information” section.

Organization
This manual contains the following chapters:

Chapter 1, “Fathom and OpenEdge Servers Overview”

Provides an overview of the OpenEdge servers, including the OpenEdge Architecture and
how you can integrate Fathom Management with your OpenEdge servers.

Chapter 2, “Setup and Configuration of OpenEdge Servers”

Provides general setup and configuration information that are common to each type of
OpenEdge server, including WebSpeed®, AppServer™, and NameServer. Topics
discussed include broker ownership, the request round-trip process, firewall configuration
and debugging, and IP issues.

Chapter 3, “Configuration of WebSpeed Servers”

Provides setup and configuration information that is specific to WebSpeed. Topics
discussed include general WebSpeed server configuration, installation of the WebSpeed
Messenger, security, error handling and debugging, using the AppServer to access
business logic, and simple and complex configurations.
Preface–5

http://www.w3c.org
http://psdn.progress.com

OpenEdge Revealed: Achieving Server Control with Fathom Management
Chapter 4, “Configuration of the AppServer”

Provides setup and configuration information that is specific to the AppServer. Topics
discussed include general AppServer configuration, security, error handling and
debugging.

Chapter 5, “Configuration of the NameServer”

Provides setup and configuration information that is specific to the NameServer. Topics
discussed include an overview of the NameServer, location independence, load-balancing,
fault-tolerant NameServer configurations, and NameServer neighborhoods.

Chapter 6, “Performance Considerations”

Provides performance considerations and tuning for WebSpeed, the AppServer, and the
NameServer. It also provides performance tuning information for your applications.

Chapter 7, “Where to Use Fathom Management when Deploying”

Provides guidelines for using several Fathom Management features with OpenEdge
servers. Topics include using Fathom Management to monitor the AppServer and
WebSpeed; debugging the NameServer; monitoring memory; CPU and disks; managing
log files; and using My Fathom.

Typographical conventions

This manual uses the following typographical conventions:

Convention Description

Bold Bold typeface indicates commands or characters the user types, or
the names of user interface elements.

Italic Italic typeface indicates the title of a document, provides
emphasis, or signifies new terms.

SMALL, BOLD
CAPITAL LETTERS

Small, bold capital letters indicate OpenEdge™ key functions and
generic keyboard keys; for example, GET and CTRL.

KEY1-KEY2 A hyphen between key names indicates a simultaneous key
sequence: you press and hold down the first key while pressing the
second key. For example, CTRL-X.
Preface–6

Preface
KEY1 KEY2 A space between key names indicates a sequential key sequence:
you press and release the first key, then press another key. For
example, ESCAPE H.

Syntax:

Fixed width A fixed-width font is used in syntax statements, code examples,
and for system output and filenames.

Fixed-width italics Fixed-width italics indicate variables in syntax statements.

Fixed-width bold Fixed-width bold indicates variables with special emphasis.

UPPERCASE
fixed width

Uppercase words are Progress® 4GL language keywords.
Although these always are shown in uppercase, you can type them
in either uppercase or lowercase in a procedure.

This icon (three arrows) introduces a multi-step procedure.

This icon (one arrow) introduces a single-step procedure.

Convention Description
Preface–7

OpenEdge Revealed: Achieving Server Control with Fathom Management
Preface–8

1
Fathom and OpenEdge Servers Overview

This chapter introduces you to Fathom™ and OpenEdge™ servers. It covers the following
topics:

• Architecture of OpenEdge servers

• Fathom integration with OpenEdge servers

OpenEdge Revealed: Achieving Server Control with Fathom Management
Architecture of OpenEdge servers

The OpenEdge™ servers are the WebSpeed® Transaction Server and the AppServer™. The
NameServer is a separate (and optional in Progress® Version 9.1D and higher) server that is
used by the OpenEdge Server environment. The OpenEdge and NameServers are controlled and
configured by the Administration server.

Figure 1–1 shows the general architecture of a Progress OpenEdge application deployment.

Figure 1–1: Progress OpenEdge application deployment architecture

OpenEdge
Client

AdminServer

NameServer

Fathom
Management

Console

Text Editor or
Configuration

UtilitiesOpenEdge
Server Broker

OpenEdge
Server

Agents/Servers

ubroker.properties

OpenEdge Server
Host

Progress Explorer
or Management

Utilities
1–2

Fathom and OpenEdge Servers Overview
The Administration server (AdminServer) is the controlling process for all of the OpenEdge
servers (including databases, NameServers, DataServers, and so on) on a physical host. The
AdminServer gets configuration information for the OpenEdge servers from the
ubroker.properties file. You can maintain this file using either the Progress Explorer tool or
a text editor. Using the Progress Explorer tool is the recommended way to update the
ubroker.properties file because it validates your input, which helps to alleviate configuration
errors.

Figure 1–1 shows only OpenEdge servers and a NameServer, which are all on the same host.
However, you can install OpenEdge servers and NameServers on different hosts, and in this
case, each host would need its own AdminServer. The solid lines show communication paths
and the dashed line indicates optional communication.

The OpenEdge server can be either a WebSpeed server or an AppServer. In the case of
WebSpeed, the WebSpeed broker will manage WebSpeed agents. For an AppServer, the
AppServer broker will manage AppServer servers.

The NameServer does the following:

• Allows location independence for OpenEdge servers.

• Provides fault tolerance.

• Provides load balancing for requests.

See Chapter 5, “Configuration of the NameServer,” for more information.

Administration server

The AdminServer is the controlling process for all of the OpenEdge servers on a host. It allows
the Progress Explorer, command line management utilities, or Fathom Management to start,
stop, or query the status of any OpenEdge server.

Note: Fathom Management can control only OpenEdge databases, AppServers, WebSpeed
servers, and NameServers.
1–3

OpenEdge Revealed: Achieving Server Control with Fathom Management
Starting the AdminServer

Because the AdminServer is the controlling process, it must be started first. On Microsoft
Windows, this is automatically achieved because the AdminServer is installed as a Service.

On UNIX, if you want the AdminServer to automatically start, add the proadsv -start
command to a script in the rc.d directories. Please consult your UNIX administration guide for
details.

Understanding the ubroker.properties file

If you look at the ubroker.properties file (located the OpenEdge-install/properties
directory) using a text editor, you will see each OpenEdge server that can run on that host.

Example 1–1 shows an example of a WebSpeed server configuration in the
ubroker.properties file.

Each broker has a Universally Unique Identifier (UUID). The UUID must be unique across your
entire configuration in order for the NameServer to function properly. If you want to manually
add a new OpenEdge server to the ubroker.properties file, use the genuuid script to generate
a UUID. The genuuid script is located in the DLC/bin directory.

For complete details on the ubroker.properties file, see OpenEdge Getting Started:
Installation and Configuration for Unix or OpenEdge Getting Started: Installation and
Configuration for Windows.

Example 1–1: ubroker.properties file

[UBroker.WS.DemoApp]
 srvrAppMode=Production
 brokerLogFile=C:\DemoApp\Logs\WS_broker.log
 srvrLogFile=C:\DemoApp\Logs\WS_agent.log
 srvrMinPort=5321
 srvrMaxPort=5325
 maxSrvrInstance=5
 controllingNameServer=NS1
 srvrStartupParam=-p web\objects\web-disp.p -weblogerror
 uuid=527a0623fe008210:67d940:f6484c1312:-7d87
 workDir=C:\DemoApp
1–4

Fathom and OpenEdge Servers Overview
WebSpeed

WebSpeed® is a development and deployment environment that allows you to build
applications that use HTML, XML, WML, DHTML, and most other mark-up languages (MLs)
as the user interface. This means that WebSpeed can be used for applications where users are
accessing the application using:

• A Web browser (HTML, DHTML, or XML).

• A mobile/cell-phone (HTML, WML).

• A system making requests for information using XML and HTTP or HTTP/S as the
transport protocol.

The WebSpeed language is the Progress 4GL with some extensions. So, generally speaking,
anything that Progress 4GL can do, WebSpeed can do. There are three different development
techniques for WebSpeed applications:

• Embedded SpeedScript

• Mapped Web objects

• CGI wrappers

Embedded SpeedScript is a technique whereby Progress 4GL is inserted into HTML by using
special HTML tags. When the WebSpeed compiler compiles this HTML, it converts it into a
CGI wrapper behind the scenes.

Mapped Web objects and CGI wrappers are pure 4GL applications, and the HTML is treated as
“text” within the program. For a complete description of the WebSpeed development
environment and techniques, see OpenEdge Application Server: Developing WebSpeed
Applications.
1–5

OpenEdge Revealed: Achieving Server Control with Fathom Management
WebSpeed server

The WebSpeed server is made up of two components: the WebSpeed broker and the WebSpeed
agents. A third component, called the WebSpeed Messenger, is illustrated in the WebSpeed
architecture diagram, as shown in Figure 1–2.

Figure 1–2: WebSpeed deployment architecture

Figure 1–2 shows the complete architecture for a WebSpeed deployment environment. The
NameServer is optional, as described in the “No NameServer version of the request round-trip”
section on page 2–8, and if it is used, it may be on another host. The WebSpeed agents are
shown connecting to an OpenEdge database or DataServer. This is optional because the
WebSpeed agents can connect to an AppServer to process the business logic. The database or
DataServer, if used, can also be on another host.

*ML Client

Internet or
Intranet

WebSpeed
Messenger

Web Server

WebSpeed Server
Host

AdminServer

NameServer ubroker .properties

OpenEdge
Database or
DataServer

WebSpeed
Broker

WebSpeed
Agents
1–6

Fathom and OpenEdge Servers Overview
WebSpeed broker and agents

The WebSpeed broker manages the WebSpeed agents. When the WebSpeed server is started by
the AdminServer, the WebSpeed broker is started first. Then the AdminServer passes
configuration information to the broker including how many agents to start initially, agent
startup parameters, agent port ranges, and other settings. After the agents are started, the broker
tells the specified NameServer that it is “alive” and able to take requests for the specified
service.

During the lifetime of the WebSpeed server, the broker:

• Tells the Messenger which agent is available to handle incoming requests.

• Spawns more agents if needed (up to the specified limit).

• Trims (or kills) agents if they have not been used for the specified number of seconds.

• Responds to queries from the AdminServer for performance metrics.

• Sends the AdminServer information if an event occurs, like starting or trimming agents.

The WebSpeed agents are 4GL clients that will accept requests from the WebSpeed Messenger
and run the requested program. The output of the program is sent through a special stream to the
Messenger and then through the Web server to the requesting client.

The agent process is inherently stateless. This means that the agent is only busy when a request
is being processed. It will be idle at all other times.

AppServer

The AppServer is a deployment environment that allows Progress 4GL clients to run Progress
4GL business logic on a different machine. Examples of 4GL clients include: GUI, Character,
Batch, WebSpeed, and other AppServers, or via the OpenClient Toolkit, Java or COM clients.

There are two main benefits to having an AppServer in the deployment configuration of an
application:

1. The user interface and the business logic are separated, which allows different user
interfaces (such as GUI, Batch, and/or WebSpeed) to share the same business logic.

2. The Progress 4GL application becomes a thin client application—the network traffic
between the client and database is reduced because the only information travelling along
the network is the request and reply.
1–7

OpenEdge Revealed: Achieving Server Control with Fathom Management
For example, if you used a query that was not indexed, the client would need to download
all the table’s information and search through it locally. Whereas in an AppServer version,
the client would send the request to the AppServer, which would access the database
locally and send only the matching records back to the client, thereby reducing the network
traffic.

The AppServer is made up of two components: the AppServer broker and the AppServer
servers, as shown in Figure 1–3.

Figure 1–3: AppServer deployment architecture

4GL or
OpenClient

AppServer Server
Host

AdminServer

NameServer

AppServer Broker

ubroker.properties

OpenEdge
Database or
DataServer

AppServer
Servers
1–8

Fathom and OpenEdge Servers Overview
Figure 1–3 shows the complete architecture for an AppServer deployment environment. The
NameServer is optional (as discussed in the “Understanding the NameServer” section on
page 5–2) and if it is used, it may be on another host. The AppServers are shown connecting to
a OpenEdge database or DataServer. This is optional because the servers may connect to
another AppServer to process the business logic, making an n-tier application. The database or
DataServer, if used, may also be on another host. As a general rule, for best performance, the
AppServer and the database/DataServer should be on the same host.

AppServer broker and servers

The AppServer broker performs exactly the same processes as the WebSpeed broker described
in the “WebSpeed broker and agents” section on page 1–7, but for AppServer servers, not
WebSpeed agents.

The AppServer servers are 4GL clients that accept a RUN request from other 4GL (or Open)
clients. Normally, the client and AppServer are on different machines. This RUN command is
syntactically the same as a normal RUN, and can accept both input and output parameters. The
difference is that the RUN command specifies which AppServer to run the procedure on via a
server handle. For specific details, see OpenEdge Application Server: Developing AppServer
Applications.

You can configure the AppServer broker to be in one of the following operating modes:
state-reset, state-aware, or stateless. These are documented in OpenEdge Application Server:
Developing AppServer Applications.
1–9

OpenEdge Revealed: Achieving Server Control with Fathom Management
Fathom integration with OpenEdge servers

The AdminServer uses server plugins to integrate the OpenEdge components into the
AdminServer framework. Fathom is also integrated into this framework using the same method.
This allows the Fathom server plugin to interrogate the OpenEdge server plugins to gather
information.

Fathom can start, stop, and query the status of the OpenEdge servers as well as display the
broker and server log files. These features are available in the Progress Explorer.

Fathom cannot yet be used to configure the OpenEdge servers, so you will still need to use the
Progress Explorer or edit the ubroker.properties file manually. The ability to use Fathom as
a Progress Explorer replacement is planned for a future release.

The Progress Explorer cannot access the detail of information that Fathom uses to provide
detailed performance statistics from OpenEdge servers. These performance statistics are one of
the most interesting and useful parts of Fathom when used to help monitor deployed OpenEdge
applications.
1–10

2
Setup and Configuration of OpenEdge
Servers

This chapter discusses general configuration tasks that are common to OpenEdge servers, and
contains the following topics:

• General OpenEdge server configuration tasks

• Broker ownership

• Request round-trip process

• Firewall configuration and debugging

• IP issues

For additional configuration tasks and information specific to each type of OpenEdge server,
see:

• Chapter 3, “Configuration of WebSpeed Servers”

• Chapter 4, “Configuration of the AppServer”

• Chapter 5, “Configuration of the NameServer”

OpenEdge Revealed: Achieving Server Control with Fathom Management
General OpenEdge server configuration tasks

For a deployment host, you should use AdminServer security. When you are installing
OpenEdge onto a Windows host, the installation process will prompt you for “AdminServer
Authorization Options.” If you are installing onto a UNIX host, you apply the AdminServer
security as a post installation procedure. These processes are fully described in OpenEdge
Getting Started: Installation and Configuration for Unix and OpenEdge Getting Started:
Installation and Configuration for Windows.

When you install OpenEdge onto a server, you will get a default ubroker.properties file. This
file contains an example configuration for each server (even if you do not have a license for that
server).

In a development and test environment, it is safe to use these default server configurations. In a
deployment environment, do not use any standard OpenEdge server configurations. This is
because they use “well-known” ports and are more likely to be left in their default (which is
unsafe) mode.

In the ubroker.properties file, you should delete the asbroker1, wsbroker1, ns1,
mssbroker1, and the others. This can be done through the Progress Explorer or using any text
editor.

When you create the new OpenEdge servers, you should create the NameServer first, and then
the OpenEdge servers so you can set their NameServer to the one you have just created.

Do not use the standard port numbers for the brokers and servers/agents. For example, when
creating a WebSpeed Transaction Server with a maximum of five agents:

• The broker uses port 5320.

• The agents will use ports 5321 to 5325, inclusive.

• If you want more agents, just increase the agent port range upper value.
2–2

Setup and Configuration of OpenEdge Servers
Later, when you need to configure access to this WebSpeed Transaction Server through a
firewall it will be easier if you keep the port range as small as possible. You should not use
ports that are below 1024 because these are deemed to be system ports and generally have
higher access to the kernel. It is good practice to document the ports you use in the networking
“services” file. Under UNIX, this is /etc/services and in Windows this is
C:\WINDOWS\system32\drivers\etc\services. Progress Explorer will not let you use the
service name, only the number. If you use a text editor to modify the ubroker.properties, you
must also use the number, not the service name.

Note that there is a bug in Windows that will not let the last line of the services file (or any other
text file) to be read unless it has a carriage-return/line-feed at the end. You might want to add a
line, such as the following, to the end of the services file to ensure that there is a
carriage-return/line-feed at the end of each “real” entry in the services file:

If you do not have a carriage-return/line-feed at the end of the services file, the broker process
will read it incorrectly and you will get errors, such as the following:

To change the port used by the AdminServer under Windows:

1. In the Windows Control Panel Services, stop the AdminServer service.

2. Run REGEDIT. You must add the -port argument along with the port number to the end of
the startup and shutdown entries in your registry. The registry keys that need to be
modified are:

• HKEY_LOCAL_MACHINE\SOFTWARE\PSC\AdminService\OpenEdgeVersion\StartupCmd

• HKEY_LOCAL_MACHINE\SOFTWARE\PSC\AdminService\OpenEdgeVersion\ShutdownCmd

Do not delete this line

Unable to find server XXX with protocol TCP in file SERVICES or SERVICES file
not found in expected location. (5192).
2–3

OpenEdge Revealed: Achieving Server Control with Fathom Management
The following example shows a changed StartupCmd:

Be careful when you edit the registry manually. You should not change the other parameters in
this registry key, or your AdminServer might not start up again.

Under UNIX, use the following command to start the AdminServer where 20555 is the new port
number:

From this point on, you will need to use this new port when connecting to the AdminServer from
either the Progress Explorer or the Management Utilities.

Broker ownership

For the AdminServer to work it needs to be run with root or system administrator rights. When
the AdminServer starts an AppServer or WebSpeed server, by default, it also runs as the
root/system administrator. This could allow the AppServer or WebSpeed agent to have access
to sensitive data. You can limit what the AppServer or WebSpeed agent can access by adding
ownership information to the broker. The owner specified can then have operating system
privileges reduced to only what is necessary. Be sure to test this thoroughly, as not having
correct permissions can cause many problems.

"C:\DLC91D\bin\jvmstart" -o eventmgr -w @{WorkPath} @{JAVA\JREHOME}\bin\java
-classpath @{JAVA\JRECP};@{JAVA\PROGRESSCP};@{JAVA\FATHOMCP};@{JAVA\REPLCP}
@{JAVA\JVMARGS} -DInstall.Dir=@{Startup\DLC} -DWork.Dir=@{WorkPath}
-Djava.jvmargs=@{JAVA\JVMARGS} -Djava.security.policy=@{JAVA\JAVAPOLICY}
-Dadmsrv.jvm=@{JAVA\JREHOME}\bin\java -Djvmstart.debug=0
com.progress.chimera.adminserver.AdminServerType -start -service -port 20555

proadsv -start -port 20555
2–4

Setup and Configuration of OpenEdge Servers
Figure 2–1 shows a WebSpeed broker under Windows being allocated to run as a regular user.
This user needs to have certain permissions when running under Windows. Search the
Knowledge Center for “How to start a Broker using Domain\Account.” You can access the
Progress Knowledge Center by going to the following URL:
http://www.progress.com/support/kb.

Figure 2–1: Setting broker ownership

When using UNIX or Linux, the fields on this tab are different. They are Username and Group
Name. Set the Username and Group Name to that of a valid user with appropriate permissions.
2–5

http://www.progress.com/support/kb

OpenEdge Revealed: Achieving Server Control with Fathom Management
Request round-trip process

To connect to either a WebSpeed agent or an AppServer, the client process goes through several
steps. The client process for WebSpeed is the WebSpeed Messenger and a 4GL client for the
AppServer. These connection steps are shown in Figure 2–2.

Figure 2–2: Request round-trip

Step 0

When the broker finishes initializing, it tells the NameServer that it is ready to accept requests
for specific services and/or be the default service. By default, the broker sends these messages
every 30 seconds. This lets the NameServer know the broker is still alive and able to accept
requests. If the NameServer does not get a message, it will delete this broker from its “available”
list. The broker/NameServer communications are not part of the request process, but are
required for it to work. The NameServer is covered in more detail in Chapter 5, “Configuration
of the NameServer.”

OpenEdge
Client

NameServer

OpenEdge
Server Broker

OpenEdge
Server

Agent/Servers

Step 0

Step 1

Step 2

Step 3

Step 4

Step 6

Step 5
2–6

Setup and Configuration of OpenEdge Servers
Step 1

The client makes a request to the NameServer for the location of a broker that can provide a
“service.”

Step 2

The NameServer responds with the broker’s host name or IP address and the broker’s port
number.

Step 3

Using these details, the client connects to the broker and requests a server/agent to be made
available. This request is put in a queue by the broker, so in peak load times requests are not
lost. If there are requests in the queue, the broker will check to see if there is an available
server/agent. If there are none free, and the maximum number of servers/agents has not been
reached, the broker will start a new one. When there is a free server/agent, the broker will
allocate this one to the request and mark it as busy.

Step 4

The broker returns the server/agent port number or an error if there were none available.

Step 5

Assuming there is a free agent/server, the client uses the port number returned to make a
connection to the agent/server and passes the application request.

Step 6

The agent/server responds with the results of the request.

If the OpenEdge server is WebSpeed, then the request is complete and the agent informs the
broker that it is again free.

In an AppServer environment, it depends on what “state” the AppServer is configured as. In
state-aware or state-reset modes, the AppServer is “tied” to that particular client and can process
more requests without the client following Step 1 through Step 4. When the client is totally
finished, it will disconnect from the AppServer by using the DISCONNECT method. The
AppServer will then become free and inform the broker.
2–7

OpenEdge Revealed: Achieving Server Control with Fathom Management
In stateless mode, when the client runs the CONNECT method, only Step 1 and Step 2 are followed.
The client then connects to the broker and is allocated a unique CONNECTION-ID. The broker does
not allocate an AppServer until the client executes a RUN ON SERVER command. Then the client
follows Step 3, sending back the CONNECTION-ID, and Step 4 through Step 6 as normal. After
the request is completed, the AppServer Server will inform the broker it is free. This means that
the client can be allocated different AppServer servers for each request, but only from the same
AppServer broker.

The different modes of the AppServer are detailed in OpenEdge Application Server:
Developing AppServer Applications; their effects on performance are covered in the “How
AppServer operating modes affect performance” section on page 6–6 in this manual.

Step 0 through Step 4 create quite small amounts of network traffic, usually less than 500 bytes.
The large amounts of data are in the final request and response, Step 5 and Step 6. In an
AppServer environment, the request contains all the input parameters, and this can get quite
large if there are temp tables being passed as input parameters. When using WebSpeed, the data
sent from the Messenger to the WebSpeed agent includes all of the environment variables, as
well as the input parameters from the URL or HTML form. The environment variables alone
can be up to 3000 bytes. The response for an AppServer call is the entire amount of data
returned. This could be as simple as an integer, or as complex as multiple temp tables. All this
data can become quite large. When the response comes back from a WebSpeed agent, it could
be a simple HTML page of around 1000 bytes, but it also could be a large.ZIP file or similar.
With special programming, WebSpeed can send binary files to the Web browser.

No NameServer version of the request round-trip

The NameServer is used for load balancing, fault tolerance, and location independence of
OpenEdge server applications. These are detailed in Chapter 5, “Configuration of the
NameServer.” The NameServer uses UDP as a network protocol and some network
administrators do not want UDP on their networks for various reasons, some justified and others
not. Progress introduced a “No NameServer” connection procedure for OpenEdge server
applications in Version 9.1D. This will remove Step 0 through Step 2 of the connection process
above.
2–8

Setup and Configuration of OpenEdge Servers
To achieve this, configure the AppServer or WebSpeed broker so that it does not register with
a NameServer by unchecking the Register with NameServer check box in the Controlling
NameServer, as shown Figure 2–3. The Registration Mode is irrelevant for a No NameServer
configuration. The example shows an AppServer configuration, but WebSpeed is identical.

Figure 2–3: Configuring No NameServer

When using WebSpeed, the WebSpeed Messenger must point directly to a WebSpeed broker.
To configure this, use the cgiip.wsc or wspd_cgi.sh mapping, as described in the “Hiding the
CGIIP executable name from the end user ” section on page 3–8. In this case, change the file
contents so that you do not use the -i wsbroker1 format for referencing the broker, as in the
example, but rather the myhost 3090 format, where myhost is the hostname or IP address for
the WebSpeed broker machine and 3090 is the port number of the broker. It also means that you
cannot use the WService=... on the URL.
2–9

OpenEdge Revealed: Achieving Server Control with Fathom Management
If you are using the AppServer, the AppServer client application must use a different connection
string. The following example shows the NameServer option. The NameServer host is zeus and
the port the NameServer is listening on is 5162. The requested service is inventory:

The following example shows the No NameServer version. In this case, apollo is the
AppServer Host and 8911 is the AppServer broker port.:

Firewall configuration and debugging

If you are deploying a public WebSpeed application or an AppServer Internet Adapter-enabled
AppServer application, then you should be using firewalls to minimize the risk of network
intrusions, as detailed in the “Firewalls” section on page 3–21.

The following sections explain how to configure a firewall to allow WebSpeed to function and
how to debug a nonworking firewall deployment.

Firewall configuration

Using a firewall opens up more configuration issues because you need to configure the firewall
to allow communications between the OpenEdge server host machines on particular ports using
TCP or UDP protocols. In the “Request round-trip process” section on page 2–6, the entire
round-trip request is shown. All of these messages need to go through the firewall. Different
firewall configurations are shown in the “Examples of simple and complex configurations”
section on page 3–35.

hAppSrv:CONNECT ("-AppService inventory -H zeus -S 5162").

hAppSrv:CONNECT ("-DirectConnect -H apollo -S 8911").
2–10

Setup and Configuration of OpenEdge Servers
Figure 2–4 illustrates which ports need to be open and what protocols the messages use. (If you
are using multiple firewalls, as in Figure 3–12, then the same principles apply.)

Figure 2–4: Firewall configuration

Note: The firewall fire2 has two network cards, one for the Demilitarized Zone (DMZ) and
one for the Internal network. Each of these has its own IP address, as shown.

Host: fire2
IP addr: 2.2.2.2 on DMZ
and 3.3.3.3 on internal

Web
Server

WebSpeed
Messenger

Internet
NameServer

WebSpeed
Broker

WebSpeed
Agent

Internet

Host: webserv1
IP addr: 1.1.1.1 Host: inet_ns

IP addr: 5.5.5.5
NS Port: 5678

Host: webspeed1
IP addr: 4.4.4.4
Broker Port: 7800

Max 5 Agents: 7801-7805

Host: fire1

DMZ Internal
2–11

OpenEdge Revealed: Achieving Server Control with Fathom Management
In the following sections the hosts file is mentioned. In UNIX or Linux, this is located at
/etc/hosts and in Windows NT and higher at C:\WINDOWS\system32\drivers\etc\hosts.

The WebSpeed Messenger ubroker.properties file must have the minNSClientPort and
maxNSClientPort settings modified in the [WebSpeed.Messengers] configuration, as shown in
Example 2–1. The port range must be big enough to cope with all the potential simultaneous
requests from the Internet. In this case, there are 20 ports available. You can make this range
bigger if needed. Also, you must change the setting for the NameServer to point to the correct
host.

You will need to configure the following:

• Between the Internet and Web server webserv1:

– Allow inbound and outbound traffic from the Internet on port 80 (the default for
HTTP) to the Web server. This is a standard configuration on most firewalls. If you
are using HTTP/S (HTTP over SSL), then the default port is 443.

• Between the Web server (Messenger) and NameServer:

– Allow UDP from IP Address 1.1.1.1 to 5.5.5.5 on port 5678. This is the inbound
NameServer request traffic.

– Allow UDP from IP Address 5.5.5.5 to 1.1.1.1 on ports 5680 to 5699 inclusive
(assuming the above settings in the ubroker.properties file). This is the
NameServer response traffic.

Example 2–1: Configuring ubroker.properties file for firewall

[WebSpeed.Messengers]
.
.
 minNSClientPort=5680
 maxNSClientPort=5699
 controllingNameServer=InternetNS
.
.

[NameServer.InternetNS]
.
.
 hostName=inet_ns
 location=remote
 portNumber=5678
.
.

2–12

Setup and Configuration of OpenEdge Servers
• Between the Web server (Messenger) and WebSpeed broker:

– Allow TCP from IP Address 1.1.1.1 to 4.4.4.4 on port 7800 for the inbound request.

– Allow TCP from IP Address 4.4.4.4 to 1.1.1.1 on port 7800 for the outbound reply.

• Between the Web server (Messenger) and WebSpeed agents:

– Allow TCP from IP Address 1.1.1.1 to 4.4.4.4 on ports 7801 to 7805 inclusive for
the inbound request.

– Allow TCP from IP Address 4.4.4.4 to 1.1.1.1 on port 7801 to 7805 inclusive for the
outbound reply.

Most firewalls will need to do this by using “port forwarding.” This means that when the
firewall receives a request from a host on a certain port in the DMZ, it is passed through to a
particular host on the internal network. When the webserv1 machine makes a request to the
NameServer, it cannot see IP address 5.5.5.5 directly, and it has to pass the request to the
firewall machine fire2. The firewall then makes the request on the internal network to IP
address 5.5.5.5 on its behalf. When the response comes back from the NameServer to the
firewall, the firewall will send it on to the Messenger on the DMZ network. As an analogy, think
of the firewall as a language interpreter where the WebSpeed Messenger speaks English and the
NameServer speaks German. The Messenger needs to talk to the NameServer but cannot do so
directly, so it forwards the request to the interpreter who, in turn, makes a request to the
NameServer on the Messenger’s behalf. The response is given to the interpreter by the
NameServer, who then forwards it to the Messenger.

This is achieved by setting the hosts file on webserv1 to have the host inet_ns set to 2.2.2.2,
as shown below. When the Messenger looks for host inet_ns, it uses the IP address 2.2.2.2,
which is the firewall host fire2:

Note: You do not need to have an entry for fire2 in the hosts file as the DMZ machines never
communicate with it by name. They think they are communicating with other machines
on the internal network.

127.0.0.1 localhost
2.2.2.2 inet_ns
2–13

OpenEdge Revealed: Achieving Server Control with Fathom Management
Similarly, the Messenger cannot communicate directly to the WebSpeed server host webspeed1
at IP address 4.4.4.4 either. So, another entry needs to be made in the hosts file to make the
Messenger communicate with the firewall instead of the “real” host, as shown:

Because of this, you cannot use the default setting for the WebSpeed broker’s registration mode.
The default is to use the broker host IP Address. If you do this, the NameServer will tell the
Messenger to try to contact the broker on IP address 4.4.4.4, which is not a valid IP address in
the DMZ, and it will appear as if the broker has not responded. You need to set the broker to
register using a defined host name, in this case webspeed1. When the NameServer responds this
time, it tells the Messenger to try to connect using the host name webspeed1. The Messenger
asks the operating system on its host for the IP address of webspeed1. Since we set this to 2.2.2.2
in the hosts file, this is the address that is returned, and the Messenger will use it. The firewall
will then get the request and pass it through. Figure 2–5 shows this configuration setting.

Figure 2–5: Setting host name

The NameServer and WebSpeed server hosts do not need the firewall IP address in their hosts
file because they only respond to requests and do not make them.

127.0.0.1 localhost
2.2.2.2 inet_ns webspeed1
2–14

Setup and Configuration of OpenEdge Servers
Debugging firewall configurations

After configuring the firewall, you need to test the configuration to see if it works. The easiest
way to do this is to try to run the WebSpeed application from the Internet. This probably means
you need to disconnect the test client PC from the internal network and then dial an Internet
Service Provider (ISP) to then act as a “real” internet client.

First, make sure everything works by entering the URL for the application into your Web
browser. If it works, then you are lucky. Normally, the person configuring the firewall has left
out one or two ports, or a ubroker.properties setting was left unchanged.

If you are like most people, the test failed. So, where is the problem? To trace where the issue
lies, see the “Request round-trip process” section on page 2–6 to remind yourself what the entire
roundtrip process is and test each stage one at a time. The error shown by the Messenger (if it
worked that far) will lead you to the answer as well.

You might want to use a software tool like Ethereal (http://www.ethereal.com), to allow you
to see what packets are traversing the network.

If you are using Microsoft Windows 2000 or later to host the Web server, you might find that
UDP or TCP packets are being sent, but they are being ignored by the Web server machine. This
can be caused by incorrectly setting the IP Packet filter. All ports used for the firewall access
must be allowed in the IP Packet filter.
2–15

http://www.ethereal.com

OpenEdge Revealed: Achieving Server Control with Fathom Management
To access the IP Packet Filter settings:

1. In the Windows Control Panel, select the Network Connections icon.

2. Right-click on your LAN connection and choose Properties from the pop-up menu. The
Local Area Connections Properties dialog box appears:
2–16

Setup and Configuration of OpenEdge Servers
3. Select the Properties button. The Internet Protocol (TCP/IP) Properties dialog box
appears:
2–17

OpenEdge Revealed: Achieving Server Control with Fathom Management
4. Select the Advanced button. The Advanced TCP/IP Settings dialog box appears:
2–18

Setup and Configuration of OpenEdge Servers
5. Select the Options tab:

6. Highlight TCP/IP Filtering in the list and then select the Properties button. The TCP/IP
Filtering dialog box appears.
2–19

OpenEdge Revealed: Achieving Server Control with Fathom Management
7. You can set the filter to allow all packets as shown, or you can restrict the ports allowed
by adding them into the appropriate areas:

If you need to use DNS, then you also need to allow UDP port 53 and TCP port 53. For
the Web server, you need port 80. For HTTP/S, you need port 443.

Web server access

Can your Web browser access the Web server? Put a test HTML file in the Web server’s root
directory to see if you can access it with http://webserver/test.htm. If you can, then delete
the test HTML file and move on. If the file does not appear, check to see if the Web server is
running.

WebSpeed Messenger

Does the WebSpeed Messenger run? If you get a “WebSpeed error from messenger process
(6019)” error message, then the WebSpeed Messenger is running. If not, you should enable the
Messenger logging function in ubroker.properties as shown in the excerpt below. The
default logging level is 1, which is Errors Only. This setting should suffice to show the issues:

[WebSpeed.Messengers]
 ...
 logFile=@{WorkPath}\msgr.log
 loggingLevel=1
 ...
2–20

Setup and Configuration of OpenEdge Servers
You may have received a Web server internal error. This is usually caused by a Web server
misconfiguration related to the “executability” settings for CGI programs. Check your Web
server documentation to make sure you have configured it to run your WebSpeed Messenger
correctly.

If you use the Messenger Administration tool, you can test the configuration of your WebSpeed
application. This is covered in the “Minimizing access to the WebSpeed Messenger
Administration tool” section on page 3–10.

NameServer Access

If the Messenger is working, the next step is to confirm that the NameServer is being accessed.
Set the NameServer’s logging level to 3 (Verbose) using the Progress Explorer or by editing
ubroker.properties manually. To make this take effect, you will need to stop and restart the
NameServer and wait for the WebSpeed broker to inform the NameServer that it is available. If
the NameServer does not know about a service, it cannot direct clients to it. To check the
NameServer to see if it knows about the WebSpeed server, use either the Status button in the
Progress Explorer as shown in Figure 2–6 or the code NSMAN -name NS1 -query as shown in
Example 2–2.

Figure 2–6: Checking NameServer access using the Progress Explorer
2–21

OpenEdge Revealed: Achieving Server Control with Fathom Management
Now, try to access the application again. After the error is returned to the WebSpeed Messenger,
check the NameServer’s log file. You should see something similar to the following:

If you do not see the “Request received” in the log file, then the firewall is losing the inbound
NameServer request. Otherwise, the outbound request is being lost. After debugging this stage,
make sure to reset the logging setting.

Example 2–2: Checking NameServer access using NSMAN -name NS1 -query

C:\>nsman -name NS1 -query
OpenEdge Release 10.0B as of Tues Apr 27 00:31:00 EDT 2004

Connecting to Progress AdminServer using rmi://localhost:20931/Chimera (8280)
Searching for NS1 (8288)
Connecting to NS1 (8276)

NameServer NS1 running on Host nexus Port 5162 Timeout 30 seconds.
Application Service UUID Name Host
 Port Weight Timeout

WS.Sports2000_WS
 527a0623fe008210:67d940:f6484c1312:-7d87 WS.Sports2000_WS
nexus/192.168.123.121 3055 0 30

Thread-0>(26-Jul-03 18:42:15:107) Request received from 192.168.123.110 2167
for WS.Sports2000_WS. (8201)
Thread-0>(26-Jul-03 18:42:15:107) AppService = WS.Sports2000_WS Found = true
Number Of Brokers = 1. (8206)
Thread-0>(26-Jul-03 18:42:15:107) Response sent to 192.168.123.110
2–22

Setup and Configuration of OpenEdge Servers
Accessing the WebSpeed broker

This time, set the WebSpeed broker’s logging setting to verbose and make the request. You
should see something similar to the following at a time just after the NameServer log entry:

If the WebSpeed Messenger error says it could not contact the broker, but the broker log file
says it was contacted, then the fault is on the return path. If there is no contact logged in the
broker log file, then it didn’t receive the message. Either of these will point to the firewall rule
that was left out or misconfigured.

Accessing the WebSpeed agent

Use the 4GL Trace function to see if the agent received the request. Configuring this feature is
covered in the “Using other techniques to debug WebSpeed applications” section on page 3–32.

General notes on debugging

Think through the request process and see what the error messages say. This will lead to the
issue most of the time.

Check the log files of the firewall itself. These will show what messages are flowing through it.
You will probably have to filter these because a production firewall will have more than just
your WebSpeed requests going through it.

Always use a new Web browser window for each test request. This is due to most browsers
trying to speed up requests caching information. This can also be achieved by using the
“Reload” function of the browser. See your browser document for information on setting your
browser to not use cached copies of pages.

L-3055>(26-Jul-03 18:57:53:816) Received connection:: (8125)
C-0001>(26-Jul-03 18:57:53:836) Client connected : . (8533)
C-0001>ubWSclientThread.processConnRsp(): ubRsp = 0, getNeedNewConnID() =
false
C-0001>(26-Jul-03 18:57:53:836) The client C-0001 has disconnected from the
broker. (8084)
C-0001>(26-Jul-03 18:57:53:836) Client disconnected : . (8534)
2–23

OpenEdge Revealed: Achieving Server Control with Fathom Management
IP issues

The following sections cover two common IP issues:

• Domain Name System

• Multi-homed servers (multiple IP address servers)

Domain Name System

The Domain Name System (DNS) is one of the very useful, but often misconfigured, parts of
any IP network. The job of the DNS is to resolve host names into IP addresses (and occasionally
the reverse). If you misconfigure the DNS, then you will get some odd problems. The most
common is that the client is taking a very long time to connect to the AppServer. This is
probably due to a DNS issue where the DNS lookup is going outside your local LAN and onto
your Internet Service Provider’s DNS servers.

If you are experiencing any problems at connect time, it is very important to check that your
DNS is configured correctly. To do this, go to a prompt (either UNIX or a Windows Command
prompt) and enter nslookup servername. The time it takes to respond is the DNS lookup time.
It should be nearly instantaneous. If you are using a hosts file entry to “fix” this problem, then
you really should fix the DNS problem and remove the entry in the hosts file.

Multi-homed servers (multiple IP address servers)

If you have a server that has more than one network card in it, it is probably going to have more
than one IP address. You could have problems connecting to the AdminServer and other
OpenEdge servers in this instance. An example of a multi-homed server is shown in Figure 2–7.
2–24

Setup and Configuration of OpenEdge Servers
Figure 2–7: Multi-homed server

The clients on the 10.x.x.x subnet will not be able to access services on the host unless they use
the correct IP address 10.1.1.1. Likewise, the 192.168.x.x subnet must use 192.168.123.1. To
make all these clients connect to a single AppServer on the host, set up the hosts file on the
machines in the 10.x.x.x subnet to read as follows:

And, on the 192.168.x.x subnet to read as follows:

127.0.0.1 localhost
10.1.1.1 hydra

127.0.0.1 localhost
192.168.123.1 hydra

Network #2

Hostname: Hydra

10.1.1.1

192.168.123.1

Network #1

Subnet 10.x.x.x

Subnet 192.168.x.x
2–25

OpenEdge Revealed: Achieving Server Control with Fathom Management
All AppServer and WebSpeed instances running on hydra must have their Register with
NameServer settings changed so that they do not register with an IP address, but instead with
a host name, as shown in Figure 2–8.

Figure 2–8: Register with NameServer setting

This enables the NameServer to tell the clients, regardless of what subnet they are on, to connect
to the machine called hydra. It is then up to the client machine to decide what the appropriate
IP address is.
2–26

3
Configuration of WebSpeed Servers

This chapter discusses how to configure WebSpeed servers. It also covers some general
configuration tasks that also apply to the AppServer. The following topics are discussed:

• WebSpeed Messenger installation

• General WebSpeed server configuration

• WebSpeed security

• Error handling and debugging

• Using the AppServer to access the business logic

• Examples of simple and complex configurations

OpenEdge Revealed: Achieving Server Control with Fathom Management
WebSpeed Messenger installation

You should always have a separate Web server and WebSpeed server when you are deploying
an Internet-based WebSpeed application because of security reasons, as covered in the
“WebSpeed security” section on page 3–4.

You need to install just the WebSpeed Messenger on the Web server. To do this, you will need
to download the appropriate WebSpeed Messenger installation software, serial number, and
control codes from the Progress Software Electronic Download Center. This is located at
http://www.progress.com/esd. You need a valid Progress Software product serial number
and control codes to download software from this site. You can also download Progress
Software Service packs from this site.

Note: The version of the WebSpeed Messenger must exactly match the version of the
WebSpeed server you want to use.

If your WebSpeed server is the same platform as your Web server, use the OpenEdge
Installation CD to install the WebSpeed Messenger. You will need a valid serial number and
control codes to install the WebSpeed Messenger from the CD.

After you have installed the Messenger, you must configure the ubroker.properties file in the
OpenEdge-install/properties directory. If this file does not exist, there is a sample file
called msngrs.properties. Copy this file to ubroker.properties.
3–2

http://www.progress.com/esd

Configuration of WebSpeed Servers
General WebSpeed server configuration

When you are configuring a WebSpeed server, it is good practice to keep the port range for the
agents to the smallest possible range. If you are configuring a WebSpeed server to have up to
five agents, then the port range for the agents should be five.

Figure 3–1 shows an example of a WebSpeed server configuration with only five agents. Note
the values of the Minimum and Maximum port numbers. If you set this port range too small
or if another process uses a port in this range, the WebSpeed broker tries to launch a WebSpeed
agent, the agent tries to use one of the currently in-use ports, and fails to start.

Figure 3–1: WebSpeed configuration with five agents

Configuring logging

There are three different logging settings for the WebSpeed broker: Error Only, Terse, and
Verbose. The default is Terse, which provides enough information to be practical. You should
leave the setting at Terse, unless you need to debug access to this WebSpeed server. Later in
this manual, when we discuss how to configure a firewall-enabled deployment, Verbose
logging is used.
3–3

OpenEdge Revealed: Achieving Server Control with Fathom Management
The WebSpeed agent has four settings for logging: Error Only, Terse, Verbose, and a
“hidden” level of 4GL Trace. 4GL Trace can only be set by using a text editor and modifying
the ubroker.properties file, as discussed in the “Using other techniques to debug WebSpeed
applications” section on page 3–32.

Managing log file size

The log files for the broker and agents can become quite large, especially during debugging
sessions. You can view the log files using the Fathom Management console and use Fathom’s
File Monitoring feature to alert you if these files get too big.

To keep the log files to a manageable size, there are two options:

• Overwrite the log file every time the WebSpeed server is started. To do this, you deselect
the Append to … log file check box on the Broker and Agent Logging Setting tab.

• Shut down the WebSpeed server, archive the current log file by moving it somewhere safe,
and then restart the WebSpeed server. This is the recommended option because you can
lose valuable historic information from the log file if it is overwritten each time the server
starts. If you periodically shut down the WebSpeed server for maintenance, this is the
opportune time to do the archiving. Furthermore, you can use the Fathom Job features to
automate the process of archiving log files.

WebSpeed security

When using WebSpeed to allow access to your enterprise database over the Internet, the issues
that should be foremost in your deployment plan are security, closely followed by performance.
Providing access to your corporate data for “unknown” users without providing adequate
security is akin to leaving the computer room door unlocked and displaying a sign saying
“Please Steal Me” on the door.

Many people think that using a firewall alone will provide adequate security. However, using
a firewall is just the first small step in providing secure access to your data.

To fully secure your deployment, you also need to secure your network traffic, your Web server,
your WebSpeed server, and lastly, your application. Each of these topics is covered in detail in
the following sections.
3–4

Configuration of WebSpeed Servers
Securing your network traffic

When accessing a Web site, the content of the Web page that is returned is sent across the
network in plain text. If you have a network sniffer, either a hardware device or software tools
like Ethereal (http://www.ethereal.com), you can capture all the network traffic that passes
your device.

If your Web site is on the Internet, a technician sitting in your Internet Service Provider’s site
can see the data passing between your Web server and whoever is accessing it. If your Web site
is an Intranet, then anyone on the same physical network, in other words, most employees, can
see the data.

If the data is private or confidential, then you should secure it from prying eyes. On an Internet
site, confidential information might be credit card details or customer information; on an
Intranet site, it might be salary details or bank account information if you are using a Web-based
HR/Payroll application.

Securing this traffic is fairly easy; you need to enable HTTP/S or Secure Socket Layer (SSL)
for HTTP on your Web server. HTTP/S encrypts the data flowing between your Web server
and the client process (normally a Web browser) using Public Key Cryptography. You will
need a Digital Certificate to allow this encryption to take place.

You can purchase SSL certificates for a public Web site from Verisign
(http://www.verisign.com), Thawte (http://www.thawte.com), GeoTrust
(http://www.geotrust.com), and others. These sites also have documentation explaining SSL
and the process for purchasing, installing, and configuring SSL on many popular Web servers.

You should purchase the highest level of encryption possible for your locality. Most countries
now allow 128-bit SSL, while some are still limited to 40-bit. The Digital Certificate provider
will let you know the highest level that you can purchase.

If you are hosting a private Web site or an Intranet, then you can generate your own certificates.
This has the benefit of being free, but the users of your site will have to accept their Web
browser’s warning that the certificate from your site is not trusted. To generate your own
certificates, see your Web server’s documentation.
3–5

http://www.ethereal.com
http://www.verisign.com
http://www.thawte.com
http://www.geotrust.com

OpenEdge Revealed: Achieving Server Control with Fathom Management
After you have enabled SSL, you can use https instead of http as the URL protocol for your
Web site, and then the data will be encrypted. For example, if your Web site address was:

You can now use:

Securing your Web server

Since your Web server is the first computer that users access, it is also the first machine you
should start securing. From a security point of view, there is much discussion regarding which
platform is better to run a Web server on, either Windows or UNIX/Linux. The reality is that
both platforms have bugs that need to be patched. Do not get a false sense of security by using
one platform over the other. Do not run an “out-of-the-box” version of either platform. Also,
make sure that any operating system and application patches applicable to your Web server are
applied as soon as they become available.

For a publicly accessible Web site, you should minimize the other services running on this
machine. This provides better security, as the fewer things running on this machine, the fewer
things can go wrong or be compromised.

You should also read all the Web server’s documentation that deals with security. Most Web
servers ship with most security settings disabled. You should go through all the settings and turn
off any Web server features that you do not need.

http://www.mysite.com

https://www.mysite.com
3–6

Configuration of WebSpeed Servers
Hiding your Web server type and version

It is good practice to hide the “brand” and version of your Web server process to make it harder
for “script-kiddies” to find out which Web server you are using.

To see how your Web server responds, use a Telnet session to access the port that the Web
server is listening to. The default port is 80. The following procedure shows the commands to
type. Replace the hostname with your Web server’s name. You might find that when you type
GET / HTTP/1.0 it might not be echoed back to you:

To check your Web server response:

1. Type telnet hostname 80 and press ENTER.

2. Type GET / HTTP/1.0 and press ENTER twice.

Note: Be sure to type a space preceding and following the first / in the GET / HTTP/1.0
command.

The following is echoed back to you:

In the previous example, you can easily see that the Web server is Microsoft’s Internet
Information Server (IIS) Version 5.1.

If you can modify the HTTP headers, make the Server setting return a generic name, like
WebServer. Consult your Web server’s documentation to see if it is possible and how to modify
the HTTP headers.

HTTP/1.1 200 OK
Server: Microsoft-IIS/5.1
Date: Fri, 11 Jul 2003 16:59:53 GMT
Content-Type: text/html

. . . HTML text of the default page . . .
3–7

OpenEdge Revealed: Achieving Server Control with Fathom Management
Changing your script directory names

You should not use the standard script directory names. If you have an Apache server, do not
use cgi-bin. If you are using Microsoft’s IIS, do not use Scripts. See your Web server
documentation for instructions on how to create a different script directory.

Most Web servers also ship with default home pages, as well as demonstration scripts. These
generally should be disabled or deleted.

Hiding the CGIIP executable name from the end user

Hiding the WebSpeed Messenger name from the end user also provides a level of security.
When you access a WebSpeed application, the URL used will look similar to the following if
you are using Windows as the Web server:

If you are using UNIX, then it will look similar to the following:

Using the default names is bad security practice because it lets people know what application
server you are using, in this case WebSpeed. For example, if you perform a Google search for
wspd_cgi.sh or cgiip.exe, you will find many sites using WebSpeed. Some of these are not
securely deployed.

Microsoft IIS

If you are using Microsoft IIS, then Progress Software has shipped an example file explaining
how you can hide the Messenger’s name. It is called cgiip.wsc and by default is located in the
C:\InetPub\Scripts directory. It is recommended that you rename the file to something that
is meaningful only to you, for example, orders.inet. The extension (.inet) must be an unused
extension on your machine. You should also delete the cgiip.exe and wsisa.dll Messenger
files in the Scripts directory.

http://www.mysite.com/scripts/cgiip.exe/WService=Orders/main.r

http://www.mysite.com/cgi-bin/wspd_cgi.sh/WService=Orders/main.r
3–8

Configuration of WebSpeed Servers
If you open the orders.inet file using a text editor, you will see instructions on how to
configure IIS to run this script when it is part of the URL.

Note: If you are using IIS 4.x or 5.x, you might find that the Configuration button mentioned
in the instructions is disabled. To enable the Configuration button, click on the Create
button just above it.

Use the extension you have chosen (for example, .inet) instead of the .wsc extension
mentioned in the instructions.

At the end of the newly created orders.inet file, change the WebSpeed service name from
wsbroker1. For the example above, use Orders.

All lines beginning with # are comments. The only required line is the one that references the
service name or host and port of the WebSpeed broker.

Assuming that you have changed the Scripts directory to be web, the URL would become:

If you have more than one WebSpeed service, then you will need a .inet file for each service.

UNIX

There are many different Web servers available for the UNIX platform. To find out which Web
servers Progress Software has tested and certified, search the Knowledge Center. You can
access the Progress Knowledge Center at the following URL:
http://www.progress.com/support/kb.

Each of these has different configuration instructions. You should read the documentation
supplied by the Web server vendor to determine how to enable CGI applications. Rename the
Progress-supplied wspd_cgi.sh to something that is meaningful only to you and change the
WebSpeed service name from wsbroker1. If you have changed the cgi-bin directory to web and
allowed.inet scripts to be run as CGI programs, then the URL you would use is:

http://www.mysite.com/web/orders.inet/main.r

http://www.mysite.com/web/orders.inet/main.r
3–9

http://www.progress.com/support/kb

OpenEdge Revealed: Achieving Server Control with Fathom Management
Minimizing access to the WebSpeed Messenger Administration tool

If the Messenger Administration tool is enabled, users can see your configuration information.
This information can then be used to compromise your application.

To disable this feature, you can do one of two things: either disable the feature totally or allow
only “trusted” IP addresses to access the Messenger Administration tool.

To totally disable the feature, edit the ubroker.properties file on the Web server and make
sure that the AllowMsngrCmds is set to 0 (zero) in the [WebSpeed.Messengers] section and that
it is not overridden in any of the [WebSpeed.Messengers.CGIIP],
[WebSpeed.Messengers.WSASP], [WebSpeed.Messengers.WSISA], or
[WebSpeed.Messengers.WSNSA] sections.

To allow a list of IP addresses to access the Messenger Administration tool, edit the
ubroker.properties file on the Web server and set the AllowMsngrCmds to 1 (one) and the
wsmAdmIPList to a comma-separated list of IP addresses that are permitted to access the
Messenger Administration tool. This needs to be done in the appropriate Messenger section:
[WebSpeed.Messengers.CGIIP], [WebSpeed.Messengers.WSASP],
[WebSpeed.Messengers.WSISA], or [WebSpeed.Messengers.WSNSA].

If the Messenger Administration tool is enabled, you can change the default WebSpeed
Messenger Error Messages, as described in the “Error handling” section on page 3–24.

You can also verify your WebSpeed configuration. Use the following URLs to see the
Messenger Administration tool:

or

http://www.mysite.com/scripts/cgiip.exe?WSMAdmin

http://www.mysite.com/cgi-bin/wspd_cgi.sh?WSMAdmin
3–10

Configuration of WebSpeed Servers
Securing your WebSpeed server machine

Having secured your Web server machine, it is time to move one machine closer to the database.
You now need to secure your WebSpeed server. This machine has, at least, an AdminServer and
a WebSpeed server running on it. When you installed OpenEdge on this machine, you should
have also enabled the AdminServer security mentioned in the “General OpenEdge server
configuration tasks” section on page 2–2. You should make sure that all the vendor’s security
patches for this operating system have been applied, and check to see that the latest Progress
Service Pack has also been installed. As you did with the Web server, you should also minimize
other services running on this machine. This provides better security, as the fewer things
running on this machine, the fewer things can go wrong.

The WebSpeed broker’s configuration should also specify an owner. This allows the WebSpeed
broker and agents to be started with the specified user’s rights, not the root or system
administrator’s rights. See the “Broker ownership” section on page 2–4 for details.

You should always have a separate WebSpeed server for development/testing and production.
These should also use different Web server machines and be assigned to different NameServers.
If you do this, then the chance of outside access to the development machine is greatly reduced.

Figure 3–2 shows a deployment model that uses separate machines for the Internet production,
intranet production, and the development/test servers. The databases are all installed on the
same machine as the WebSpeed servers. This is the preferred route if your machine has the
capacity to host both, as it will provide the best performance.
3–11

OpenEdge Revealed: Achieving Server Control with Fathom Management
Figure 3–2: Deployment model with separate machines for the Internet Production, Intranet
Production, and the Development/Test servers

Internet
Web ServerInternet Internet

NameServer

Internet
WebSpeed

Server

Intranet
NameServer

Intranet
WebSpeed

Server

Dev/Test
Name
Server

Dev/Test
WebSpeed

Server

Internet
Database

Intranet
Web Server

Intranet
Database

Dev/Test
Database

Dev/Test
Web Server

Users

Developers &
Testers

Internet/Untrusted Zone Demilitarized Zone
(DMZ) Intranet/Trusted Zone

Intranet
Production

Server

Development
Test

Server

Internet
Production

Server
3–12

Configuration of WebSpeed Servers
Figure 3–3 shows a deployment model that uses two NameServers and puts all the production
databases on one machine. This is useful because the Intranet and Internet applications might
be using the same databases, and it lets you split the number of agents between Internet and
Intranet access, saving license fees.

Figure 3–3: Deployment with two NameServers

Internet
Web ServerInternet Internet

NameServer

Internet
WebSpeed

Server

Dev/Test
WebSpeed

Server

Internet
Database

Dev/Test
Database

Internet/Untrusted Zone Demilitarized Zone
(DMZ) Intranet/Trusted Zone

Intranet Server

Development /Test Server

Production
Server

Intranet
WebSpeed

Server

Intranet
NameServer

Intranet
Web Server

Intranet
Database

Users

Developers &
Testers
3–13

OpenEdge Revealed: Achieving Server Control with Fathom Management
All access from the Internet goes through the Internet NameServer, and all Intranet access (both
production and development/test) goes through the Intranet NameServer. This means that the
Internet NameServer only knows about the Internet applications and cannot hand requests to the
Intranet production or development/test WebSpeed servers.

Using an AppServer to run your business logic allows you to place another level of indirection
between your application and the database. This enhances the security of the application, as the
WebSpeed server does not directly connect to the database; it accesses the data through the
AppServer. See the “Using the AppServer to access the business logic” section on page 3–34
for information on how this can be achieved.

Securing your WebSpeed application

The application itself is probably the easiest place to make sure that it is secure. You should
follow these rules to make sure that your application is as secure as possible.

Using DBAUTHKEY to lock your r-code to the database

An under-used feature of OpenEdge is the DBAUTHKEY (and RCODEKEY) features of PROUTIL.

With DBAUTHKEY, you assign a key to the database and then any code compiled against that
database will have the key in it. When it comes time to run the code, if the key in the database
does not match the key in the r-code, you will get an error similar to the following:

If you already have r-code deployed, use the RCODEKEY function of PROUTIL to tag the existing
r-code without the need to recompile.

See OpenEdge Data Management: Database Administration for more information on using the
DBAUTHKEY and RCODEKEY features of PROUTIL.

** CRC for table does not match CRC in program. Try recompiling. (1896)
3–14

Configuration of WebSpeed Servers
Use the agent’s production setting

For production environments, either Internet or Intranet, you should set the agent application
mode to Production. You set this option in the Properties dialog box, as shown in Figure 3–4.
After setting this, you should stop and start the WebSpeed service to activate the change.

Figure 3–4: Setting Production mode for WebSpeed agents

Modifying web-disp.p

By default, the agents run web/objects/web-disp.p as their startup program. Each request that
is issued to an agent runs through this code. This is the best place to control what happens to
each request.

Modify web-disp.p to:

• Make sure that certain r-code can only be run by certain users.

• Turn off the PING or DEBUG facilities.

• Connect to a database every time a request comes through.

• Check for a user timing out.
3–15

OpenEdge Revealed: Achieving Server Control with Fathom Management
Because each request must go through this code, any changes made to web-disp.p are system
wide.

If you want to change this code, you should move it into your application’s source tree and
rename it. This way, when Progress Software ships a newer version of web-disp.p in a service
pack, your changes will not be overwritten. You should also compare your code with the new
code shipped in the service pack to make sure you also incorporate any bug fixes or
enhancements.

Example 3–1 shows a simplified version of the default WebSpeed 3.1D (Progress 9.1D)
web-disp.p.
3–16

Configuration of WebSpeed Servers
Note: Example 3–1 code will not run. Much of the code has been removed. The purpose of this
example is to show program flow.

Example 3–2 shows a simplified, secure web-disp.p. Again, this code will not run; you would
need to insert the bold text into the original web-disp.p replacing the “AppProgram = ...”
code.

This code stops PING, DEBUG, and RESET, changes the extension of any requested program into
r-code, checks that the r-code file exists, and verifies if this r-code is valid for this user by

Example 3–1: Default web-disp.p

/* Set the web-request trigger. */
ON "WEB-NOTIFY":U ANYWHERE DO:
 OUTPUT {&WEBSTREAM} TO "WEB":U.

 /* Parse the request/CGI from the web server. */
 RUN init-cgi IN web-utilities-hdl.

 /* Initialize for web-request. */
 RUN init-request IN web-utilities-hdl.

 AppProgram = (IF AppProgram = "debug":U THEN "webutil/debug.p":U ELSE
 (IF AppProgram = "ping":U THEN "webutil/ping.p":U ELSE
 (IF AppProgram = "reset":U THEN "webutil/reset.p":U ELSE
 AppProgram))).

 RUN run-web-object IN web-utilities-hdl (AppProgram) NO-ERROR.

 /* Run clean up and maintenance code */
 RUN end-request IN web-utilities-hdl NO-ERROR.

 /* Output any pending messages queued up by queue-message() */
 IF available-messages(?) THEN
 output-messages("all", ?, "Messages:").

 OUTPUT {&WEBSTREAM} CLOSE.
END. /* ON "WEB-NOTIFY" */

/* Wait for a web-request to come in */
WAIT-FOR-BLOCK:
REPEAT ON ERROR UNDO WAIT-FOR-BLOCK, LEAVE WAIT-FOR-BLOCK
 ON QUIT UNDO WAIT-FOR-BLOCK, LEAVE WAIT-FOR-BLOCK
 ON STOP UNDO WAIT-FOR-BLOCK, NEXT WAIT-FOR-BLOCK:

 WAIT-FOR "WEB-NOTIFY":U OF DEFAULT-WINDOW.
END. /* WAIT-FOR-BLOCK: REPEAT... */
3–17

OpenEdge Revealed: Achieving Server Control with Fathom Management
looking up a database table called UserPrograms. You will need to create a table called
UserPrograms containing (at least) both these fields. Also UserID is a variable that you must
instantiate.

You would usually use a cookie, hidden fields, or URL parameters to hold the user’s ID. This
should be encrypted in a suitable manner. See the “Parameter passing” section on page 3–20 for
an example of encrypting this ID.

Example 3–2: Secure web-disp.p (1 of 2)

/* Set the web-request trigger. */
ON "WEB-NOTIFY":U ANYWHERE DO:
 DEFINE VARIABLE vLocn AS INTEGER NO-UNDO.

 OUTPUT {&WEBSTREAM} TO "WEB":U.

 /* Parse the request/CGI from the web server. */
 RUN init-cgi IN web-utilities-hdl.

 /* Initialize for web-request. */
 RUN init-request IN web-utilities-hdl.

 /* Remove current extension */
 vLocn = R-INDEX (AppProgram, ".").
 IF vLocn > 0
 THEN
 AppProgram = SUBSTR (AppProgram, 1, vLocn - 1).

 /* Add a .R */
 AppProgram = AppProgram + ".r".

 /* Can this User run this program OR does it exist? */
 IF NOT CAN-FIND (UserPrograms WHERE UserPrograms.UserID = UserID
 AND UserPrograms.Program = AppProgram)
 OR
 SEARCH (AppProgram) = ?
 THEN
 AppProgram = "NotValidProgram.r".
3–18

Configuration of WebSpeed Servers
After you have created your new-web-disp.p, you need to change the agent parameters to
reference it, as shown in Figure 3–5.

Figure 3–5: Changing agent parameters to reference web-disp.p

 RUN run-web-object IN web-utilities-hdl (AppProgram) NO-ERROR.

 /* Run clean up and maintenance code */
 RUN end-request IN web-utilities-hdl NO-ERROR.

 /* Output any pending messages queued up by queue-message() */
 IF available-messages(?) THEN
 output-messages("all", ?, "Messages:").

 OUTPUT {&WEBSTREAM} CLOSE.
END. /* ON "WEB-NOTIFY" */

Example 3–2: Secure web-disp.p (2 of 2)
3–19

OpenEdge Revealed: Achieving Server Control with Fathom Management
Minimize the PROPATH

It is essential that the PROPATH is kept to a minimum, both for performance and security. The
OpenEdge-install/tty directory and all the r-code libraries (*.PL) in the
OpenEdge-install/tty directory are added to the end of your PROPATH setting by default. This
means that there are many programs in your PROPATH that you didn’t write and anyone can run
these programs by adding them to the end of your URL.

To avoid this, simply rename the OpenEdge-install/tty directory to
OpenEdge-install/tty_save. Then, copy all the r-code files you use to a new directory called
tty in your deployment area and add this to the end of your PROPATH. Remember that some of
the r-code files WebSpeed might use are in the .PL files, and you will need to extract them using
the PROLIB utility documented in OpenEdge Deployment: Managing 4GL Applications.

Parameter passing

If you want to pass parameters between Web requests, you can use hidden fields on forms, URL
parameters, cookies, or a combination of each technique. Each technique has pros and cons.
Hidden fields only work on forms, URL parameters are visible to the end user, and cookies are
not allowed by some users.

The simplest way to pass many parameters between Web requests is to use the database. You
pass a unique identifier for each user or session between requests, and use this as a key into a
“state” table held in the database. This technique requires that only a small token be passed
between requests, as the majority of the data is safe and secure in the database.

Do not pass the unique identifier in plain text. Doing so makes it very easy for an end user to
change the value (even in hidden fields or cookies) and become someone else. Use code, similar
to the code shown in Example 3–3, to prevent people from changing the unique identifier, unless
they know the hidden words, in this case “Web” and “Speed.”
3–20

Configuration of WebSpeed Servers
Firewalls

A firewall is the first line of defense for basic network security. It is usually a separate device
that sits between the untrusted network (the Internet) and the trusted network (the Intranet). The
role of a firewall is to stop unauthorized access of information in the trusted network by
individuals on the untrusted network, but allow defined access from the trusted to the untrusted.
An analogy for a firewall is a moat around a castle with the drawbridge being the firewall
device. The drawbridge is controlled by guards who only allow certain traffic in, usually after
inspecting it, and will allow outbound traffic if it has permission.

There is usually a third network called the DMZ or Demilitarized Zone. This network is separate
from both the others, but it can communicate with both. This is a semi-trusted area that is
protected by the firewall, so only certain traffic can come in. Any traffic coming from the DMZ
into the trusted network has strict rules placed upon it, so errant requests are denied. There are
three physical network ports on a DMZ-enabled firewall, one for each of the networks.

Example 3–3: Passing unique identifiers

/*
** This code assumes that the Unique ID will not contain
** any colons (:).
*/

DEFINE VARIABLE vToken AS CHAR NO-UNDO.
DEFINE VARIABLE vUniqueID AS CHAR NO-UNDO.

/* WebEncode function */
FUNCTION WebEncode RETURNS CHAR (pUniqueID AS CHAR):
 RETURN pUniqueID + ":" + ENCODE ("Web" + pUniqueID + "Speed").
END.

---- Use this to encode the Unique ID, then pass as parameter ----

/* Encode Unique ID */
vToken = WebEncode (vUniqueID).

---- Use this to decode the token passed as a parameter ----

/* Decode and check Token */
vUniqueID = ENTRY (1, vToken, ":").
IF vToken = WebEncode (vUniqueID)
THEN
 /* vToken has not been modified */
ELSE
 /* ERROR - vToken has been modified */
3–21

OpenEdge Revealed: Achieving Server Control with Fathom Management
Figure 3–6 shows a firewall with a DMZ. This is the usual configuration for a firewall.

Figure 3–6: Firewall with DMZ

Internet

Intranet

DMZ

Firewall Device
3–22

Configuration of WebSpeed Servers
Figure 3–7 shows a more secure firewall configuration. The reason for having two firewall
devices from different manufacturers is two-fold. First, having only one device means that any
bugs or security holes in the firewall software could allow direct connection between the
untrusted and trusted networks. Second, using different manufacturers’ hardware/software
combinations stops hackers from using the same exploit or security hole on both devices.

Figure 3–7: Secure firewall configuration

Internet

Intranet

DMZ

Firewall Device #1

Firewall Device #2
3–23

OpenEdge Revealed: Achieving Server Control with Fathom Management
Firewalls can be implemented in either hardware or software. A hardware firewall is a machine
that has a proprietary operating system and software for providing the service. Any patches
provided by the firewall supplier should be applied as soon as possible to minimize the risk of
attack.

A software firewall is a program that is loaded onto a general purpose computer, usually a PC,
to provide the service. To be effective, software firewalls rely on the underlying operating
system to be secure, so you should make sure that all the operating system manufacturer’s
patches are applied along with any updates to the firewall software. You should avoid running
anything else on a software firewall’s host machine. Some software firewalls do not use an
underlying general purpose operating system; they use standard hardware, but load their own
proprietary operating system along with the firewall software.

Error handling and debugging

When you are running a WebSpeed application in production, you should make sure that at no
time does the user see any OpenEdge error messages, either from the WebSpeed Messenger or
from your code. You must code your application in a manner that is very robust and will cope
with varying input parameters. It is very easy to write code with WebSpeed, but it is a bit harder
to write reliable, robust code.

Error handling

To make the WebSpeed Messenger return more “attractive” error messages, use the WSMAdmin
option on the URL to configure the Messenger to redirect the user to a static HTML page for
certain errors. At a minimum you should redirect the errors shown in Table 3–1.

Table 3–1: Redirecting WebSpeed error messages (1 of 2)

Message Meaning

Connection failure for host
hostname port portnumber transport
UDP. (9407)

The messenger could not connect to the
specified NameServer.

NameServer at Host hostname Port
portnumber is not responsive.
(8239)

The messenger could not connect to the
specified NameServer.
3–24

Configuration of WebSpeed Servers
To access the Error Customization Utility, use a URL similar to one of the following:

or:

The Error Customization Utility is documented in OpenEdge Application Server: Developing
WebSpeed Applications.

Msngr: the specified service name
does not exist or has a bad format.
(5825)

The NameServer could not find the specified
service.

Msngr: Disconnecting - all agents
are currently busy, please try
again later. (5832)

The Messenger could not be allocated an agent
to run the request.

Msngr: Disconnecting with no header
on WTA output web stream. (5814)

The agent has died somehow. Usually caused
by shutting the database down and not
stopping the WebSpeed server.

WebSpeed Agent Error: Agent did not
return an HTML page. (6383)

Your application failed somewhere before it
even started to output the HTML. This can be
due to records not being available before
accessing them, a run-time error caused by a
parameter mismatch, or a run-time error
caused by a failing INT conversion.

http://www.mysite.com/scripts/cgiip.exe?WSMAdmin

http://www.mysite.com/cgi-bin/wspd_cgi.sh?WSMAdmin

Table 3–1: Redirecting WebSpeed error messages (2 of 2)

Message Meaning
3–25

OpenEdge Revealed: Achieving Server Control with Fathom Management
Writing robust code

In your application you should always verify that the parameters passed are sensible. This is
because the parameters passed on the URL, using hidden fields or cookies, can be modified by
the user. For example, if you are expecting an integer parameter such as a page number, then
the parameter might be passed on the URL like this:

If the user modifies the URL to have xyz instead of 3 as the page number parameter, your
application might crash. To avoid this, you can use a section of code similar to the code in
Example 3–4. You might also want to verify that the page number is within limits using the MIN
and MAX functions.

.

When writing WebSpeed applications, you should also make sure you check that records are
available before accessing them, just as you do when using GUI, character, or batch
programming.

http://www.mysite.com/web/orders.inet/show_results.r?page=3

Example 3–4: Robust code for passing parameters

DEFINE VARIABLE vPage AS INTEGER NO-UNDO.

ASSIGN vPage = INT (get-field ("page")) NO-ERROR.

IF ERROR-STATUS:ERROR /* Did the INT fail? */
THEN
 /* Sensible Default */
 vPage = 1.
ELSE
 /* Limit vPage to between 1 and vMaxPageNum */
 ASSIGN vPage = MIN (vPage, vMaxPageNum)
 vPage = MAX (1, vPage).
3–26

Configuration of WebSpeed Servers
Debugging the application

There are two main ways to debug an application: the first involves accessing the source code
for the application and the second does not.

Using the OpenEdge Application Debugger to debug WebSpeed applications

To use the OpenEdge™ Application Debugger with a Windows version of WebSpeed, you need
to be using the machine where WebSpeed is installed.

If you add the following lines into a WebSpeed application, the Debugger window will appear
when these lines are executed:

Figure 3–8 shows the Debugger working in a CGI Wrapper program.

Figure 3–8: OpenEdge Application Debugger working in a CGI wrapper program

The Debugger will work with any WebSpeed development environment. If you use Embedded
SpeedScript and you want to see source code in the Debugger, you need to compile the
application in WebTools, as described below.

DEBUGGER:INITIATE ().
DEBUGGER:SET-BREAK ().
3–27

OpenEdge Revealed: Achieving Server Control with Fathom Management
To see Embedded SpeedScript source code in the Debugger:

1. In WebSpeed WebTools, compile the application using the Compile option in File Tools:
3–28

Configuration of WebSpeed Servers
2. Choose the Save icon to keep a copy of the generated .W file:
3–29

OpenEdge Revealed: Achieving Server Control with Fathom Management
Figure 3–9 shows the Debugger working with the Embedded SpeedScript application.

Figure 3–9: OpenEdge Application Debugger working in an Embedded SpeedScript
application
3–30

Configuration of WebSpeed Servers
The Debugger is available with some versions of UNIX. Linux is not currently supported. If you
are using an X-Windows terminal and you want to use the Debugger with WebSpeed, you need
to set a variable in the WebSpeed server’s Environment Variables area, as shown in Figure
3–10. The DISPLAY setting is described in your UNIX documentation. DISPLAY refers to the
X-Windows machine that will display graphical output. After you make this change, you must
stop and restart the WebSpeed server.

Figure 3–10: WebSpeed server environment variable: DISPLAY

If you cannot use the Progress Explorer to update the DISPLAY settings, then modify the
ubroker.properties file and add or modify the following settings, as shown in Example 3–5.

Example 3–5: Setting DISPLAY environment variable in ubroker.properties

#
WebSpeed Broker definition
#
[UBroker.WS.brokername]
 ...
 environment=brokername
 ...

#
Environment for Broker: brokername
#
[Environment.brokername]
 DISPLAY=yourmachine:0
3–31

OpenEdge Revealed: Achieving Server Control with Fathom Management
Using other techniques to debug WebSpeed applications

If you do not have access to the source code, then there are a few options you can use to see
what is happening in the code. You can:

• Use the 4GL Trace option.

• Look in the agent log file.

The 4GL trace feature will log RUN statements, user-defined FUNCTION calls, and PUBLISH and
SUBSCRIBE to the AppServer log file.

To enable the 4GL trace feature, you must manually modify the ubroker.properties file and
add the srvrLoggingLevel and the srvrLogEntries parameters to the WebSpeed server’s
configuration. An excerpt of an entry is shown in Example 3–6. Stop and restart the WebSpeed
server to start the logging.

Example 3–6: Enabling 4GL Trace in ubroker.properties

[UBroker.WS.DemoWS]
 srvrLoggingLevel=4
 srvrLogEntries=2
 srvrAppMode=Production
 brokerLogFile=C:\DemoApp\Logs\WS_broker.log
 srvrLogFile=C:\DemoApp\Logs\WS_agent.log
 srvrMinPort=5321
 srvrMaxPort=5325
 maxSrvrInstance=5
 controllingNameServer=NS1
 srvrStartupParam=-p web\objects\web-disp.p -weblogerror
 uuid=527a0623fe008210:67d940:f6484c1312:-7d87
 workDir=C:\DemoApp
3–32

Configuration of WebSpeed Servers
The agent’s log file contains warning and error messages, as well as the output from the 4GL
MESSAGE statement. Make sure that the -weblogerror parameter is in the agent’s startup
parameters. Example 3–7 shows an excerpt from an agent’s log file. It contains errors
(“** Invalid character ...”), MESSAGE output (“MyAppMesg”), as well as the output from the
4GL trace.

The lines in the agent’s log file are preceded with the agent number, the date and time, and the
Operating System’s Process ID of the agent. This makes it easy to determine which WebSpeed
agent is running which code. Example 3–8 shows complete lines from the log file.

Since the time is given, you can gain a rough estimate of how long each procedure took to run,
if you surround the RUN command with MESSAGE statements. You can also use the {&FILE-NAME}
and {&LINE-NUMBER} preprocessor variables to show which line of code the MESSAGE statement
is on and which file it is in.

However, making the agent log all the RUN commands by using the 4GL trace option will cause
the agent log file to grow quite quickly. You should enable this logging only when necessary.

Example 3–7: WebSpeed agent log file

WTA server initialising. (8835)
Connected to database sports2000, user number 9. (9543)
Run util/style.w PERSIST [Main Block - xxx.r]
Func checkAppMode "PRODUCTION" [Main Block - xxx.r]
Run process-web-request [Main Block - xxx.r]
Run outContType in util/util.p "text/html" [process-web-request - xxx.r]
Run GetField in webutil/webstart.p "html " [process-web-request - xxx.r]
** Invalid character in numeric input x. (76)
Run showpage.r [Main Block - showdetails.r]
** "showpage.r" was not found. (293)
Run destroyObject in webutil/ping.p [destroy - web2/admweb.p]
Run deleteOffsets in webutil/ping.p [destroyObject - web2/admweb.p]
Run SUPER [destroyObject - web2/admweb.p]
MyAppMesg : Before Processing
Run doProc.p [Main Block - main.r]
MyAppMesg : After Processing

Example 3–8: WebSpeed agent log file lines

S-0001>(22-Jul-03 16:19:12:021) [124] MyAppMesg : Before Processing
S-0001>(22-Jul-03 16:19:12:021) [124] Run doProc.p [Main Block - main.r]
S-0001>(22-Jul-03 16:19:13:821) [124] MyAppMesg : After Processing
3–33

OpenEdge Revealed: Achieving Server Control with Fathom Management
Using the AppServer to access the business logic

Because WebSpeed agents are Progress 4GL clients, they can also use the AppServer to run the
business logic for the application. This allows developers to share business logic with other
Progress 4GL clients. This future-proofs your application’s business logic.

When you design your application, all code that needs to access a database should be put into
separate .P files to be (possibly) run on an AppServer. If you design your application this way,
you can deploy your application with, or without, an AppServer very easily.

Example 3–9 shows code that will run on the client, and if there is an AppServer to process the
logic, it will run it on the AppServer. If there is no AppServer, the code will run locally. This
means that the same r-code files must be installed on the AppServer as well as on the client. The
easiest way to do this is to use r-code libraries: one procedure library for the client r-code files
and one for the business logic r-code files. You would then deploy both procedure libraries to
the client, and only the business logic procedure library to the AppServer.

Example 3–9: Code designed to run on Client or AppServer

DEFINE VARIABLE hAppSrv AS HANDLE NO-UNDO.
DEFINE VARIABLE vConnected AS LOGICAL NO-UNDO.

CREATE SERVER hAppSrv.

vConnected = hAppSrv:CONNECT ("-AppService Sports2000_AS") NO-ERROR.
IF NOT vConnected
THEN
 DO:
 DELETE OBJECT hAppSrv. /* Tidy up memory */
 hAppSrv = SESSION. /* Make the hAppSrv handle "local" */
 END.

RUN foo.r ON hAppSrv. /* Run the application */

IF vConnected /* Release the connection and memory */
THEN
 DO:
 hAppSrv:DISCONNECT () NO-ERROR.
 DELETE OBJECT hAppSrv NO-ERROR.
 END.
3–34

Configuration of WebSpeed Servers
If you don’t want to use the AppServer to run your code but want to share your code with
AppServer clients, you just need to put the business logic procedure library in the WebSpeed
agent’s PROPATH and use a normal run command.

For information on how to develop AppServer applications, see OpenEdge Application Server:
Developing AppServer Applications. R-code libraries are documented in OpenEdge
Deployment: Managing 4GL Applications.

Examples of simple and complex configurations

The simplest configuration, shown in Figure 3–11, is normally used by developers. It has all the
components on one machine. This type of configuration is usually on a Windows platform that
has all the tools needed to develop and test WebSpeed and AppServer applications. The
Windows platforms supported by WebSpeed and AppServer in development mode are
Windows NT or higher, not Windows 98 or ME.

Note: In Figure 3–11 and Figure 3–12, the shaded areas denote a physical machine.
3–35

OpenEdge Revealed: Achieving Server Control with Fathom Management
Figure 3–11: Simple configuration

Note: The components shown in Figure 3–11 are contained in OpenEdge Studio. You need to
make sure you install the OpenEdge Development Server.

Web
Browser

Web Server

WebSpeed
Messenger

NameServer

WebSpeed
Broker

AppServer
Broker

AppServer

Procedure
Libraries

Procedure
Libraries

WebSpeed
Agent

Database
3–36

Configuration of WebSpeed Servers
The most complex configuration, shown in Figure 3–12, is when you have all the components
on separate machines and are using firewalls. In the complex example, the WebSpeed server is
using the Internet NameServer to announce its availability, but the 4GL code that runs on the
WebSpeed server uses the Intranet NameServer to find the appropriate AppServer.

In the complex configuration (Figure 3–12), the rightmost firewall is probably overkill. You
would generally not use it in the real world, but it will make the deployment that tiny bit more
secure.

The areas separated by the firewalls may be considered a “site.” This shows which components
should be located together. The bandwidth required between the sites is much lower than the
bandwidth needed within the sites. This is due to the fact that more information is moved
between the components on one site, than between components on separate sites. See the
“Request round-trip process” section on page 2–6 for details of the network traffic.
3–37

OpenEdge Revealed: Achieving Server Control with Fathom Management
Figure 3–12: Complex configuration

Internet
NameServer

WebSpeed
Broker

AppServer
Broker

AppServer
Server

Procedure
Libraries

Procedure
Libraries

WebSpeed
Agent

Database

Intranet
Name
Server

Internet Web Server

WebSpeed
Messenger
3–38

4
Configuration of the AppServer

This chapter discusses how to configure an AppServer. It includes the following topics:

• General configuration

• AppServer security

• Error handling

• Debugging

OpenEdge Revealed: Achieving Server Control with Fathom Management
General configuration

The AppServer is configured in a very similar way to the WebSpeed server. As in WebSpeed,
it is good practice to keep the port range for the AppServers to the smallest possible range. If
you are configuring an AppServer to have up to five servers, then the port range for the servers
should be five.

Figure 4–1 shows an example of an AppServer configuration having only five servers. Note the
Minimum and Maximum port numbers. If you set this port range too small or if another
process uses a port in this range, then when the AppServer broker tries to launch an AppServer
server, the server will try to use one of the currently in-use ports and fail to start.

Figure 4–1: AppServer configuration with five agents

The AppServer broker and server logging settings, issues, and recommendations are the same
as for WebSpeed, so the same comments and recommendations apply. See the “General
WebSpeed server configuration” section on page 3–3 for details.
4–2

Configuration of the AppServer
AppServer security

The measures taken to secure an AppServer application are equally as important as the measures
to secure a publicly facing WebSpeed application. It is easier to control an AppServer
application when there is no direct interaction with the end user. The AppServer broker’s
configuration should also specify an owner. This will allow the AppServer broker and servers
to be started with the specified user’s rights, not the root or system administrator’s rights. This
is covered in the “Broker ownership” section on page 2–4.

Controlling AppServer entry points

By default, the client process of an AppServer can run any code that exists on the PROPATH of
the AppServer. To maximize security, you should limit the procedures that can be run. You can
control AppServer entry points for an application server process at run time using the EXPORT
method on the SESSION handle. AppServer entry points are the pathnames of procedures in the
AppServer PROPATH that a client application can execute as remote procedures (persistently or
nonpersistent). The EXPORT method establishes entry points by allowing you to set and maintain
an export list that contains the pathnames of authorized remote procedures.

Setting the export list is usually done in the CONNECT procedure of the AppServer if you are using
a state-aware or a state-reset AppServer configuration. If you are using a stateless AppServer
configuration, the export list is typically set in the ACTIVATE procedure. The different states of
an AppServer and the CONNECT/ACTIVATE procedures are discussed in the “AppServer
configuration procedures” section on page 6–10.

To set the export list, the AppServer code passes a comma-separated list of procedures that the
AppServer can access to the EXPORT method. The list can contain wild cards to make it easier to
add entire directories or r-code Libraries. If you want to allow total access to all procedures, just
call the EXPORT method without any parameters.
4–3

OpenEdge Revealed: Achieving Server Control with Fathom Management
Example 4–1 shows a CONNECT procedure that implements an export list. More detailed
information is in OpenEdge Application Server: Developing AppServer Applications.

Example 4–1: Connect procedure with export list

DEFINE INPUT PARAMETER pUserId AS CHARACTER NO-UNDO.
DEFINE INPUT PARAMETER pPassword AS CHARACTER NO-UNDO.
DEFINE INPUT PARAMETER pAppServerInfo AS CHARACTER NO-UNDO.

/* Authenticate user */
FIND FIRST AppUser WHERE AppUser.AppUserId = pUserId
 AND AppUser.AppPasswd = ENCODE (pPassword)
 NO-LOCK.
IF NOT AVAILABLE AppUser
THEN
 RETURN ERROR "Invalid UserId or Password".

/* Authorize access to particular procedures */
IF NOT SESSION:EXPORT (AppUser.ValidProcs)
THEN
 DO:
 /* If the EXPORT fails, log and refuse the connection */
 MESSAGE "Can’t set export list for" AppUser.AppUserId.
 RETURN ERROR "Can’t set export list".
 END.
4–4

Configuration of the AppServer
Later in the application, if you want to clear the export list and set it to a different one, just
invoke the EXPORT method again, as Example 4–2 shows.

Using DBAUTHKEY to lock your r-code to the database

An underused feature of OpenEdge is the DBAUTHKEY (and RCODEKEY) features of PROUTIL. With
DBAUTHKEY, you assign a key to the database and then any code compiled against that database
will have the key in it. When it is time to run the code, if the key in the database does not match
the key in the r-code, then you will get an error similar to the following:

If you already have r-code deployed, you can use the RCODEKEY function of PROUTIL to tag the
existing r-code without having to recompile.

See OpenEdge Data Management: Database Administration for more information on using the
DBAUTHKEY and RCODEKEY features of PROUTIL.

Example 4–2: Resetting export list

.

.

.
/* Clear the export list to allow all procedures */
IF NOT SESSION:EXPORT ().
THEN
 DO:
 /* log failure and return */
 MESSAGE "Can’t clear export list at {&LINE-NUMBER} in {&FILE-NAME}".
 RETURN ERROR "Can’t clear export list".
 END.

/* Reset export list */
IF NOT SESSION:EXPORT ("accnts/*.r,common/qry*.r,system.pl<<*>>")
THEN
 DO:
 /* log failure and return */
 MESSAGE "Can’t set export list at {&LINE-NUMBER} in {&FILE-NAME}".
 RETURN ERROR "Can’t set export list".
 END.
.
.
.

** CRC for table does not match CRC in program. Try recompiling. (1896)
4–5

OpenEdge Revealed: Achieving Server Control with Fathom Management
Error handling

An AppServer application is more easily controlled than a WebSpeed application. This is
because the user does not interact with any application parameters being passed when using the
AppServer. WebSpeed applications need to use URL parameters, cookies, or hidden fields to
pass parameters, and these can be modified by the user.

As a matter of course, you should always check parameters for “sensibleness.” This could be as
simple as a range check or as complex as making sure records match a passed ROWID.

Making sure that errors do not occur is easier than trying to track them down after the event.
Use the MESSAGE statement to track down errors that should not occur. If you are expecting to
receive an integer between 1 and 9 and instead you get 15, then log this with a MESSAGE and
return to the calling procedure by passing an ERROR on the RETURN statement.

Example 4–3 shows how to run a procedure and then check to see if an error was returned. It
also shows how to pass back a message with the error.

Example 4–3: Error code

/* Calling Program */

RUN foo.p ON hAppSrv (15) NO-ERROR.

IF ERROR-STATUS:ERROR
THEN
 DO:
 /* Check for Progress errors first, like (293) */
 IF ERROR-STATUS:NUM-MESSAGES > 0
 THEN
 DO vLoop = 1 TO ERROR-STATUS:NUM-MESSAGES:
 MESSAGE ERROR-STATUS:GET-MESSAGE (vLoop)
 VIEW-AS ALERT-BOX ERROR.
 END.
 ELSE
 MESSAGE RETURN-VALUE VIEW-AS ALERT-BOX ERROR.
 END.

/* foo.p */

DEFINE INPUT PARAMETER pIn AS INTEGER NO-UNDO.

IF pIn < 1 OR pIn > 9
THEN
 RETURN ERROR "Invalid Parameter Passed".
4–6

Configuration of the AppServer
A STOP condition on the AppServer causes the remote procedure request (persistent or
nonpersistent) to terminate and will propagate the STOP condition to the client application. You
can avoid this by handling the STOP condition on the AppServer with an ON STOP statement. A
QUIT condition causes the remote procedure request to terminate and return successfully without
any propagated condition to the client. However, the broker also terminates the client
connection to the AppServer. Likewise, an ON QUIT statement can override this behavior. See
OpenEdge Application Server: Developing AppServer Applications for more information.

Coding practices to avoid deadlocks

If you do not use good coding practices, there is a distinct possibility that you could lock
yourself when accessing records in a database used by the client and the AppServer. Since the
client and AppServer use two distinct connections, if you lock a record on the client and then
try to access it on the AppServer, you will get a deadlock. It will appear that the AppServer
process has hung. If two clients did the same thing, the following message would appear:

Since there is no user interface when running code on an AppServer, this error cannot be seen
or acted on by anyone.

The Lock Wait Timeout (-lkwtmo) parameter alleviates this issue. If the process tries for a lock
and the time spent waiting exceeds the number of seconds specified in the -lkwtmo parameter,
then the code will raise the STOP condition. This can have very bad side effects if you expect the
record to be available after a find. To avoid this, you should always write code that will use
NO-WAIT NO-ERROR and check to see if the record is available.

Example 4–4 and Example 4–5 show the before and after code.

filename in use by user on tty. Wait or choose CANCEL to stop. (2624)

Example 4–4: Problematic code without NO-WAIT NO-ERROR

DO TRANSACTION:
 FIND FIRST Customer WHERE Customer.CustNum = 3
 EXCLUSIVE-LOCK.
 Customer.Balance = Customer.Balance + 20.00.
END.
4–7

OpenEdge Revealed: Achieving Server Control with Fathom Management
Debugging

There are two main ways to debug an application. The first method involves accessing the
source code for the application and the second method does not.

Using the OpenEdge Application Debugger to debug
AppServer applications

The OpenEdge Application Debugger allows you to debug AppServer code from the client
machine. If you start a debugging session on the GUI client and the code runs a procedure on
the AppServer, the Debugger displays this code and allows you to control it.

Example 4–5: Robust code with NO-WAIT NO-ERROR

DO TRANSACTION:
 FIND FIRST Customer WHERE Customer.CustNum = 3
 EXCLUSIVE-LOCK NO-WAIT NO-ERROR.
 IF AVAILABLE Customer
 THEN
 Customer.Balance = Customer.Balance + 20.00.
 ELSE
 DO:
 IF LOCKED Customer
 THEN
 RETURN ERROR "Customer Locked".
 ELSE
 RETURN ERROR "Customer Not Found".
 END.
END.
4–8

Configuration of the AppServer
To enable debugging, check the 4GL debugger enabled check box in the Advanced Features
for the AppServer, as shown Figure 4–2.

Figure 4–2: Enabling 4GL Debugger for AppServer server
4–9

OpenEdge Revealed: Achieving Server Control with Fathom Management
Remote debugging

The main.p code in Example 4–6 shows an example of remote debugging. In this example, the
main.p code is on a Windows GUI client, the AppServer code (foo.p) is in the PROPATH for the
AppServer Sports2000_AS.

To use the Debugger, from the Procedure Editor, choose the Compile menu option and then
choose Debug.

Example 4–6: Remote debugging code

/* main.p */
DEFINE VARIABLE hAppSrv AS HANDLE NO-UNDO.

CREATE SERVER hAppSrv.
hAppSrv:CONNECT ("-AppService Sports2000_AS").

RUN foo.p ON hAppSrv (15) NO-ERROR.

hAppSrv:DISCONNECT () NO-ERROR.
DELETE OBJECT hAppSrv NO-ERROR.

/* foo.p */
DEFINE INPUT PARAMETER pIn AS INT NO-UNDO.

MESSAGE "{&FILE-NAME} Passed " pIn.
4–10

Configuration of the AppServer
The Debugger screens that follow show a sequence of events after every Step Into [F7]
command:

1. The following figure shows the initial state of the debugger. It has paused at the first
executable line of code:

2. The following figure shows the Debugger after the first step:
4–11

OpenEdge Revealed: Achieving Server Control with Fathom Management
3. Next, you are connected to the AppServer and are about to run foo.p:

4. Next, you are in the code that is running on the AppServer. The right side of the window
shows a procedure call stack. Note that the Server is 1158, which is the server held in the
WIDGET-HANDLE that points to 1158. This WIDGET-HANDLE is hAppSrv on the client. The
parameter(s) are shown on the tab folder in the lower left corner of the window.
4–12

Configuration of the AppServer
5. Finally, the code has returned to the calling procedure, and it will now continue on to the
next lines of code:

Using other techniques to debug AppServer applications

If you do not have access to the source code, then there are two options you can use to see what
is happening in the code:

• Use the 4GL Trace option.

• Look in the server log file for errors.

The 4GL trace feature will log RUN statements, user-defined FUNCTION calls, and PUBLISH and
SUBSCRIBE to the AppServer log file.

The 4GL trace feature will work for the GUI or Character client connected to an AppServer. To
enable it for a GUI or Character client, add the following command line options. In this
example, the log file will be in the working directory and be called mylog.lg:

-clientlog mylog.lg -logginglevel 4 -logentrytypes 2
4–13

OpenEdge Revealed: Achieving Server Control with Fathom Management
To enable the 4GL trace feature for the AppServer, you must manually modify the
ubroker.properties file and add the srvrLoggingLevel and the srvrLogEntries parameters
to the AppServer’s configuration. An excerpt of an entry is shown in Example 4–7. Stop and
restart the AppServer to start the logging.

If you use a MESSAGE statement in AppServer code, then the message will appear in the
AppServer’s log file. The following line of code in a file called foo.p in the AS directory when
run on the AppServer will put the line after it in the log file. The preprocessor parameters show
the current filename and line number within that file:

Example 4–7: Enabling 4GL Trace in ubroker.properties

[UBroker.AS.DemoAppSrv]
 srvrLoggingLevel=4
 srvrLogEntries=2
 operatingMode=State-aware
 brokerLogFile=C:\DemoApp\Logs\AS_broker.log
 srvrLogFile=C:\DemoApp\Logs\AS_server.log
 srvrMinPort=5521
 srvrMaxPort=5525
 maxSrvrInstance=5
 controllingNameServer=NS1
 PROPATH=.
 uuid=527a0623fe008210:67d940:f6484c1312:-7d87
 workDir=C:\DemoApp

MESSAGE "{&FILE-NAME} {&LINE-NUMBER} Before Command".

[03/07/23@22:10:54.991+0100] P-002592 T-002596 0 AS -- .\AS\foo.p 1 Before
Command
4–14

Configuration of the AppServer
The AppServer log file fields are:

• Date and Time with offset from GMT.

• Process ID of the AppServer server (P-002592).

• The Java Thread ID.

• The Severity of the message. If you use the 4GL MESSAGE statement, the Severity is 0.

• The AS shows that this is AppServer.

• Two hyphens.

• The message text.
4–15

OpenEdge Revealed: Achieving Server Control with Fathom Management
4–16

5
Configuration of the NameServer

This chapter discusses how to configure the NameServer. It contains the following topics:

• Understanding the NameServer

• Location independence

• Load-balancing

• Fault-tolerant NameServer configurations

• NameServer neighborhoods

OpenEdge Revealed: Achieving Server Control with Fathom Management
Understanding the NameServer

The NameServer is an optional but integral part of the OpenEdge platform. The ability to
provide location independence, load balancing, and connection-time fail-over is provided by the
NameServer service. It can also be a single point of contention or failure if not configured
appropriately.

When the NameServer is being used by the OpenEdge servers, they will inform the
NameServer, by default every 30 seconds, that they are still alive and able to process requests.
The Registration retry entry on the OpenEdge Server Broker Advanced Features page sets
this time period.

If the NameServer does not receive the broker’s message within the NameServer’s
brokerKeepAliveTimeout period, the broker is removed from the Available Broker list within
the NameServer. To be usable, set the OpenEdge server’s Registration retry setting to be equal
to or less than the NameServer’s brokerKeepAliveTimeout. The brokerKeepAliveTimeout is,
by default, set to 30 seconds. To alter this, you will need to edit the ubroker.properties file
manually.

If the broker is removed from the Available Broker list, the NameServer will no longer tell
clients to connect to this broker, thereby providing connection-time fail-over.
5–2

Configuration of the NameServer
The Advanced Features page of an AppServer broker is shown in Figure 5–1. The WebSpeed
broker page is identical.

Figure 5–1: AppServer broker Advanced Features page

Location independence

Because the OpenEdge clients send a message to the NameServer requesting the address of a
broker to handle their application request, it means that the host machine for the OpenEdge
server can be changed without affecting the application source code.

Conversely, if you do not use a NameServer, you will need to change the client deployment,
either source code or configuration file to point to the new broker’s address. Using a “No
NameServer” deployment is covered in the “No NameServer version of the request round-trip”
section on page 2–8.
5–3

OpenEdge Revealed: Achieving Server Control with Fathom Management
Load-balancing

So far, all of the examples show a single OpenEdge server servicing the client’s requests. If this
server becomes overwhelmed with requests, performance will drop. The solution to this is to
allow load-balancing.

To provide load-balancing, you configure two (or more) OpenEdge servers that would be set up
with identical Progress 4GL application code and database connections. These would normally
reside on separate host machines for performance reasons.

Each of the OpenEdge servers would have its own unique name, but would also be configured
to respond to a common service name. This is done in the AppService Name List page of the
broker configuration. Figure 5–2 shows an AppServer broker that will respond to its own name,
as well as the common name Accounts.

Figure 5–2: Setting application service names

Setting more than one application service name for a broker allows the NameServer to forward
requests for all the listed services to that OpenEdge server.

You might want to allocate priority for each OpenEdge server to enable a larger machine with
more WebSpeed agents or AppServer servers to be given more requests than a smaller machine.
To do this, set the Priority weight on the Advanced Features page for the OpenEdge broker,
as shown in Figure 5–3.
5–4

Configuration of the NameServer
The number of requests sent to each broker is decided by a pro-rata formula. The percentage of
all requests sent to a broker is calculated by taking the priority weight of the broker, dividing it
by the total of all the priority weights for brokers able to respond to the request, and multiplying
by 100.

Table 5–1 shows an example of three brokers with differing priority weights and the associated
percentage of requests they will each service.

The NameServer will adjust these percentages each time a new broker joins or leaves the pool
of brokers able to respond to the same request.

Figure 5–3 shows the priority weight being set on the Sports2000_AS AppServer.

Figure 5–3: Setting Priority weight for an AppServer

Table 5–1: Broker priority weights

Broker name Priority weight Percentage requests

Broker 1 10 18.2%

Broker 2 15 27.3%

Broker 3 30 54.5%
5–5

OpenEdge Revealed: Achieving Server Control with Fathom Management
This functionality is available only if you have licensed a 50- or 250-agent WebSpeed
Transaction Server or if you have licensed the Load Balancing NameServer.

Fault-tolerant NameServer configurations

Having only one NameServer on a network that is responsible for allocating brokers to handle
requests can cause performance issues and also becomes a single point of failure. These issues
can be solved by setting up multiple NameServers using one of both of the following
configurations:

• NameServer replication

• NameServer neighborhoods

For more information on setting up fault-tolerant NameServers, see OpenEdge Getting Started:
Installation and Configuration for Unix or OpenEdge Getting Started: Installation and
Configuration for Windows.

NameServer replication

Because the protocol used by the NameServer is UDP, it allows broadcast messages to be sent
to all machines on the same subnet. Setting up two or more machines on the same subnet and
having a NameServer on them provides for resilience using NameServer replication.
5–6

Configuration of the NameServer
To configure this, put the NameServers on different machines listening on the same UDP port
and the client and OpenEdge servers broadcasting the requests to the subnet. Figure 5–4
illustrates this configuration.

Figure 5–4: NameServer replication

AppServer
Accounts
Port 8011

NameServer
NS1

Port 5162

NameServer
NS1

Port 5162

Host: Nexus6
IP: 192.168.123.213

[Ubroker.AS.Accounts]
 appserviceNameList=Accounts
 controllingNameServer=NS1
 portNumber=8011
 …
[NameServer.NS1]
 hostname=192.168.123.255
 location=remote
 portNumber=5162

Host: Bryant
IP:192.168.123.044

Host:Rachel
IP:192.168.123.001

Host: Deckard
IP:192.168.123.101

This network’s subnet mask is: 255.255.255.0
The broadcast address is: 192.168.123.255

hAppSrv:CONNECT (“-AppService Accounts -H 192.168.123.255 -S 5162”).
5–7

OpenEdge Revealed: Achieving Server Control with Fathom Management
In this example, the NameServer hosts are Rachel and Deckard, and each has a NameServer
configured and listening on UDP port 5162. The AppServer is on Nexus6 and is listening on
TCP port 8011. The AppServer will send its registration message to the network subnet
broadcast address 192.168.123.255 on UDP port 5162. Any NameServer on this subnet
listening on port 5162 will receive this message and register this broker.

When the client makes a NameServer request to find a broker capable of servicing accounts
requests, it also broadcasts to 192.168.123.255. All the NameServers will receive the request
and respond. The client will just take the first positive response it receives. The others will be
ignored.

Another benefit of using a broadcast message is that if you decide to move Deckard from
192.168.123.101 to 192.168.123.131 and stay within the same subnet, then you do not need to
change any configuration on either the AppServer or the client code.

To make the AppServer broker broadcast its registration messages to the subnet, you need to
configure the appropriate NameServer in the Progress Explorer, as shown in Figure 5–5, or edit
ubroker.properties manually and enter the settings, as shown in Figure 5–4.

Figure 5–5: Setting NameServer broadcast properties
5–8

Configuration of the NameServer
NameServer neighborhoods

NameServer neighbors are alternate NameServers that you specify as part of a NameServer
configuration. When a NameServer receives a client connection request that it cannot resolve,
it automatically passes the request to the specified NameServer neighbors to attempt the
resolution.

To achieve this, add the neighboring NameServers to the ubroker.properties file as remote
NameServers by using the Progress Explorer or a text editor. Then, add the list of neighboring
NameServers to the primary NameServer’s configuration.

For example, Figure 5–6 shows three NameServers in different subnets. The NameServer on
Roy is neighbored to the other two NameServers. Note that the configuration file on Roy does
not use the correct names for the other two NameServers. It does not need to. As long as the
hostname and port number are correct, the name is irrelevant. In this way, all the NameServers
are NS1, but there is no confusion. The AppServers in each subnet only have their local
NameServer configured. The client also only connects to its local NameServer, but will get
allocated any of the AppServers. This allocation is a result of the NameServers passing the
request on if they cannot respond locally.
5–9

OpenEdge Revealed: Achieving Server Control with Fathom Management
Figure 5–6: NameServer neighborhood

NameServer
NS1

Port 5162

AppServer
OrderEntry
Port 6122

[Ubroker.AS.OrderEntry]
 appserviceNameList=OrderEntry
 controllingNameServer=NS1
 portNumber=6122
 …
[NameServer.NS1]
 hostname=192.168.100.101
 location=remote
 portNumber=5162

Host: Deckard
IP: 192.168.100.101

Host: Tyrell
IP: 192.168.100.089

Host: Bryant
IP: 192.168.200.044

hAppSrv:CONNECT (“-AppService Payroll -H Roy -S 5162”).

AppServer
Accounts
 Port 8011

NameServer
NS1

Port 5162

Host: Nexus6
IP: 192.168.200.213

Host: Roy
IP: 192.168.200.101

[Ubroker.AS.Accounts]
 appserviceNameList=Accounts
 controllingNameServer=NS1
 portNumber=8011
 …
[NameServer.NS1]
 hostname=192.168.200.101
 location=remote
 portNumber=5162

[NameServer.NS1]
 location=local
 portNumber=5162
 neighborNameServers=NS_100,NS_150
[NameServer.NS_100]
 hostname=192.168.100.101
 location=remote
 portNumber=5162
[NameServer.NS_150]
 hostname=192.168.150.101
 location=remote
 portNumber=5162

NameServer
NS1

Port 5162

AppServer
OrderEntry
Port 6122

[Ubroker.AS.Payroll]
 appserviceNameList=Payroll
 controllingNameServer=NS1
 portNumber=4341
 …
[NameServer.NS1]
 hostname=192.168.150.101
 location=remote
 portNumber=5162

Host: Rachel
IP: 192.168.150.101

Host: Pris
IP: 192.168.150.122
5–10

Configuration of the NameServer
Figure 5–7 shows how to configure NS1 using the Progress Explorer. Example 5–1 shows the
matching ubroker.properties file.

Figure 5–7: Setting NameServer neighbors in the Progress Explorer

Note: In the Progress Explorer, you need to highlight which NameServers you want to set as
the local NameServer’s neighbors.

Example 5–1: Setting NameServer neighbors in ubroker.properties

[NameServer.NS1]
 autoStart=1
 location=local
 portNumber=5162
 neighborNameServers=NS2, NS3
 srvrLogFile=@{WorkPath}\NS1.ns.log
[NameServer.NS2]
 hostName=Deckard
 portNumber=5162
 location=remote
[NameServer.NS3]
 hostName=Rachael
 portNumber=5162
 location=remote
5–11

OpenEdge Revealed: Achieving Server Control with Fathom Management
Logging levels

There are three different logging settings for the NameServer: Error Only, Terse, and Verbose.
The default is Terse, which provides enough information to be practical. You should leave the
setting at Terse unless you need to debug access to OpenEdge servers. Earlier in this manual we
discussed how to configure a firewall-enabled deployment, where Verbose logging is used.

Log file maintenance

Like the OpenEdge servers, the NameServer also has a log file that will grow over time. The
same comments and recommendations apply equally to the NameServer. See the “General
configuration” section on page 4–2 for details on maintaining the NameServer log file.
5–12

6
Performance Considerations

This chapter discusses the following topics:

• NameServer performance

• WebSpeed performance

• AppServer performance

• AppServer configuration procedures

• Application performance tuning

Note: For information on database performance tuning using Fathom, see OpenEdge
Revealed: Mastering the OpenEdge Database with Fathom Management.

OpenEdge Revealed: Achieving Server Control with Fathom Management
NameServer performance

The NameServer adds a small amount of time to each request made. This amount of time is very
small and should not impact performance. There are other parts of the entire request that will
cause more performance degradation than the NameServer. The NameServer provides many
useful functions and unless it is really going to cause a problem, you should use the
NameServer.

However, there is one feature of the NameServer that might cause some overhead: Broadcast
UDP. This is discussed in the “NameServer replication” section on page 5–6. If you use the
broadcast method of communications, then all the hosts on the subnet will receive the message
and must handle it. This can cause slow or overworked hosts to become even slower. Do not use
Broadcast UDP unless it is essential for redundancy or if you have a small number of machines
on the subnet.

WebSpeed performance

This section discusses the following WebSpeed performance issues:

• How requests affect performance

• Browser (HTTP) response times

• HTTP/S performance

• Using different Messengers

• Multiple Web servers

How requests affect performance

If you recall in the “Request round-trip process” section on page 2–6, there are quite a few steps
that make up the entire round-trip process and possibly quite a few separate machines, ranging
from the Web server, firewalls, NameServer, WebSpeed server (broker and agents) and
probably a database as well. Each of these steps introduces performance challenges of their
own. The Web server must cope with not only the WebSpeed requests, but the normal HTML
requests as well. Firewalls can introduce network latency, as some will inspect each packet to
make sure it is “allowed” before passing it through to the next machine in the process. The
NameServer performance issues are covered in the previous section.
6–2

Performance Considerations
The WebSpeed broker and agents have a role to play in performance as well. The broker
launches and configures new WebSpeed agents before they are needed. This enables the
requests that are being received to wait as short a time as possible in the broker’s request queue.
The launching of a new agent will take a period of time—the agent itself needs to be loaded into
memory, possibly run some application code to create super procedures, and connect itself to
the database. To keep free agents, you should set the Minimum agents to a number higher than
0. This setting controls how many agents the broker will keep free, up to the Maximum agents.

As Figure 6–1 shows, the broker will start five agents as soon as it is started. It will keep at least
two free agents at all times unless it has already launched the maximum number of agents,
which is 10. Agents that are not used for a period of time will be killed. The Auto Trim
Timeout setting in the broker’s Advanced Features tab controls this time period and is entered
as a number of seconds, so the default of 1800 is equivalent to 30 minutes.

Figure 6–1: Setting minimum and maximum agents
6–3

OpenEdge Revealed: Achieving Server Control with Fathom Management
Browser (HTTP) response times

Having a good response time for a Web site is very important. Making sure that the Web server
is configured well and has enough memory and CPU performance is important in providing
good response times.

Hosting static images and HTML on the Web server allows the Web server to cache these and
provide better performance.

Using the HTTP network monitoring feature of Fathom Management lets you to track the
performance (average response times) of your Web site. See the Resource Monitoring Guide for
more information.

HTTP/S performance

Using HTTP/S to encrypt the traffic between the Web browser and the Web server provides
very good security for the data, but it also introduces a performance hit. In general, for each
request that is made to the Web server, the Web browser and Web server must go through at
least 8 and up to 13 handshake messages before the actual data is sent. Also, one of these
handshake messages needs the Web browser to generate a long random number, which is a slow
process.

Because a Web page is usually made up of multiple requests, using HTTP/S as the protocol
slows down the Web page being displayed. For example, a Web page with 15 images on it will
mean 16 individual requests to be made to the Web server.

HTTP/1.1 has features that should allow one connection with multiple requests to work, but the
implementation into the Web servers and the Web browsers has not been completed. There are
hardware SSL accelerators on the market that will alleviate most of the performance issues on
the Web server side when using SSL.

At present, Fathom Management cannot use HTTP/S as a protocol for the HTTP monitoring
feature.
6–4

Performance Considerations
Using different Messengers

Throughout this manual, the WebSpeed Messenger that has been described is cgiip or
cgiip.exe. Depending on your Web server, there are alternate WebSpeed Messengers. If you
are using a Microsoft IIS Web server, you can use the wsisa.dll Messenger, and if you are
using the Netscape/iPlanet Web server, which is now part of SunOne, you can use the
nsapi.dll.

Each of these Messengers acts in exactly the same way as cgiip, but because they are Dynamic
Link Libraries (DLL’s), they stay in memory and are faster to execute the next time they are
called.

Being a DLL does have a drawback. If the Web server gets confused, there is a strong possibility
that the Messenger process will stop working. The only way to correct this is to restart the Web
server process on the Web server machine; sometimes this involves a reboot.

Due to the cgiip Messenger being loaded each time a request is made, it is slower than the DLL
versions, but it is also more reliable. Since the time it takes the cgiip Messenger to load itself
into memory is quite small, using cgiip is a good idea for production Web sites, as the
performance overhead is slight, but the reliability is high. You should test each possible
Messenger for performance and determine which one you want to use. During testing,
remember to time the entire application, not just the Messenger load times.

Multiple Web servers

One way to increase the throughput of the Web server is to have more than one and share the
load. This is easily achieved using WebSpeed, because the Messenger configuration is identical
on each Web server. To make more than one Web server respond to requests for the same Web
site, you can use DNS round-robin aliases or a hardware redirection. For more information see
your router or DNS documentation.
6–5

OpenEdge Revealed: Achieving Server Control with Fathom Management
AppServer performance

This section discusses the following AppServer performance topics:

• How AppServer operating modes affect performance.

• Using asynchronous AppServer calls.

How AppServer operating modes affect performance

In the “Request round-trip process” section on page 2–6, the request/response round-trip was
described. The AppServer operating mode has a bearing on performance and network traffic.
The AppServer operating mode is determined at application design-time. The operating mode
cannot be changed without rewriting the application so it can to use different modes. For
example, you cannot just change the operating mode from state-aware to stateless unless the
application has been designed to work in both modes.

Understanding state-reset, state-aware, and stateless operating modes

State-reset and state-aware are similar operating modes. They both preserve the AppServer’s
state between client requests. This is achieved by allocating one AppServer to each client
connection. This allows the client to keep transactions open, have queries maintained, and have
temp tables and variables available over multiple AppServer requests. The difference between
the two modes is that when the client disconnects, a state-reset AppServer will return to the state
it was in when it was first started—the same databases will be connected (if you disconnected
or connected others), the same persistent-procedures will be started, and so on. In state-aware
mode, the AppServer is left as is. This can be a good thing because records you have added to
temp tables remain for the next client. This allows you to cache records for reuse.

Stateless AppServers are a totally different scenario. When the client connects to the AppServer
with the CONNECT method, it only connects to the broker and is allocated a Client ID. Every time
a RUN ON SERVER command is performed, the client connects to the broker to be allocated a
server. When the request is finalized, the client disconnects from the server, which then
becomes available for other clients to use.

To retain state information between client requests, the developer can use the
SERVER-CONNECTION-CONTEXT attribute on the SESSION handle in the AppServer server to keep
character information or use the SERVER-CONNECTION-ID attribute on the SESSION handle in the
AppServer as a key into a database “state” table. These techniques are discussed in the
“AppServer configuration procedures” section on page 6–10.
6–6

Performance Considerations
The fastest operating mode for an AppServer is state-aware. This is because it does not need to
tidy up after the client disconnects, and it is always allocated to the AppServer client. Therefore,
you do not have the overhead of the client asking the broker for a server which occurs with
stateless. The second fastest mode is state-reset, because it needs to reset itself to the initial state
it was in when it was first started — the same SESSION attributes, the same databases connected,
and so on. The slowest mode is stateless because it has a large amount of communications
overhead and usually more application code to keep state when needed.

If you are making several related requests very close to each other, you can increase the
performance of a stateless AppServer by making the server bound. When you are bound to an
AppServer, you are allocating the server to be accessed only by the one client in the same
manner as state-aware until you become unbound. You can bind the client to the server by
setting the SERVER-CONNECTION-BOUND-REQUEST attribute on the SESSION handle in the
AppServer to TRUE.

Using stateless mode

Generally, you should always design the AppServer application as deployable in stateless mode,
but deploy the application in a state-aware mode for performance. So, when should you use
stateless mode AppServers? The answer is when the machine hosting the AppServer becomes
resource-bound and slows down. This will usually occur when the machine runs out of real
memory and starts to use virtual memory. When you have a large number of AppServer clients
connected to a state-aware or state-reset AppServer, there will be one server for each client, so,
for example, 500 AppServer clients means 500 servers in memory. Each AppServer can use a
large amount of memory depending on your application.

When you use stateless mode, you will usually need much fewer servers to cope with the same
number of clients. This is because most of the time the AppServer is not doing anything, and in
stateless mode it can be used by another client during this slack time. Having fewer servers
running results in a proportionate saving in memory use.

By using stateless AppServers to alleviate the memory load on the machine, it will start to
perform better, and the overhead of using stateless AppServers becomes much less than using
a slow machine. The number of database connections will also decrease when you move to a
stateless AppServer environment, thereby making the database machine less loaded as well.

You can monitor your system memory usage with Fathom Management’s System Resource
monitor. You can monitor the amount of memory consumed by the AppServer using Fathom
Management’s OpenEdge Server Resource monitor.
6–7

OpenEdge Revealed: Achieving Server Control with Fathom Management
Using asynchronous AppServer calls

Another way to achieve perceived performance gains when accessing the AppServer is to use
asynchronous AppServer calls. The application code on the AppServer does not need to be
altered at all; this is purely a client-side programming construct.

Synchronous requests (the default) occur when the client blocks and waits for the result of the
remote request before continuing execution.

Asynchronous requests occur when the client continues execution after initiating the request
and processes the result whenever the AppServer makes it available. See the “Example of
asynchronous requests” section on page 6–8 for when you might want to use this type of call.

Example of asynchronous requests

If you are hosting a Web site that needs to gather live information on the quantity of an item in
each of a number of warehouses, you might develop an architecture that looks like Figure 6–2.
In this diagram, WebSpeed uses requests to each AppServer to return the number of items at
each warehouse. If each request takes 3 seconds, then using synchronous requests will take a
total of 5 times 3 seconds, resulting in approximately 15 seconds total for the request, allowing
for some network overhead. If you used asynchronous requests, then the total time would be
slightly longer than 3 seconds and nowhere near 15 seconds.

For more details on how to write asynchronous AppServer programs, see OpenEdge
Application Server: Developing AppServer Applications.
6–8

Performance Considerations
Figure 6–2: Asynchronous requests

Warehouse #3

AppServer

Warehouse #4

AppServer

Warehouse #5

AppServer

Warehouse #2

AppServer

Warehouse #1

AppServer

WebSpeed

Internet
6–9

OpenEdge Revealed: Achieving Server Control with Fathom Management
AppServer configuration procedures

AppServer configuration procedures are Progress 4GL procedures that you can specify when
you configure an AppServer and that run at specific times during an AppServer’s lifetime. There
are three types of procedures:

• Startup and shutdown procedures

• Connect and disconnect procedures

• Activate and deactivate procedures

Each of these procedures is run at specific times during the lifetime of an AppServer process
with the idea of simplifying the process of deploying an application with the AppServer.

Because these procedures are standard 4GL programs, they can do anything the developer wants
to do. But, this can cause performance issues if the developer adds too much code, or the code
takes a long time to run, because some of these procedures are executed regularly.

All of these procedures are optional and, depending on the AppServer operating mode, some
cannot be used. Table 6–1 shows which procedures you can use for each AppServer operating
mode.

For detailed information on these procedures and how to implement them, see OpenEdge
Application Server: Developing AppServer Applications.

Table 6–1: AppServer configuration procedures and operating modes

AppServer
operating mode

Startup/
shutdown

Connect/
disconnect

Activate/
deactivate

state-reset No Yes No

state-aware Yes Yes No

stateless Yes Yes Yes
6–10

Performance Considerations
Startup and shutdown procedures

Startup and shutdown procedures encapsulate logic that executes during the startup and
shutdown of an AppServer. This occurs when the AppServer broker launches or kills an server.
Functionality that might go in a startup procedure includes connecting to databases, loading the
contents of temporary tables to provide a cache, and instantiating certain local persistent
procedures and super procedures. In a shutdown procedure, the functionality might include
disconnecting databases, saving the contents of temp tables, deleting persistent procedures, and
general tidying up of the environment.

The startup procedure is run persistently, so it will stay in the AppServer’s memory and can be
accessed by the client and AppServer procedures. On the other hand, the shutdown procedure
is run nonpersistently, just before the server is killed.

Connect and disconnect procedures

CONNECT and DISCONNECT procedures encapsulate logic that executes when a client application
establishes and terminates a connection with an AppServer. The CONNECT procedure is usually
used to authenticate the AppServer client user. See the “Controlling AppServer entry points”
section on page 4–3 for an example of a CONNECT procedure that validates a user. User-specific
databases and temp tables can also be created and deleted in these procedures.

The CONNECT procedure is run persistently for state-reset and state-aware modes and
nonpersistently for stateless. The DISCONNECT procedure is always run nonpersistently.

Activate and deactivate procedures

When a client application sends remote procedure requests to a stateless AppServer, each
request might execute on a different server. To maintain application continuity between
requests, you might need to establish some application-specific resources or context before each
request and discard the resources and context after each request. The Activate and Deactivate
procedures help to manage these resources and context more easily.
6–11

OpenEdge Revealed: Achieving Server Control with Fathom Management
Application performance tuning

It is good practice to make sure that the database is performing adequately, and then move your
tuning focus to the application. You might get a 15-20% benefit from a database server tweak,
but you can gain a 100% benefit from a code or database schema change.

Trying to improve performance of a WebSpeed application mainly deals with making the
application scale well. The user at the other end of a dial-up modem will usually not notice small
performance issues as the Internet itself is probably the slowest link in the entire process. But,
allowing the agent to quickly finish its request and be ready for the next allows for better
scalability. If a WebSpeed program takes five seconds to run, it is quite fast, and the customer
will be happy. If it could finish in 2.5 seconds, then the customer will still be happy, and the
WebSpeed server could cope with twice as many requests per minute than before. This is what
you should be aiming for: high performance WebSpeed applications that allow good scalability.

AppServer applications tend to be more interactive so scalability is not normally the highest
goal—outright speed is. Making the application faster is usually a combination of
understanding the database structures and writing efficient code to access these structures. Plus,
you need a good understanding of how the AppServer works, so calls to the AppServer are kept
to a minimum.

Two very simple things can make a difference to the performance of a WebSpeed or AppServer
application. The first is to use shared r-code libraries and have these on a local disk; and the
second is to move the WebSpeed agent or AppServer temporary files onto a separate disk for
other high access files, like the UNIX swap area, or the database’s BI files. R-code libraries are
documented in OpenEdge Deployment: Managing 4GL Applications. Making these “shared”
will minimize the amount of machine memory used by WebSpeed agents and/or AppServers.
This is because shared r-code libraries are loaded into memory once and all the clients
(WebSpeed, AppServer, batch, and host-based) will share the one copy. Standard r-code
libraries are loaded by each client that accesses them, so a 1MB r-code library used by 25
WebSpeed agents and 100 AppServers will save around 124MB of main memory. Use the
-makeshared option on the PROLIB command to turn a standard r-code library into a shared
r-code library.

Fathom Management has facilities to measure and report on the performance of WebSpeed and
AppServer application code. The WebSpeed/AppServer Application Profile report shows the
application code that has run and the maximum and average execution times. This is a good start
in finding under-performing application code.
6–12

Performance Considerations
You should review the application code to determine if it is using standard practice for writing
good code:

• Does the code use NO-UNDO variables wherever possible?

• Does the code use ASSIGN commands to group micro-transactions?

• Does the code keep transactions and record scopes as small as possible?

• Does the code use DO, instead of REPEAT, unless transactions are needed?

• Does the code use a variable, instead of calling a function, over and over again? An
example follows:

This list is not all-encompassing, but it is a good start. The last item is probably where most
performance improvements will be gained.

Also check that all the queries, FOR EACH and FIND use indexes. Before putting code into
production, compile the code using the XREF option. Then, examine the XREF file for correct
index usage. OpenEdge Data Management: Database Design describes how to read the XREF
output, and OpenEdge Development: Progress 4GL Reference details the XREF option on the
COMPILE statement.

DEFINE VARIABLE vParam AS CHAR NO-UNDO.
DEFINE VARIABLE vLoop AS INT NO-UNDO.

vParam = INT (GET-FIELD ("Param")).

DO vLoop = 1 TO vPARAM:
 /* CODE */
END.
6–13

OpenEdge Revealed: Achieving Server Control with Fathom Management
Progress 4GL Profiler

A much underused utility that Progress provides is the Profiler. This utility will tell you:

• How long each line of code took to run.

• How many times each procedure or function has been called.

• What percentage of the total time was spent in each procedure.

The Profiler will work with any Progress 4GL client that is Version 8.2A or later. The Profiler
tool is supplied as source code and is in the OpenEdge-install/src/samples/profiler
directory. There is a Word document explaining how to set up and run the utility.

For example, at a customer’s site, the Profiler was used to determine why a WebSpeed
application would not scale. After running the application for a period of time and investigating
the Profiler output, it was found that the URL-ENCODE function was being called numerous times
and was consuming around 30% of the total request time. After removing calls to the
URL-ENCODE function, where they were not needed, and speeding up the function as well, it
ended up consuming less than 5% of the total request time and the WebSpeed application
scaled.

When you use the Profiler with WebSpeed or AppServer, make sure that only one AppServer
server or WebSpeed agent is running. The output log file for the Profiler is sent to a hard-wired
filename. If multiple clients try to write to this file, it will cause problems. To force the number
of agents/servers to be 1, set the Initial, Minimum, and Maximum server settings equal to 1
on the Agent/Server Pool Range tab in the Progress Explorer.
6–14

Performance Considerations
Web server performance

To make the Web server perform faster, make sure that the machine it is running on is not
overloaded and that the Web server software is configured appropriately.

Using HTTP compression

Many Web pages today are at least 25KB in size, and some are as large as 100KB. And this is
just the HTML! When you add in the images, most will be in the range of 100 to 150KB.
Sending this information down to a Web browser over a dial-up modem will be very slow, as
most modems will do around 40KB per second. This means that 150KB will take, at best, 35
seconds to download.

There is a solution to this issue and it does not require any changes to the application or to
WebSpeed. The solution is called HTTP compression and it is available in most modern Web
browsers and Web servers. It is described in an article at this URL:
http://www.webreference.com/internet/software/servers/http/compression/index.h

tml. Check your Web server documentation on how to enable HTTP compression and it should
increase performance without impacting too much on the Web server.

Alleviating CPU load

Using HTTP/S to encrypt access to the Web site might cause the CPU in the Web server to
become overloaded. This is because the encryption requires a lot of mathematics. To alleviate
the CPU load, you can use hardware SSL accelerators.
6–15

http://www.webreference.com/internet/software/servers/http/compression/index.html
http://www.webreference.com/internet/software/servers/http/compression/index.html

OpenEdge Revealed: Achieving Server Control with Fathom Management
6–16

7
Where to Use Fathom Management when
Deploying

This chapter highlights the areas of Fathom Management that should be used during application
deployment. It includes the following topics:

• Monitoring AppServer and WebSpeed

• NameServer debugging

• Memory, CPU, and disk monitoring

• Log file management

• Using My Fathom

For complete instructions on using Fathom Management features, see the Fathom Management
documentation set.

OpenEdge Revealed: Achieving Server Control with Fathom Management
Monitoring AppServer and WebSpeed

Several Fathom Management features can be used to monitor AppServer and WebSpeed,
including:

• Broker and Server Performance views

• Trending and reporting data

• Setting rules and configuring alerts

• HTTP monitor

Broker and Server Performance views

The following Fathom Management views can be used to monitor AppServer and WebSpeed
server and broker performance:

• Broker Performance View — Shows overall broker information and provides a good
general view of how the AppServer/WebSpeed service is running. You should use the
Broker Performance View to get a rough overview of throughput (Broker Requests
Completed and the Average Busy Time). If there are any requests that have been queued,
then this is a hint that you might need to allocate more servers to the pool or increase the
speed of the application.

• Server Performance View — Shows the total number of servers/agents, the number free,
and the number of locked or busy servers/agents, along with the CPU and memory
consumption of the servers/agents. The Server Performance View can be used to see if
the servers are leaking memory and steadily growing in size or if they are consuming too
much CPU time.
7–2

Where to Use Fathom Management when Deploying
Figure 7–1 shows WebSpeed Broker and Agent (server) views. The AppServer views are
identical in content.

Figure 7–1: Broker Performance View
7–3

OpenEdge Revealed: Achieving Server Control with Fathom Management
Trending and reporting data

All of this information can be saved in the FathomTrendDatabase, and reports can be run to
show historical comparisons to see if there is a general slowdown, or if at certain times of the
week/month, CPU usage is extreme. Make sure you have checked the Trend Performance
Data check box in the monitoring plan to capture this data, as shown in Figure 7–2. Although
this example shows a WebSpeed server, the AppServer setting is configured in exactly the same
way.

Figure 7–2: Trending performance data
7–4

Where to Use Fathom Management when Deploying
The Application Profile Report is a very powerful report that shows the number of times
programs are run and the average and maximum time taken for each program. The names of the
programs can be configured by using the “matches,” “begins with,” or “literal” values. Use
“matches *” to get all programs. Since the FathomTrendDatabase is an OpenEdge database, you
can also write your own reports if the standard reports do not suit your needs. The source for the
standard reports is included in the FATHOM/src/fathom4gl-p.pl file.

You will need to copy this file to a temporary directory and then extract the .P files using the
PROLIB utility documented in OpenEdge Deployment: Managing 4GL Applications. Use these
programs as an example, or just modify them. See the Reporting Guide for more information on
customizing Fathom reports.

Setting rules and configuring alerts

After gathering this information for a number of weeks or months, you will have built up a
knowledge base from which you can then determine the standard for average run times, memory
utilization, and CPU utilization.

This information can then be used to set rules that will alert you to excessive procedure
execution time, CPU utilization, queue length, or other key performance indicators.

For the important procedures in your application, configure the Average Procedure Duration
High rule to alert you to excessive procedure execution times for the WebSpeed or AppServer
procedure. By default, this rule is not configured because you need to set it for individual
procedures. You can add the rule to the Default_AS_RuleSet and the Default_WS_RuleSet, or
create your own rule set.
7–5

OpenEdge Revealed: Achieving Server Control with Fathom Management
An example of setting this rule is shown in Figure 7–3. It shows that the Default_Mail_Action
action will be thrown after one poll where the average duration for DoSearch.p exceeds 75
milliseconds.

Figure 7–3: Average Procedure Duration High rule

The following rules might also be useful in a deployment environment to help you identify a
possible runaway process or a possible memory leak: Process CPU High, Process Resident
Memory High, and Process Virtual Memory High.
7–6

Where to Use Fathom Management when Deploying
The Queued Request Percent High rule is very useful for checking that the AppServer or
WebSpeed servers are not being overloaded with requests. The Queued Request Percentage
should be kept as low as possible. If the queue is caused by the agents or servers taking too long
to return a response, then you need to determine why—is it because the application is running
slowly (average procedure duration), or is it due to a machine overload (CPU/Memory usage)?
To reduce the queue length, you will need to increase the number of AppServers or WebSpeed
agents that the broker can launch and/or increase the speed of the application code by adding
more memory, CPU, or modifying the code or database structure to make the code run faster.

Using the Configuration Advisor

You can calculate the values used to set the comparisons for all the above rules by yourself or
you can use the Configuration Advisor tool. This tool uses data collected over a period of time
and recommends settings for the selected rules. You should use the Advisor’s settings until you
get a better feel for the way the application is running.

HTTP monitor

The Fathom resource monitor for HTTP lets you monitor the state of the Web server and
WebSpeed application. You can configure the monitor to check if the Web server is alive and
also check if it is returning correct information by using the Content rule definition section of
the monitoring plan.

For information on how to configure these Fathom features, see the Resource Monitoring Guide
and the OpenEdge Server Management Guide.

NameServer debugging

There are a number of rules that will aid in the debugging of OpenEdge server-based
applications when using the NameServer. These are the Duplicate Broker UUID, Broker
Timeout, and the AppService Not Found rules.

The Duplicate Broker UUID rule is very useful if you need to edit the ubroker.properties
file manually, because it will alert you if you’ve forgotten to use genuuid to create the UUID
when creating a new broker.
7–7

OpenEdge Revealed: Achieving Server Control with Fathom Management
Broker Timeout alerts occur when the broker does not send the keep-alive message within the
timeout period. This communications process is covered in Chapter 5, “Configuration of the
NameServer.” This alert usually means that the broker has died and has not tidied up after itself.

The AppService Not Found alert occurs when clients are requesting services that are not
provided by any brokers that are registered with the NameServer. This can be caused by a
misconfiguration of the client application in the case of AppServer requests and from
malformed URLs when using WebSpeed. If you are hosting a public Web site using WebSpeed
and you are receiving these alerts, it might be because hackers are probing to find which
WebSpeed servers are enabled.

Memory, CPU, and disk monitoring

The memory, CPU and disk monitoring feature is useful for tracking usage trends over time. If
the virtual memory used is constantly high, adding more real memory to the machine would
help with performance as swapping is reduced. Likewise, if the CPU is constantly running at
100%, then adding more CPUs (or better coding) can aid in increasing performance. In general,
more CPUs are better than faster CPUs. The reason is that with more CPUs you get better
parallelism. Disk storage prices have tumbled and the size of disks has increased dramatically.
Having many disks and a large amount free space on these disks will improve performance.
Putting high-access parts of your system onto separate disks will increase throughput. Adding
hardware RAID 0/1 (mirroring and striping) will also help. Configuring the monitoring of these
resources is covered in the Resource Monitoring Guide. See OpenEdge Revealed: Mastering
the OpenEdge Database with Fathom Management for a detailed discussion of RAID.

Log file management

Log file management is a feature that should be used. The ability for Fathom to keep a check on
the log file size and look for errors within the log files is very important when running a
production system. It allows the administrator to concentrate on doing real work, rather than
scanning files for errors. Log file configuration, management, and alerting are covered in the
Resource Monitoring Guide.
7–8

Where to Use Fathom Management when Deploying
Using My Fathom

The My Fathom feature can be used to show the WebSpeed and AppServer throughput graphs,
CPU, and database graphs that allow the administrator to see, in a single glance, if the
throughput of any application is starting to fall.

This is done by setting the customized view to show the appropriate graphs from the viewlets
available. Figure 7–4 show an example My Fathom page, which was configured to detail
memory usage. For detailed information about the My Fathom page and collections, see the
Resource Monitoring Guide.

Figure 7–4: My Fathom page
7–9

OpenEdge Revealed: Achieving Server Control with Fathom Management
7–10

Index
Numbers

4GL Trace option 3–32, 4–13

A

Accessing
IP Packet Filter settings 2–16
Web server 2–20
WebSpeed agent 2–23
WebSpeed broker 2–23

Activate and deactivate procedures 6–11

AdminServer
changing port used under UNIX 2–4
changing port used under Windows 2–3
overview 1–3
starting 1–4

Alerts 7–5

Application service names 5–4

AppServer
activate and deactivate procedures 6–11
asynchronous calls 6–8 to 6–9
broker 1–9
configuration procedures 6–10 to 6–11
configuration with five agents 4–2
connect and disconnect procedures 6–11

Connect procedure with export list 4–4
controlling entry points 4–3
deadlocks 4–7
debugging 4–8 to 4–15
deployment architecture 1–8
log file 4–13, 4–15
operating modes 6–6 to 6–7
overview 1–7 to 1–9
performance 6–6 to 6–9
security 4–3 to 4–5
server 1–9
setup and configuration 4–1 to 4–15
startup and shutdown procedures 6–11
using OpenEdge Application Debugger

4–8 to 4–13
using to access business logic 3–34 to

3–35

AppServer Broker Advanced Features 5–3

AppServer Internet Adapter (AIA)
Preface–4

AppServer Server configuration procedures
and operating modes 6–10

Architecture of OpenEdge servers 1–2

Asynchronous requests 6–9

Average Procedure Duration High rule 7–6

Index

OpenEdge Revealed: Achieving Server Control with Fathom Management
B

Broker ownership
setting 2–5

Broker Performance View 7–3

Broker Priority weights 5–5

Browser (HTTP) response times 6–4

Business logic
using AppServer for 3–34 to 3–35

C

CGI wrapper 1–5, 3–27

CGIIP executable name
hiding 3–8

cgiip.wsc 2–9

Changing
agent parameters to reference web-disp.p

3–19
script directory names 3–8

Code designed to run on client or AppServer
3–34

Complex configuration 3–38

Configuring
ubroker.properties file for firewall 2–12
WebSpeed broker logging 3–3 to 3–4
WebSpeed servers 3–1 to 3–38

Connect and disconnect procedures 6–11

CPU load 6–15

CPU monitor 7–8

D

Database
locking r-code 3–14, 4–5

DBAUTHKEY 3–14, 4–5

Debugging
applications 3–27 to 3–33
AppServer 4–8 to 4–15
enabling 4–9
firewall configurations 2–15 to 2–23
using OpenEdge Debugger 3–27
WebSpeed 3–24 to 3–33
with Fathom 7–7

Deployment model 3–12, 3–13

Development configuration Preface–3

Disk monitor 7–8

DMZ 3–21

Domain Name System 2–24

E

Embedded SpeedScript 1–5, 3–28

Error code 4–6

Error Customization Utility 3–25

Error handling
AppServer 4–6 to 4–8
WebSpeed 3–24 to 3–25

Example of asynchronous requests 6–8

F

Fathom
alerts 7–5
Configuration Advisor 7–7
HTTP monitor 7–7
integration with OpenEdge servers 1–10
monitoring AppServer 7–2 to 7–7
monitoring CPU 7–8
monitoring disks 7–8
monitoring memory 7–8
monitoring WebSpeed 7–2 to 7–7
–2

Index
My Fathom 7–9
performance views 7–2
rules 7–5
where to use when deploying 7–1 to 7–9

Fault-tolerant NameServer configurations
5–6 to 5–8

Firewalls
configuration 2–10 to 2–14
configuring ubroker.properties for 2–12
debugging 2–15 to 2–23
with DMZ 3–22

H

Host name
setting 2–14

HTTP compression 6–15

HTTP monitor 7–7

HTTP/S performance 6–4

I

inet_ns 2–13

IP issues 2–24

IP Packet Filter settings
accessing 2–16

L

Load-balancing 5–4 to 5–6

Location independence 5–3

Log file management 7–8

Logging
configuring WebSpeed broker 3–3 to 3–4

M

Mapped Web objects 1–5

Memory monitor 7–8

Microsoft IIS 3–8

Monitoring
AppServer 7–2 to 7–7
WebSpeed 7–2 to 7–7

Multi-homed servers 2–24 to 2–26

Multiple IP address servers, see
Multi-homed servers

Multiple Web servers 6–5

My Fathom 7–9

N

NameServer
application service names 5–4
checking access using NSMAN -name

NS1 -query 2–22
checking access using the Progress

Explorer 2–21
debugging with Fathom 7–7
load balancing 5–4 to 5–6
location independence 5–3
log file maintenance 5–12
logging levels 5–12
neighborhoods 5–6 to 5–8
performance 6–2
replication 5–6 to 5–8
setting broadcast properties 5–8
setup and configuration 5–1 to 5–12
understanding 5–2

NameServer neighborhoods 5–9

NameServer replication 5–6
Index–3

Index

OpenEdge Revealed: Achieving Server Control with Fathom Management
Network traffic
securing 3–5

No NameServer
version of the request round-trip 2–8

NSMAN -name NS1 -query 2–21

O

Open client Preface–5

OpenEdge Application Debugger 3–27
using to debug AppServer applications

4–8 to 4–13
working in a CGI wrapper program 3–27
working in an Embedded SpeedScript

application 3–30

OpenEdge Debugger
using 4–10

OpenEdge servers
general configuration tasks 2–2

Other OpenEdge server products Preface–4

Overview
Fathom and OpenEdge 1–1
OpenEdge servers 1–1

P

Parameters
passing 3–20

Passing unique identifiers 3–21

Performance
application tuning 6–12 to 6–15
AppServer 6–6 to 6–9
browser response times 6–4
HTTP/S 6–4
multiple Web servers 6–5
NameServer 6–2
WebSpeed 6–2 to 6–5
WebSpeed Messengers 6–5

Performance considerations 6–1 to 6–15

Priority weights 5–5

Problematic code without NO-WAIT
NO-ERROR 4–7

Progress 4GL Profiler 6–14

Progress OpenEdge application deployment
architecture 1–2

PROPATH
minimizing 3–20

R

Register with NameServer setting 2–26

Remote debugging 4–10

Reporting data 7–4

Request round-trip 2–6

Resetting export list 4–5

Rules 7–5

S

Script directory names
changing 3–8

Secure AppServer Internet Adapter (AIA/S)
Preface–4

Secure firewall configuration 3–23

Security
AppServer 4–3 to 4–5
AppServer Connect procedure 4–4
changing script directory names 3–8
controlling AppServer entry points 4–3
Firewalls 3–21 to 3–24
hiding CGIP executable name 3–8
locking r-code to the database 3–14
Microsoft IIS 3–8
modifying web-disp.p 3–15 to 3–19
network traffic 3–5
passing parameters 3–20
–4

Index
PROPATH 3–20
Web server 3–6
WebSpeed 3–4 to 3–24
WebSpeed agent production setting 3–15
WebSpeed application 3–14 to 3–21
WebSpeed Messenger Administration

tool 3–10
WebSpeed server 3–11 to 3–13

Setting
application service names 5–4
DISPLAY environment variable in

ubroker.properties 3–31
host name 2–14
minimum and maximum agents 6–3
NameServer broadcast properties 5–8
NameServer neighbors in the Progress

Explorer 5–11
NameServer neighbors in

ubroker.properties 5–11
Production mode for WebSpeed agents

3–15
rules 7–5

Setup and configuration
AppServer 4–1 to ??
NameServer 5–1 to 5–12

Setup and Configuration of OpenEdge
servers 2–1 to 2–26

ShutdownCmd 2–3

Starting the AdminServer 1–4

Startup and shutdown procedures 6–11

StartupCmd 2–3

T

Trending data 7–4

Trending performance data 7–4

U

ubroker.properties 2–12, 2–21
configuring for firewall 2–12
enabling 4GL Trace 3–32, 4–14
modifying 2–2
modifying for firewall 2–12
setting NameServer neighbors 5–11
understanding 1–4
WebSpeed Messenger logging 2–20

Understanding state-reset, state-aware, and
stateless operating modes 6–6

UNIX
Web server security 3–9

Using other techniques to debug AppServer
applications 4–13

Using stateless mode 6–7

W

Web server
checking response 3–7
hiding type and version 3–7
multiple 6–5
performance 6–15
securing 3–6
UNIX 3–9

web-disp.p 3–15

WebServices Toolkit (WSTK) Preface–5

WebSpeed
agents 1–7
application security 3–14 to 3–21
broker 1–7
changing script directory names 3–8
debugging 3–24 to 3–33
debugging applications 3–27 to 3–33
Index–5

Index

OpenEdge Revealed: Achieving Server Control with Fathom Management
deployment architecture 1–6
error handling 3–24 to 3–25
firewalls 3–21 to 3–24
hiding CGIIP executable name 3–8
Microsoft IIS 3–8
minimizing PROPATH 3–20
modifying web-disp.p 3–15 to 3–19
overview 1–5
passing parameters 3–20
performance 6–2 to 6–5
redirecting error messages 3–24
securing network traffic 3–5
securing Web server 3–6
security 3–4 to 3–24
server, overview 1–6
UNIX Web servers 3–9
writing robust code 3–26

WebSpeed Agent
accessing 2–23
changing parameters 3–19
log file 3–32, 3–33
production setting 3–15

WebSpeed broker
accessing 2–23
logging 3–3 to 3–4

WebSpeed Messenger
debugging 2–20
installation 3–2
performance 6–5

WebSpeed server
configuring 3–1 to 3–38
DISPLAY environment variable 3–31
security 3–11 to 3–13

wspd_cgi.sh 2–9
–6

	Preface
	Purpose
	Audience
	Fathom Management with OpenEdge or Progress
	How to use this manual
	What will not be covered in this manual
	Development configuration
	Other server products
	The AppServer Internet Adapter and Secure AppServer Internet Adapter
	Open clients
	WebServices Toolkit (WSTK)

	Organization
	Typographical conventions

	Fathom and OpenEdge Servers Overview
	Architecture of OpenEdge servers
	Administration server
	Understanding the ubroker.properties file
	WebSpeed
	AppServer

	Fathom integration with OpenEdge servers

	Setup and Configuration of OpenEdge Servers
	General OpenEdge server configuration tasks
	Broker ownership
	Request round-trip process
	No NameServer version of the request round-trip

	Firewall configuration and debugging
	Firewall configuration
	Debugging firewall configurations

	IP issues
	Domain Name System
	Multi-homed servers (multiple IP address servers)

	Configuration of WebSpeed Servers
	WebSpeed Messenger installation
	General WebSpeed server configuration
	Configuring logging

	WebSpeed security
	Securing your network traffic
	Securing your Web server
	Securing your WebSpeed server machine
	Securing your WebSpeed application
	Firewalls

	Error handling and debugging
	Error handling
	Writing robust code
	Debugging the application

	Using the AppServer to access the business logic
	Examples of simple and complex configurations

	Configuration of the AppServer
	General configuration
	AppServer security
	Controlling AppServer entry points
	Using DBAUTHKEY to lock your r-code to the database

	Error handling
	Coding practices to avoid deadlocks

	Debugging
	Using the OpenEdge Application Debugger to debug AppServer applications
	Using other techniques to debug AppServer applications

	Configuration of the NameServer
	Understanding the NameServer
	Location independence
	Load-balancing
	Fault-tolerant NameServer configurations
	NameServer replication

	NameServer neighborhoods
	Logging levels
	Log file maintenance

	Performance Considerations
	NameServer performance
	WebSpeed performance
	How requests affect performance
	Browser (HTTP) response times
	HTTP/S performance
	Using different Messengers
	Multiple Web servers

	AppServer performance
	How AppServer operating modes affect performance
	Using asynchronous AppServer calls

	AppServer configuration procedures
	Startup and shutdown procedures
	Connect and disconnect procedures
	Activate and deactivate procedures

	Application performance tuning
	Progress 4GL Profiler
	Web server performance

	Where to Use Fathom Management when Deploying
	Monitoring AppServer and WebSpeed
	Broker and Server Performance views
	Trending and reporting data
	Setting rules and configuring alerts
	HTTP monitor

	NameServer debugging
	Memory, CPU, and disk monitoring
	Log file management
	Using My Fathom

	Index
	Numbers
	A
	B
	C
	D
	E
	F
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W

