
Expert Series

OpenEdge Revealed:
Mastering the OpenEdge Database with
OpenEdge Management

Adam Backman

01mpftitle.fm Page i Tuesday, January 29, 2008 11:05 AM

© 2008 Progress Software Corporation. All rights reserved.

Progress® software products are copyrighted and all rights are reserved by Progress Software Corporation. This manual is also copyrighted and all rights are reserved. This manual may not,
in whole or in part, be copied, photocopied, translated, or reduced to any electronic medium or machine-readable form without prior consent, in writing, from Progress Software Corporation.

The information in this manual is subject to change without notice, and Progress Software Corporation assumes no responsibility for any errors that may appear in this document.

The references in this manual to specific platforms supported are subject to change.

A (and design), Actional, Actional (and design), Affinities Server, Allegrix, Allegrix (and design), Apama, Business Empowerment, ClientBuilder, ClientSoft, ClientSoft (and Design),
Clientsoft.com, DataDirect (and design), DataDirect Connect, DataDirect Connect64, DataDirect Connect OLE DB, DataDirect Technologies, DataDirect XQuery, DataXtend, Dynamic
Routing Architecture, EasyAsk, EdgeXtend, Empowerment Center, eXcelon, Fathom, IntelliStream, Neon, Neon New Era of Networks, O (and design), ObjectStore, OpenEdge, PDF,
PeerDirect, Persistence, Persistence (and design), POSSENET, Powered by Progress, PowerTier, ProCare, Progress, Progress DataXtend, Progress Dynamics, Progress Business
Empowerment, Progress Empowerment Center, Progress Empowerment Program, Progress Fast Track, Progress OpenEdge, Progress Profiles, Progress Results, Progress Software
Developers Network, ProVision, PS Select, SequeLink, Shadow, ShadowDirect, Shadow Interface, Shadow Web Interface, ShadowWeb Server, Shadow TLS, SOAPStation, Sonic ESB,
SonicMQ, Sonic Orchestration Server, Sonic Software (and design), SonicSynergy, SpeedScript, Stylus Studio, Technical Empowerment, Voice of Experience, WebSpeed, and Your
Software, Our Technology–Experience the Connection are registered trademarks of Progress Software Corporation or one of its subsidiaries or affiliates in the U.S. and/or other countries.
AccelEvent, Apama Dashboard Studio, Apama Event Manager, Apama Event Modeler, Apama Event Store, AppsAlive, AppServer, ASPen, ASP-in-a-Box, BusinessEdge, Cache-Forward,
DataDirect Spy, DataDirect SupportLink, DataDirect XML Converters, Future Proof, Ghost Agents, GVAC, Looking Glass, ObjectCache, ObjectStore Inspector, ObjectStore Performance
Expert, Pantero, POSSE, ProDataSet, Progress ESP Event Manager, Progress ESP Event Modeler, Progress Event Engine, Progress RFID, PSE Pro, SectorAlliance, SmartBrowser,
SmartComponent, SmartDataBrowser, SmartDataObjects, SmartDataView, SmartDialog, SmartFolder, SmartFrame, SmartObjects, SmartPanel, SmartQuery, SmartViewer, SmartWindow,
Sonic, Sonic Business Integration Suite, Sonic Process Manager, Sonic Collaboration Server, Sonic Continuous Availability Architecture, Sonic Database Service, Sonic Workbench, Sonic
XML Server, The Brains Behind BAM, WebClient, and Who Makes Progress are trademarks or service marks of Progress Software Corporation or one of its subsidiaries or affiliates in the
U.S. and other countries. Vermont Views is a registered trademark of Vermont Creative Software in the U.S. and other countries. IBM is a registered trademark of IBM Corporation. JMX
and JMX-based marks and Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries. Any other trademarks or service
marks contained herein are the property of their respective owners.

OpenEdge Management Third Party Acknowledgements:

OpenEdge Management includes software developed by the Apache Software Foundation (http://www.apache.org/). Copyright © 1999 The Apache Software Foundation. All rights
reserved (Xalan XSLT Processor), Copyright © 1999-2002 The Apache Software Foundation. All rights reserved (Xerces), Copyright © 1999-2000 The Apache Software Foundation. All
rights reserved (Xerces), and Copyright © 2000-2002 The Apache Software Foundation. All rights reserved (Jakarta-Oro). The names “Apache,” “Xerces,” “Jakarta-Oro,” and “Apache
Software Foundation” must not be used to endorse or promote products derived from this software without prior written permission. Products derived from this software may not be called
“Apache” or “Jakarta-Oro,” nor may “Apache” or “Jakarta-Oro” appear in their name, without prior written permission of the Apache Software Foundation. For written permission, please
contact apache@apache.org. Software distributed on an “AS IS” basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License for the specific language
governing rights and limitations under the License agreement that accompanies the product.

OpenEdge Management includes software developed by Sun Microsystems, Inc. Copyright © 2003 Sun Microsystems, Inc. All Rights Reserved. Software distributed on an “AS IS” basis,
WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License for the specific language governing rights and limitations under the License agreement that accompanies
the product.

OpenEdge Management includes software Copyright © 1994-2006 Sun Microsystems, Inc. All Rights Reserved. Software distributed on an “AS IS” basis, WITHOUT WARRANTY OF
ANY KIND, either express or implied. See the License for the specific language governing rights and limitations under the License agreement that accompanies the product.

OpenEdge Management includes software Copyright 1994-2000 Sun Microsystems, Inc. All Rights Reserved. -Neither the name of or trademarks of Sun may be used to endorse or promote
products including or derived from the Java Software technology without specific prior written permission; and Redistributions of source or binary code must contain the above copyright
notice, this notice and and the following disclaimers: This software is provided "AS IS," without a warranty of any kind. ALL EXPRESS OR IMPLIED CONDITIONS,
REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-
INFRINGEMENT, ARE HEREBY EXCLUDED. SUN MICROSYSTEMS, INC. AND ITS LICENSORS SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE
AS A RESULT OF USING, MODIFYING OR DISTRIBUTING THE SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN MICROSYSTEMS, INC. OR ITS LICENSORS
BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT, INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER
CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF OR INABILITY TO USE SOFTWARE, EVEN IF SUN MICROSYSTEMS, INC.
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

OpenEdge Management includes Sonic and ObjectStore software which includes software developed by the ModelObjectsGroup (http://www.modelobjects.com). Copyright © 2000-
2001 ModelObjects Group. All rights reserved. The name “ModelObjects” must not be used to endorse or promote products derived from the SSC Software without prior written permission.
Products derived from the SSC Software may not be called “ModelObjects”, nor may “ModelObjects” appear in their name, without prior written permission. For written permission, please
contact djacobs@modelobjects.com.

OpenEdge Management includes Sonic software which includes files that are subject to the Netscape Public License Version 1.1 (the “License”); you may not use this file except incompliance
with the License. You may obtain a copy of the License at http://www.mozilla.org/NPL). Software distributed under the License is distributed on an “AS IS” basis, WITHOUT
WARRANTY OF ANY KIND, either express or implied. See the License for the specific language governing rights and limitations under the License. The Original Code is Mozilla
Communicator client code, released March 31, 1998. The Initial Developer of the Original Code is Netscape Communications Corporation. Portions created by Netscape are Copyright ©
1998-1999 Netscape Communications Corporation. All Rights Reserved.

OpenEdge Management contains copyright material licensed from AdventNet, Inc. http://www.adventnet.com. All rights to such copyright material rest with AdventNet.

OpenEdge Management includes the RSA Data Security, Inc. MD5 Message-Digest Algorithm. Copyright © 1991-2, RSA Data Security, Inc. Created 1991. All rights reserved.

OpenEdge Management includes Sonic and ObjectStore software which include the JMX Technology from Sun Microsystems, Inc. Use and Distribution is subject to the Sun Community
Source License available at http://sun.com/software/communitysource.

OpenEdge Management includes software Copyright © 2001-2003 James House. All rights reserved. Software distributed on an “AS IS” basis, WITHOUT WARRANTY OF ANY KIND,
either express or implied. See the License for the specific language governing rights and limitations under the License agreement that accompanies the product. This product uses and includes
within its distribution, software developed by the Apache Software Foundation (http://www.apache.org/).

OpenEdge Management includes code licensed from RSA Security, Inc. Some portions licensed from IBM are available at http://oss.software.ibm.com/icu4j/.

OpenEdge Management includes Sonic software, which includes code licensed from Mort Bay Consulting Pty. Ltd. The Jetty Package is Copyright © 1998 Mort Bay Consulting Pty. Ltd.
(Australia) and others.

For the latest documentation updates see the OpenEdge Product Documentation category on PSDN (http://www.psdn.com/library/kbcategory.jspa?categoryID=129).

February 2008

Last updated with new content: Release 3.1C Item Number: 116166; Product Code: 2778; R3.1C
ISBN: 0-923562-08-7 (10 digit); 978-0-923562-08-3 (13 digit)

http://www.psdn.com/library/kbcategory.jspa?categoryID=129
http://www.psdn.com/library/kbcategory.jspa?categoryID=129
http://oss.software.ibm.com/icu4j/
http://www.apache.org/
mailto:apache@apache.org
http://www.modelobjects.com
mailto:djacobs@modelo
http://www.mozilla.org/NPL
http://www.adventnet.com
http://sun.com/software/communitysource
http://www.apache.org/

Contents

Preface..11
Overview...12
Purpose ..12
OpenEdge Management...13
Audience...13
How to use this manual ..13
Organization ...14
Typographical conventions...15

Managing System Resources...17
Managing disk capacity ..18

Ensuring adequate disk storage ..18
Understanding data storage ..19
Determining data storage requirements ..20
Examining your growth pattern..22
Comparing expensive and inexpensive disks ...24
Determining the location of data on disks..25
Understanding cache utilization...25
Increasing disk reliability with RAID...25
OpenEdge in a network storage environment ...33
Summary ...33

Contents

4

Managing memory usage...34
How much paging is too much? ..35
Estimating memory requirements ...36
OpenEdge-specific memory estimates ...37

Managing CPU activity ...40
Understanding CPU activity ..40
Tuning your system...41
Understanding idle time... 43
Monitoring your system ... 43
Fast CPUs versus many CPUs ... 44

Summary ..46

Managing OpenEdge Database Resources..47
OpenEdge database internals.. 49

Understanding database blocks..49
Type I versus Type II storage area internals...57
Understanding memory internals ..57
Understanding shared memory resources.. 59

Understanding how blocks are manipulated ..65
Record block manipulation..65
Index block manipulation...68

Optimizing data layout..70
Sizing your database areas...70
Distributing tables across storage areas...72

Optimizing database areas...86
Data area optimization .. 86
Choosing an appropriate block size ..89
Primary recovery (before-image) information ...99
After-image information...100

Replicating with OpenEdge..111
Reasons to replicate..111
Types of Replication..112
Components of OpenEdge Replication...114
Implementing OpenEdge Replication..115
Replication properties file examples ...119

Optimizing memory usage..122
Why the buffer hit percentage is important ...122
Increasing memory usage...122
Decreasing memory ..123

Optimizing CPU usage...125
Understanding the -spin parameter...125
CPU bottleneck: Look at your disk drives ... 127

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

5

Performing System Administration ...129
Understanding the database administrator’s role...130
Ensuring system availability with trending ..131

Trending database areas...131
Trending application load ..134
Trending operating system information ...134
Trending system memory ..135
Trending system disks...137
Setting alerts for variable extent growth ..138
Additional factors to consider in trending...138
Process monitoring..139
Testing to avoid problems ...139
Modifications to verify the integrity of data ..141

Ensuring system resiliency ...145
Why backups are done..145
Creating a complete backup-and-recovery strategy......................................146
Using PROBKUP versus operating system utilities.......................................149
After-imaging implementation and maintenance ...154
Testing your recovery strategy ..156

Maintaining your system...157
Daily monitoring tasks..157
Monitoring the database log file...158
Monitoring area fill ...160
Monitoring buffer hit rate..161
Monitoring buffers flushed at checkpoint ...163
Monitoring system resources (disks, memory, and CPU)163
Periodic monitoring tasks ..168
Online database utilities ..168
Offline database utilities ..173
“Kind of” online utilities...175
Running the utilities ...176
Truncate BI and BIGROW ...179
Understanding dump and load ..179

Profiling your system performance ...181
Establishing a performance baseline...181
Performance tuning methodology..182

Advantages and disadvantages of monitoring tools...184
Common performance problems ..186

Disk bottleneck causes and solutions..186
Memory bottleneck causes and solutions..190
CPU bottleneck causes and solutions...192
Runaway processes ..193
Improper setting of the OpenEdge –spin parameter193

Contents

6

Other performance considerations...195
BI cluster size ..195
Page writers ..196
Database block size ..197
Procedure libraries ..198
Conclusion...198

Periodic event administration ...199
Annual backups...199
Archiving..200
Application modifications...200

Guidelines for Applying OpenEdge Management ...205
Introduction...207
Making practical resource monitoring decisions ..208

Before you install...208
Initial installation settings ..210
Post installation configuration tasks ..210

Configuring OpenEdge Management for your environment223
Determining the location and the number of OpenEdge Management Trend
Databases ...224
Isolating the OpenEdge Management Trend Database................................225

Remote monitoring ...227
Resources that can be managed ..227
Limitations of remote monitoring ...227
Remote database monitoring ..228
OpenEdge server support ...228
System management support ...228
Setup for remote monitoring..228

Performance considerations...229
Configuration Advisor ...230

What is the Configuration Advisor?...230
Who is it for? ...230
How does it work? ...230

The File Monitor ...233
File Age ...234
File Exists ..235
File Growth Rate ...235
File Modified ..235
File Size...236

Creating custom reports using ABL ...237
Viewing archived data ...240

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

7

Creating custom jobs ..241
Extending usefulness of existing OpenEdge Management functions244

After-image administration...244
Uses beyond monitoring..246
OpenEdge Management for system sizing ...247

Troubleshooting your OpenEdge Management installation250
Frequently asked questions and answers ...250

Conclusion ..256

Glossary..257

Contents

8

Figures

Figure 1: RAID 0: Striping ...27
Figure 2: RAID 1: Mirroring ...28
Figure 3: RAID 1..30
Figure 4: RAID 5..32
Figure 5: Windows XP Performance Monitor ..42
Figure 6: Monitoring CPU activity in OpenEdge Management ...44
Figure 7: RM block ..51
Figure 8: Viewing raw VST data in OpenEdge Management ...54
Figure 9: Displaying storage area utilization in OpenEdge Management.................................56
Figure 10: Viewing locks and latches activity in OpenEdge Management58
Figure 11: Shared memory resources... 59
Figure 12: Shared memory resource—adding remote clients ..61
Figure 13: RM block allocation decision tree ..66
Figure 14: Extents ...80
Figure 15: Primary recovery area..83
Figure 16: Checkpoint summary section...84
Figure 17: Latch summary in OpenEdge Management ..127
Figure 18: Trending a CPU resource ..135
Figure 19: Monitoring buffer hit rate in OpenEdge Management..162
Figure 20: Windows Task Manager ..165
Figure 21: CPU Summary Report ...166
Figure 22: File System Operations view ...167
Figure 23: Viewing buffers flushed in OpenEdge Management..197
Figure 24: Monitoring user requests in OpenEdge Management ...201
Figure 25: Job Create view ...213
Figure 26: Enabling trending ...215
Figure 27: Advanced trending settings..216
Figure 28: Sample default My Dashboard page..220
Figure 29: The Configuration Advisor ...231
Figure 30: Create File Monitor screen...233
Figure 31: Available File Monitor Rules screen...234
Figure 32: Job Completion Actions and Alerts screen ..245
Figure 33: Historical data ..248

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

9

Tables

Table 1: Maximum rows per data storage area (approximate)..76
Table 2: Records per block table (approximate)..90
Table 3: Minimum records per table (approximate)...91
Table 4: OpenEdge physical consistency check startup options ..141
Table 5: Advantages and disadvantages of PROBKUP..152
Table 6: Advantages and disadvantages of operating system utilities....................................153
Table 7: Advantages and disadvantages of after-imaging replication.....................................155
Table 8: Advantages and disadvantages of OpenEdge Replication155
Table 9: Advantages and disadvantages of system tools ...184
Table 10: Advantages and disadvantages of PROMON...184
Table 11: Advantages and disadvantages of VSTs ..185
Table 12: Monitoring with OpenEdge Management ..185

Contents

10

Examples

Example 1: sar command and output ...136
Example 2: Using sar to monitor system resources..164
Example 3: PROMON Block Access screen...183
Example 4: Viewing disk variance using sar ...187
Example 5: PROMON Activity screen...196
Example 6: Typical view..237
Example 7: ABL program to display database activity summary ..238
Example 8: ABL program to display resource information..239
Example 9: Code to display archived database summary information240
Example 10: Korn shell example...242
Example 11: Perl example ..243

Preface

This Preface contains the following sections:

• Overview

• Purpose

• Audience

• How to use this manual

• Organization

• Typographical conventions

Preface

12

Overview
This manual documents some of the best practices for maintaining your Progress®
OpenEdge®-based application. An application is composed of many distinct pieces
that interact with each other. In very general terms, an application contains the
following elements:

• Hardware:

– Disks — The physical storage of the system.

– Memory — The link between the disks and the CPU.

– CPU — The computing engine of the system.

• Operating system

• Software

Purpose
This manual begins by discussing the internals of the system, such as disks and
memory, and builds on this information to explain the OpenEdge database and how it
uses these resources. This manual then focuses on to how to best manage your system
as a whole. First is the heart of the system, with a discussion of hardware best
practices. Then, the internal database resources are detailed, emphasizing the
administration of the system and the application as a whole, including the applicability
of using OpenEdge® Management as a solution to these issues. Finally, installation
options and best practices for OpenEdge Management, as well as some basic
troubleshooting hints, are discussed.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

13

OpenEdge Management
OpenEdge Management is designed to run on OpenEdge. For a list of the supported
platforms and minimum Java level requirements, go to:
http://www.psdn.com/library/entry.jspa?externalID=3233

For the sake of simplicity, the procedures and screen shots provided in this manual
refer to running OpenEdge Management against OpenEdge 10. However, be assured
that unless indicated otherwise, the procedures are the same for both Progress Version
9.1D with the 9.1D09 service pack and OpenEdge 10. For example, if a procedure
refers to an OpenEdge database, the procedure applies to a Progress database as well.

Audience
This manual is a guide for both database and system administrators.

How to use this manual
The elements of your system need to be treated as a whole rather than a sum of the
individual parts; a modification in one area often affects other areas. This manual
discusses each component individually, and then discusses each component’s
interaction with the system as a whole. You should read this manual from cover to
cover before making any changes to your system. The techniques discussed in this
manual could cause problems instead of fixing them if the tools are used in isolation
from the bigger picture. Some details have been included to provide a greater
understanding of the inner workings of the OpenEdge database; however, the goal is
not to document OpenEdge internals, but rather to provide information that can aid in
making design decisions and avoiding pitfalls.

For the latest documentation updates, see the OpenEdge Product Documentation
category on PSDN:
http://www.psdn.com/library/kbcategory.jspa?categoryID=129.

http://www.psdn.com/library/entry.jspa?externalID=3233�
http://www.psdn.com/library/kbcategory.jspa?categoryID=129�

Preface

14

Organization
This manual contains the following chapters:

Chapter 1, “Managing System Resources”

Details the pertinent issues regarding the hardware resources of a typical system.
It provides configuration recommendations and information concerning what to
look for to anticipate problems before they occur.

Chapter 2, “Managing OpenEdge Database Resources”

Discusses in detail database internals and configuration considerations.

Chapter 3, “Performing System Administration”

Ties together concepts learned in the previous chapters. It details how to provide
database availability, resiliency, and performance, and consideration for periodic
maintenance tasks such as annual backups, data archiving, and schema changes.

Chapter 4, “Guidelines for Applying OpenEdge Management”

Discusses various install and configuration issues and provides best practices for
OpenEdge Management.

“Glossary”

Contains definitions of database and OpenEdge Management terms.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

15

Typographical conventions
This manual uses the following typographical conventions:

Convention Description

Bold Bold typeface indicates commands or characters the user types, provides
emphases, or the names of user interface elements.

Italic Italic typeface indicates the title of a document or signifies new terms.

SMALL, BOLD
CAPITAL LETTERS

Small, bold capital letters indicate OpenEdge key functions and generic
keyboard keys; for example, GET and CTRL.

KEY1+KEY2 A plus sign between key names indicates a simultaneous key sequence: you
press and hold down the first key while pressing the second key. For
example, CTRL+X.

KEY1 KEY2 A space between key names indicates a sequential key sequence: you press
and release the first key, then press another key. For example, ESCAPE H.

Syntax:

Fixed width A fixed-width font is used in syntax statements, code examples, and for
system output and filenames.

Fixed-width italics Fixed-width italics indicate variables in syntax statements.

Fixed-width bold Fixed-width bold indicates variables with special emphasis.

UPPERCASE
fixed width

Uppercase words are ABL language keywords. Although these always are
shown in uppercase, you can type them in either uppercase or lowercase in
a procedure.

 This icon (three arrows) introduces a multi-step procedure.

Preface

16

1
Managing System Resources

This chapter describes the various resources used by the Progress® OpenEdge® database, as
well as other applications on your system, and it gives you a greater understanding of each
resource’s importance in meeting your needs. Each resource is described individually, and
various methods for monitoring are discussed. You will also learn about the importance of
resource trend analysis. Tracking resource use and availability over time is the only way to
obtain a long-term picture of the health of the system and allows the system administrator
to plan accordingly.

This chapter discusses the resources in reverse performance order, from slowest (disk)
to fastest (CPU) in the following sections:

• Managing disk capacity

• Managing memory usage

• Managing CPU activity

Managing System Resources

18

Managing disk capacity
The disk system is the most important resource for a database. Since it is the only
moving part in a computer, it is also the most prone to failure. Reliability aside, a disk
is the slowest resource on a host-based system, and it is the point where all data
resides.

The are three overall goals for a database administrator in terms of disk resources are:

• Quantity — Have enough disk space to store what you need

• Reliability — Have reliable disks so your data will remain available to the users

• Performance — Have the correct number of disks running at the maximum
speed to meet your throughput needs

These goals sound simple. But it is not always easy to plan for growth or to know what
hardware is both reliable and appropriate to meet your needs. With these goals in mind,
this section examines the problems that might present roadblocks to fulfilling each of
these goals. (For example, it is essential to have enough disk space to meet your
storage needs.)

Ensuring adequate disk storage
The following sections describe how to determine if you have adequate disk storage:

• Understanding data storage

• Determining data storage requirement

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

19

Understanding data storage
The following is a minimum list of the critical data stored on your system. Used in this
context, the term data is a more inclusive term than one that defines simple application
data. Data can include:

• Databases

• Before-image files

• After-image files

• Application files (OpenEdge, ABL or SQL code, third-party applications)

• Temporary files

• Operating systems

• Swap or paging files

• Client files

The term data refers to other possible data storage requirements, which include:

• A backup copy of the database

• Input or output files

• A development copy of the database

• A test copy of the database

If this information is already stored on your system, you know (or can determine) the
amount of data you are storing.

Managing System Resources

20

If you are putting together a new system, planning for these data storage elements can
be a daunting task. You will need to have a deep understanding of the application and
its potential hardware requirements, with little or no data points from which to work.
One of the first things you need to know is how many data records you will be storing
in each table of your database. Database storage calculations are discussed in Chapter
2, “Managing OpenEdge Database Resources,” on page 47. However, it is essential to
review with the users the initial number of records in each table of the database. You
can also inspect existing databases to estimate this number.

Determining data storage requirements
In existing database environments, the first step in determining data storage
requirements is to take an inventory of your storage needs. The types of storage are:

• Performance oriented — Database or portions of databases, before-image (BI),
after-image (AI)

• Archival — Historical data, backups

• Sequential or random — Various RAID types as discussed in the “Increasing
disk reliability with RAID” section on page 25.

You should perform a detailed analysis of your current needs and projected growth to
estimate storage requirements. You can determine current storage using OS commands
or OpenEdge Management, as described in the following sections.

Determining current storage using operating system commands

To use the operating system to determine current storage usage, use one of the
following options:

• On most UNIX systems, you can use the -df option to determine the amount of
free space available. There are switches (-k to give the result in kilobytes and –s
to give summary information) that will make the information easier to read.

• On HPUX , use the bdf command to report the amount of free space available.

• On Windows , use the disk properties option to provide a graphical display of
disk storage information.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

21

Determining current storage using OpenEdge Management

OpenEdge® Management provides a quick method for determining current storage
usage.

1. From the OpenEdge Management console, select Resources from the menu bar.

2. Expand the File System category in the detail frame (the right-hand frame).

3. Select the file system you want more information about. The File System page
appears. The File system space used section provides a detailed, graphical
representation of your current file system usage, as shown:

 To determine current storage usage with OpenEdge Management:

Managing System Resources

22

Examining your growth pattern
Many companies experience exponential growth in their data storage needs. The
business might grow to meet demand or might absorb additional data due to
acquisition. The database administrator needs to be “in the loop” when business
decisions are being made to be able to plan for growth. Some growth is warranted, but
in most cases, a great deal of data is stored that should be archived out of the database
and put on backup media. For information that is not directly related to current
production requirements, one option is to use a secondary machine with available disk
space. This machine can serve as both secondary storage for archival data and as a
development or replication server. By moving data that is not mission-critical from the
production machine to another location, you can employ less expensive disks on the
archival side and more expensive disks for production use.

Moving archival data from the production machine

It is important to fully understand how archived data will be used, if at all, before
making plans to move it from the production system. Some users might want to purge
the data, but you should first archive the data so it can be easily recovered, if
necessary. Your archive method can be as simple as a tape; however, it is important to
remember that you might need to read this tape in the future. It will be of no use if it
contains data in a format you can no longer use. You should archive the information to
ACSII or some other format that will not depend on third-party software. In particular,
if it is OpenEdge data, it is always advisable to archive the data in a standard
OpenEdge format.

Examining system storage information trends

Viewing system storage information and keeping track of it over a period of time can
help to determine growth patterns. You can write your own application to track storage
information by taking the output from the operating system and placing it either in a
file or in a database. Or, instead of writing and maintaining your own application, you
can use OpenEdge Management to gather this information. OpenEdge Management
also allows you to track and report on your collected data.

Before you can begin to collect storage information within OpenEdge Management,
you must create a monitoring plan with trending options setup for system disks. See
the OpenEdge Management: Resource Monitoring Guide for detailed instructions on
creating a resource monitoring plan.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

23

Once you have created a monitoring plan, you can view activity in OpenEdge
Management.

1. From the OpenEdge Management console, select Resources from the menu bar.

2. Select Disks from the detail frame to display all of the available disks on your
system. For example:

3. Select the disk that you want to monitor. The monitoring plan that you have
defined for the selected disk appears, as shown:

Note: If the resource is not defined you can define the resource properties and
associated monitoring plan now.

4. Repeat Step 1 through Step 3 for each disk you want to monitor.

 To view activity in OpenEdge Management:

Managing System Resources

24

Comparing expensive and inexpensive disks
Disks are disks are disks, aren’t they? No, of course not. When you buy a disk, you are
really buying two things: storage capacity and throughput capacity. For example, if
you want to buy 72 gigabytes (GB) of capacity, you can purchase either a single 72GB
unit or four 18GB units. The storage capacities of these disks are exactly the same, but
the four-drive configuration has potentially four times greater throughput capacity.
Each drive is capable of doing approximately 100 input/output (I/O) operations per
second regardless of its size. The four-drive system has the potential to perform 400
I/O operations per second.

For a number of reasons, it is generally less expensive to purchase fewer larger disks to
get to your desired capacity:

• The 72GB drive is only marginally more expensive than a single 18GB drive, but
buying four 18GB drives to obtain the same capacity as a 72GB drive will
substantially increase your cost.

• You need to have the rack space to hold these drives—more rack space, more
cost.

• You might need more controllers to efficiently run additional disks—adding to
the cost.

However, if performance is important, you should have a greater number of physical
disk drives to give you the greatest throughput potential. The additional cost of the
multi-disk solution is offset by increases in performance (user efficiency, programmer
time, customer loyalty, and so on) over time. If you are only using the database as
archival storage and you do not care about the performance of the database, fewer
large disks are recommended to decrease cost. This approach allows you to store the
greatest amount of data on the fewest number of disks.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

25

Determining the location of data on disks
The outer 25 percent of the disk is approximately 10 to 15 percent faster than the inner
25 percent. Use this point to your advantage when configuring your disks. Some
operating system and disk manufacturers allow you to select which portion of the disk
to use for each allocation; others place the first disk partition on the outer portion of the
disk and the last partition on the inner portion. In either case, using the outer portion of
the disk provides the greatest performance potential. In large, high-volume
environments, production data should only fill the outer 75 to 80 percent of each disk.
This leaves the innermost portion for static storage, such as backups or maintenance
areas.

Understanding cache utilization
To increase performance, disk vendors provide for caching on their disk arrays.
However, there is a limit to how effective this cache can be. If your system is doing
hundreds of thousands of reads per hour, the cache becomes saturated after a short
period of time. Under these conditions, the system quickly degrades to conventional
disk speeds. It is important to consider all disks, regardless of manufacturer’s
published guidelines, as performing at conventional speeds. Otherwise, you will
experience a larger problem than you would expect when the cache is saturated.

For example, an index rebuild is a process that saturates the disk cache quickly. This
process performs many modifications in a short time frame. The ability of OpenEdge
to saturate the disk cache has been demonstrated on disk arrays costing millions of
dollars. The cache is nice to have and will provide a benefit, but do not let that benefit
sway you from regarding the layout of these disks as identical to any other disk.

Increasing disk reliability with RAID
It is important to understand the terms reliability and performance as they pertain to
disks. Reliability is the ability of the disk system to accommodate a single- or multi-
disk failure and still remain available to the users. Performance is the ability of the
disks to present information to the users in an efficient manner.

Managing System Resources

26

Adding redundancy almost always increases the reliability of the disk system. The
most common way to add redundancy is to implement a redundant array of
inexpensive disks (RAID). There are two types of RAID:

• Software — Software RAID can be less expensive. However, it is almost always
much slower than hardware RAID, since it places a burden on the main system
CPU to manage the extra disk I/O.

• Hardware — The most commonly used hardware RAID levels are: RAID 0,
RAID 1, RAID 5, and RAID 10. The main differences between these RAID
levels focus on reliability and performance as defined earlier in this section.

The following sections discuss the different RAID types:

• RAID 0: Striping

• RAID 1: Mirroring

• RAID 10 Or 1 + 0

• RAID 5

It is possible to have both high reliability and high performance. However, the cost of a
system that delivers both of these characteristics will be higher than a system that is
either reliable or efficient.

RAID 0: Striping

RAID 0: Striping has the following characteristics:

• High performance — Performance benefit for randomized reads and writes

• Low reliability — No failure protection

• Increased risk — If one disk fails, the entire set fails

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

27

Figure 1 illustrates how striping works.

Figure 1: RAID 0: Striping

In Figure 1 there are three disks. The information that is stored by the user is
distributed across all three drives. The amount of information stored on a single device
is called a chunk or stripe. As the figure shows, the stripes are distributed across the
RAID array.

Note: The stripe size is generally tunable, from a small size (8K) to a large size
(several megabytes). The ability to tune stripe size varies from vendor to
vendor. Reference your vendor’s product documentation for details on how to
tune this setting.

Testing has shown that 128K and larger stripes are generally the optimal size for
performance with an OpenEdge database that has an 8K-block size. (An 8K-block size
is generally the most efficient block size for an OpenEdge database). In Windows,
these stripes appear to the operating system or to the user as one file system or “drive.”
In Figure 1, each of these disks is assumed to be 128K stripes. Therefore, if a file of
384K crosses all three disks, the disks work together to send information to the user.

Managing System Resources

28

While this arrangement helps performance, it can cause a potential problem—if one
disk fails, the entire file system is corrupted.

RAID 1: Mirroring

RAID 1: Mirroring has the following characteristics:

• Medium performance — Superior to conventional disks due to “optimistic
read.”

• Expensive — Requires twice as many disks to achieve the same storage and
twice as many controllers if you want redundancy at that level.

• High reliability — Loses a disk without an outage.

• Good for sequential reads and writes — The layout of the disk and the layout
of the data is sequential, promoting a performance benefit, provided that you can
isolate a sequential file to a mirror pair.

Figure 2 shows a simple example of mirroring.

Figure 2: RAID 1: Mirroring

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

29

In Figure 2, the first disk is the primary disk and the second disk acts as the parity or
mirror disk (the parity information is preceded by the letter “P”. The role of the parity
disk is to keep an exact synchronous copy of all of the information stored on the
primary disk. If the primary disk fails, the information can be retrieved from the parity
disk.

Ensure that you have “hot swappable” disks so repairs can be made without bringing
down the system. Most RAID 1 disks are “hot swappable.” Note that there is a
performance penalty during the resynchronization period.

Both disks are actually primary, and both store parity and data. On a read, the disk that
has its read/write heads positioned closer to the data will retrieve information. This
data retrieval technique is known as an optimistic read. An optimistic read can provide
a maximum of 15 percent improvement in performance over a conventional disk.
When setting up mirrors, it is important to look at which physical disks are being used
for primary and parity information, and to balance the I/O across physical disks rather
than across logical disks.

RAID 10 Or 1 + 0

RAID 1 + 0, more commonly referred to as RAID 10, has the following characteristics:

• High reliability — Provides mirroring and striping.

• High performance — Good for randomized reads and writes.

• Expense — No more expensive than RAID 1 Mirroring.

RAID 10 resolves the reliability problem of striping by adding mirroring to the
equation.

Managing System Resources

30

Figure 3 shows the disks on the left-hand side as primary disks. The primary disks are
striped together and then mirrored to the disks on the right-hand side. All four disks are
acting as both primary and parity disks.

The performance of this setup is an improvement over most other configurations
because RAID 10 supports striping and optimistic reads. This is the preferred
configuration for most applications because it provides the highest performance and
availability, with the lowest maintenance in terms of load balancing.

Figure 3: RAID 1

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

31

RAID 5

RAID 5 has the following characteristics:

• High reliability — Provides good failure protection.

• Expense — Less expensive than RAID 1.

• Low performance — Performance is poor for writes due to the parity’s
construction. Running in an “absorbed” state provides diminished performance
throughout the application because the information must be reconstructed from
parity.

RAID 5 is less expensive to install than other RAID types. Also, there is only a 20
percent reduction in storage capacity to store the parity information as compared to a
50 percent reduction for either RAID 1 or RAID 10. However, this initial cost savings
will be consumed in lost performance over the life of the array.

The drawback of RAID 5 is magnified during disk writes, which On-Line Transaction
Processing (OLTP) does quite often. For every write, the primary information is
written, and then the parity is calculated and stored. This is generally done through the
same controller, so writes are three times as costly as on conventional disk: write
primary, calculate parity, and write parity.

A mirrored system is commonly configured with two controllers to enable dual writes
to occur in parallel. If your application is 100 percent read, you might want to consider
RAID 5. Otherwise, RAID 1 or RAID 10 would be the better way to protect your data.

Claims that the RAID 5 volumes are “just as fast” as RAID 1 or RAID 10 should be
closely evaluated. In benchmarks or low-volume situations that might not adequately
test a RAID 5 type, the performance wall is generally not encountered, as there is
enough cache (memory) to fully handle the load. However, with actual production
usage, when you exceed the ability of cache to meet your needs, you will hit this wall
very hard. Generally, operations that are not considered include backups to disk that do
a significant amount of writes and the ability to flood the cache, thus creating a
performance bottleneck.

Note: Progress Software Corporation recommends against using RAID 5 with
OpenEdge databases when performing updates during online transaction
processing.

Managing System Resources

32

Figure 4 shows a five-disk RAID 5 array. Notice how the parity information, preceded
by the letter “P,” is interleaved with the primary data throughout all of the disks. If you
experience a disk failure, you will not lose data. However, your performance will be
severely degraded because information from the lost disk will have to be extracted
from calculated parity. This is a three step process:

1. Extract the parity.

2. Calculate the actual value.

3. Deliver the data to the user.

This calculation of the actual value is CPU-consuming and every read will be affected
thus creating a performance problem for both read and write operations.

Figure 4: RAID 5

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

33

OpenEdge in a network storage environment
OpenEdge supports reliable storage of data across the network, provided your
operating system complies with the rules of Network File System (NFS) Protocol
Version 3.0. Though this environment is supported, it is not recommended because
there can be significant performance issues with this configuration. NFS traffic
generally shares the same network as client I/O so there is a much greater chance of a
bottleneck. Additionally, Local Disk I/O uses controllers that are dedicated to I/O and
that are significantly faster than network I/O.

Storage Area Networks (SANs) are becoming more popular than NFS Protocol. You
can purchase one storage device and attach it to several hosts through a switching
device. The same rules apply in a SAN environment as those that apply in a
conventional or RAID environment. The SAN maintains database integrity. Multiple
machines have access to the disks in a SAN. Therefore, you need to be very aware of
the drive/controller usage and the activity of other hosts using the SAN. This
heightened awareness is due to the SAN’s multi-machine support. The difference
between SAN traffic and NFS is that the SAN network is dedicated to I/O, thus it is not
shared with the user I/O. Additionally, your system will have fast and dedicated I/O
controllers for the SAN. You have many options in the SAN area but be aware of the
physical layout of your SAN as it is possible to have two heavy I/O application both
accessing the same physical disk. So, I/O from another system can affect the
performance on your system.

See your SAN vendor’s documentation regarding monitoring to see if they provide an
interface into the activity levels of the disks in the array. Some have the ability to
balance the I/O load for you automatically, which will reduce your need to monitor
that resource as often as your other resources.

Summary
Disks are your most important resource. Generally, it is better to buy better disks than
faster CPUs. Begin by purchasing reliable disk array systems, then configure them
properly to allow consistent, fast access to data, and monitor them for performance and
fill rate so you do not run out of space. Additionally, you should trend the consumption
of storage space to allow planning time for system expansion.

Managing System Resources

34

Managing memory usage
The primary function of system memory is to reduce disk I/O. Memory speed is orders
of magnitude faster than disk speed. From a performance perspective, reading and
writing to memory is much more efficient than to disk. Memory is not a durable
storage medium., and long-term storage on memory is not an option. There are RAM
disks that do provide durable data storage; however, they are cost prohibitive for most
uses.

While memory is fairly reliable, it is not infallible. Normally, if one memory chip is
bad, it will not compromise the system.

One way to improve memory reliability is to configure your system without
interleaved memory. Interleaved memory is like disk striping; it is good for
performance but bad for reliability. If one chip fails, all of interleaved memory is
compromised. Therefore, for high availability systems, it is best to avoid interleaved
memory. The trade off of performance versus high availability is not a good choice for
any business activity that requires high system availability. There will be exceptions to
this rule as vendors devise ways of adding redundancy at the memory level.

Maximizing memory management includes:

• Allocating memory for the right tasks.

• Having enough memory to support your needs.

OpenEdge-specific memory allocation is covered in the "OpenEdge-specific memory
estimates" section on page 1-20.

How memory works

To understand how to allocate memory, you need to understand how memory works.
There are older and newer memory models.

Older systems employ the concept of swapping to manage memory. Swapping is the
process of taking an entire process out of memory, placing it on a disk in the “swap
area” and replacing it with another process from disk. Newer systems swap only in
extreme, memory-lean situations. Swapping is very performance-intensive and should
be avoided at all costs.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

35

New systems manage memory with paging. There are two types of paging:

• Physical — Physical paging identifies when information is needed in memory.
Information is retrieved from disk (paging space).

• Virtual — Virtual paging occurs when information is moved from one place in
memory to another.

Both kinds of paging occur on all systems. Under normal circumstances, virtual paging
does not degrade system performance to any significant degree. However, too much
physical paging can quickly lead to poor performance.

How much paging is too much?
The answer to this question varies according to these elements: hardware platforms,
operating systems, and system configurations. Because virtual paging is fairly
inexpensive, a significant amount can be done with no adverse affect on performance.
Physical paging will usually be high immediately after booting the system, and it
should level off at a much lower rate than virtual paging. Most systems can sustain
logical paging levels of thousands (even tens of thousands on large systems) of page
requests per second with no adverse effect on performance. Physical paging levels in
the thousands of requests would be too high in most cases. Physical paging should
level into the hundreds of page requests per second on most systems.

If physical paging continues at a high rate, then you must adjust memory allocation or
install more memory. It is important to remember that these numbers should only be
used as guidelines because your system might be able to handle significantly more
requests in both logical and physical page requests with no effect on performance. This
underscores the need to baseline your system to establish the right levels of activity for
your system,, as outlined in Chapter 3, “Performing System Administration” on page
129.

Managing System Resources

36

Estimating memory requirements
To determine memory usage needs, perform an inventory of all the applications and
resources on your system that use memory. Remember that if you are on a shared
system you must consider the resources consumed by the other applications on the
system. For OpenEdge-based systems, these processes include:

• Operating system memory

• Operating system required processes

• Operating system buffers

• OpenEdge-specific memory

• OpenEdge executables

• Database broker

• Remote client servers

• Other OpenEdge servers (such as AppServers)

• Client processes (batch, self-service, and remote)

Operating system memory estimates

Operating system memory usage varies from machine to machine. However, the
following list identifies reasonable memory estimates:

• Small systems — Range from 32MB to 64MB.

• Large systems — Range from 128MB and higher.

Generally, a small system has fewer than 100 users and a large system has hundreds of
users. This number varies because there are systems that have few users, but many
processes that require a large system to run the application.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

37

Operating system buffers are generally a product of how much memory is in the
machine. Most systems will reserve 10 to 15 percent of RAM for operating system
buffers. Operating system buffers are tunable on most systems. As a general rule, it is
good practice to limit operating system buffers to 10% of total memory to reserve the
rest for OpenEdge processes. Review your operating system vendor’s product
documentation for details.

OpenEdge-specific memory estimates
OpenEdge uses demand-paged executables. Demand-paged executables, also known as
shared executables, reserve text or static portions of an executable that is placed in
memory and shared by every user of that executable. For brokers and servers, the
dynamic or data portion of the executable is stored in memory (or swap/paging files)
for every instance of the executable.

Other OpenEdge memory allocation is estimated based on the number of users and
some of the startup parameters for the brokers.

Broker parameters

To estimate the amount of memory used by the database broker, add 10 to 15 percent
to the database buffers parameter (-B). However, if you have a high value for lock
table entries (-L) or index cursors (-c) you will need to increase this estimate. Record
locks consume 14 to 18 bytes each and index cursors consume 64 bytes each. Also, if
you have a very low setting for database buffers (less than 2000), the overhead for the
other parameters will be greater than 15 percent.

For example, if database buffers (-B) are set to 20,000 on an 8KB-block-size database,
you allocate 160,000KB in database buffers. If you add 10 percent to this amount, your
total allocation will be approximately 176,000KB, or 176MB for the database broker.

Remote client servers are fairly straightforward to estimate, as each server will use
approximately 3MB to 5MB. The number of remote client servers is limited by the -Mm
parameter. The default number is 4.

Managing System Resources

38

Client or user parameters

Client processes will vary, depending on the startup options chosen. However, with
fairly average settings for –mmax and –Bt, the new memory allocated per process will
be 5MB to 10MB. This range applies to application server processes, too. Remote
users generally use more memory (10MB to 20MB per process) because they require
larger settings for –mmax and –Bt to provide acceptable performance across the
network. The memory requirements for a remote user (that is, –mmax and –Bt settings)
do not impact the memory requirements on the host.

Creating a budget for memory

Here is an example of a machine with 1GB of RAM, 50 local users, and one 8KB-
block-size database using 10,000 database buffers:

• Operating system memory:

- 28MB OS

- 100MB OS buffers

• OpenEdge memory:

- 16MB executable

- 88MB database broker ((8KB * 10000) * 1.1)

- 250MB to 500MB for users

Total memory requirement is 582MB to 832MB

The system can run without significant paging or swapping, allowing you to use the
additional memory for other applications, or to further increase the memory utilization
for OpenEdge by increasing database broker parameters, like –B. Once the broker is as
efficient as possible, you can look into increasing local user parameters like –mmax
or -Bt.

In many cases there will be third-party applications running on the system, too. You
should consider the memory used by these additional applications to accurately
determine memory estimates.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

39

Trending analysis

The key to good capacity planning is conscientious, well-structured trending analysis.
You must observe at your system throughout the day and throughout the week to see
when you are hitting peak memory usage. Once this peak is established, watch the
system more closely at this peak time to determine specifically where memory is being
used.

There are several ways to write your own trending application, and several applications
that will allow you to look at memory over time to ensure that you have enough
memory to run your business now, and in the future. Various operating system utilities
allow you to examine, in real time, how much memory the system is using. For
example, the UNIX sar command allows you to accumulate this information over
time. On Windows, the Performance Monitor utility displays current information about
various system resources including memory. To run the Performance Monitor utility,
type perfmon at the command prompt.

The amount of “free memory” available is not a helpful statistic. Most operating
systems will not reclaim memory until there is little or no free memory. The absence of
free memory does not indicate a problem. It is important to look at other metrics like
reclaims, scan rate, physical page faulting, and swapping to understand the true
memory situation.

It is common to see spikes in the readouts. However, if those spikes are short-lived—
less than 1 minute—you can disregard them. Most monitoring utilities provide short
sampling periods (5 to 10 seconds) because the screen is more interesting to look at if
it is actively moving. It is better to look at samples that span 1 to 5 minutes to give
yourself a more accurate picture of performance.

On UNIX systems you can also look at the process size from the process status (ps)
command. However, this does not yield accurate results because the size of the process
will include both local and shared memory. This will cause you to believe that you
have allocated more memory for these processes than is actually in use. Therefore, the
number of physical pages per second is a much better indicator of your memory usage
status.

Managing System Resources

40

Managing CPU activity
All resources affect CPU activity. Slow disks increase CPU activity by increasing the
waits on I/O. If there is significant context switching, system delay time will increase.

Understanding CPU activity
To understand the meaning of a busy CPU, you must understand the components of
CPU activity. On UNIX, CPU activity is broken into the following categories:

• User time — The amount of time spent performing user tasks. This is the main
component that you paid for when you bought the CPU capacity for the system.

• System time — The amount of time devoted to system overhead like paging,
context switches, scheduling, and various other system tasks. You can never
completely eliminate this overhead, but you can keep it to a minimum. Refer to
Chapter 3, “Performing System Administration,” on page 129 for details.

• Wait on I/O time — The amount of time the CPU is waiting for another resource
(such as disk I/O).

• Idle time — The amount of unallocated time for the CPU. If there are no jobs in
the process queue and the CPU is not waiting on a response from some other
resource, then the time is logged as idle. On some systems, wait on I/O is logged
as idle. This is because the CPU is idle and waiting for a response. However, this
time does not accurately reflect the state of performance on the system.

On Windows, CPU activity is broken into the following categories:

• User time — The amount of time spent doing user tasks.

• Privileged time — The amount of time devoted to system overhead like paging,
context switches, scheduling, and various other system tasks.

• Idle time — The amount of unallocated time for the CPU. Note that Windows
does not track wait on I/O time. On Windows, wait time is logged as idle time.

• Processor time — An accumulation of other processor metrics. You can think of
100 – processor time = idle time.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

41

Tuning your system
To the inexperienced administrator, time spent waiting on I/O seems highly
undesirable. If I/O wait is having a noticeable impact on performance, it clearly is an
issue. However, not all wait on I/O is cause for concern. Time is reported to this
statistic whenever the CPU has completed a task and is waiting on some other system
resource, such as disk or memory. Given that CPUs are much faster than other
resources, the CPU must wait on these slower resources for some percentage of the
time.

In tuning a system, it is desirable, but not necessary, to have some idle time available.
It is possible to use 100 percent of the CPU time on a two-CPU system with two
processes. This would not mean that the system was performing poorly; rather it means
the system is running as fast as it can run. In performance tuning, you are trying to
push the bottleneck to the fastest resource (CPU). If your processors were 100 percent
busy on user time, you would have the system tuned perfectly. At this point, the only
way to improve performance would be to purchase faster or more CPUs. Similarly, if
“wait on I/O” time increases, this does not necessarily mean that you have an I/O
bottleneck. You must look at the numbers as ratios of each other. Given ideal
circumstances, it is best to have 70 percent user time, 20 percent system time, 0 percent
wait on I/O, and 10 percent idle time. One thing to watch for is 100% CPU logged as
user time when that is not normal for you. Runaway processes may cause this to
happen. Runaway processes are generally client processes and can be distinguished
from regular processes by the fact that they have no terminal (tty) attached to them,
and the process is not running in batch mode (-b).

The ratio of user time to system time should be approximately 3 to 1 on host-based
systems, while on client/server systems it may be closer to 1.5 to 1. This ratio varies
widely when user time is below 20 percent of total CPU usage, as system time tends to
consume a much larger portion. In some cases, system time is greater than user time
due to poor allocation of resources. However, as you increase user time through
performance tuning, system time should level off at around one-third or less of user
time. This can be determined by looking at your CPU resources from a monitoring tool
of your choice.

Managing System Resources

42

Figure 5 shows an example of the information displayed in the Performance Monitor.

Figure 5: Windows XP Performance Monitor

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

43

Understanding idle time
Idle time can be positive because it means that the CPUs have capacity to support
growth. It is not necessary for idle time to always be greater than zero. If idle time is
zero for prolonged periods, and there is no significant amount of time logged to wait,
you must look deeper into the CPU activity to determine the correct course of action.

For example, look at the CPU queue depths. CPU queue depth is the number of
processes waiting to use the CPU. If there are always several processes in the queue,
you need to do one of the following:

• Increase CPU capacity or increase CPU efficiency. (See the “Optimizing CPU
usage” section on page 1–40.)

• Reduce demand by fixing code or by moving processing to slower periods of the
day.

If wait on I/O is high and there is no idle time, you need to increase disk efficiency
(see Chapter 2, “Managing OpenEdge Database Resources,” on page 205), reduce I/O
throughput, eliminate disk variance, or modify your processing schedule. If wait on I/O
is 10 percent or less and you still have idle time, there is no urgency to work on the
problem. You might want to look at those items outlined in the previous paragraph, but
there might not be anything you can do to resolve the issue.

Monitoring your system
Monitoring your system throughout the day can help you determine how to increase
efficiency. Your system might look fine throughout the business day while you are
there to see what is happening, but at night there might be significant bottlenecks.
There are some applications that do over 70 percent of the total processing in the
evening hours. Most environments have significantly different application makeup in
the evening than in the day. A typical system might do On-Line Transaction
Processing (OLTP) from 9 to 5, some end of day processing from 7 to 12, and decision
support after midnight.

There might be some things you can modify to take better advantage of system
resources. There might be times of the day where more page writers are needed or you
might need to change the times when things are run.

Managing System Resources

44

For example, consider when your organization schedules system backups. If the
backup occurs at the same time you are doing decision support or running your end-of-
day programs, you run the risk of exacerbating any disk bottleneck issues, which in
turn might slow performance and increase waiting on I/O time on your CPU statistics.
Sampling your data throughout the day brings visibility to problems. Tracking this
information over time helps you plan new hardware purchases before the bottleneck
becomes a significant problem.

Monitoring CPU performance in OpenEdge Management

CPU information is a good item to put on your My Dashboard page so you have a
visual clue to CPU performance on your system. When defining your private My
Dashboard page, you can select CPU on the Other system resources to show viewlet
to have the viewlet shown in Figure 6.

Figure 6: Monitoring CPU activity in OpenEdge Management

Fast CPUs versus many CPUs
In a best-case scenario, you would have a large number of fast CPUs in your system.
However, in most cases, you can only afford one or the other: multiple, slower CPUs,
or fewer, faster CPU. The benefit of fast CPUs is that they run single-threaded
operations very quickly. An example of a single-threaded OpenEdge operation is a
binary dump. This process dumps all of the records from a table. A machine with one
fast CPU will run this process faster than a machine with multiple slower CPUs, given
that all other resources are equal. The binary dump process is run very infrequently, so
why should you consider this when making CPU choices? The primary reason is that
during a binary dump and load your users do not have access to the database, therefore
you want this process to complete as quickly as possible.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

45

However, in most businesses, there are other examples of single-threaded operations
that will be addressed by this architecture decision. End-of-day processing is a good
example; you might need to apply all of your payments prior to being able to run your
general ledger trial balance. Multiple CPUs allow you to do two different operations
simultaneously. One user can be entering orders while the other is shipping products.
This has obvious benefits to the business in terms of efficiency.

So, how do you decide? The best way to decide is to look at your options and your
application to determine the best solution. For example, an application that does a
significant amount of single-threaded operations will benefit from a design that has fast
CPUs, even at the expense of having fewer total CPUs in the system. An application
that is mostly data entry with little or no single-threaded operations will benefit from a
design that has more CPUs, even at the expense of each CPU being slower. This is
another instance where having a deep understanding of your application and your
workload will enable you to make intelligent decisions in the system area.

Managing System Resources

46

Summary
In this chapter we learned that to effectively manage your system resources, you must:

• Analyze the requirements for your business

• Configure the system from those business requirements

• Remember the importance of a good disk layout

• Measure your resources to ensure system availability

• Trend resource usage over time to allow for advanced planning

2
Managing OpenEdge Database Resources

Managing resources includes the process of moving potential processing conflicts, or
bottlenecks, to the fastest resource. OpenEdge attempts to make this process
transparent, but there are still some areas that require tuning.

This chapter discusses OpenEdge database internals and the various ways to optimize
OpenEdge-based resources to best take advantage of system resources, as described in
the following sections:

• OpenEdge database internals

• Understanding how blocks are manipulated

• Optimizing data layout

• Optimizing database areas

Managing OpenEdge Database Resources

48

• Replicating with OpenEdge

• Optimizing memory usage

• Optimizing CPU usage

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

49

OpenEdge database internals
The OpenEdge database internals presented in this section will help you to understand
how data is managed by the RDBMS. Although this topic is not directly related to
system management or best practices, you can use this information to help design your
system. The topics discussed include how the database is laid out on disk and database
broker memory allocation.

Understanding database blocks
Many types of database blocks are stored inside the OpenEdge database manager, and
most of the work to store these database blocks happens behind the scenes. However, it
is helpful to know how blocks are stored so that you can create the best database
layout.

Database blocks can be divided into three groups:

• Data blocks

• Index blocks

• Other block types

Data blocks

Data blocks are the most common blocks in the database. There are two types of data
blocks: RM (Record Manager) blocks and RM chain blocks. The only difference
between these two types of data blocks is that RM blocks are considered full and RM
chain blocks are not considered full. The internal structure of the blocks is the same.
Both types of RM blocks are social. Social blocks contain records from different
tables. In other words, RM blocks allow table information (records) from multiple
tables to be stored in a single block. In contrast, index blocks only contain index data
from one index in a single table.

The number of records that can be stored per block is tunable per storage area. See the
“Optimizing data layout” section on page 70 for more information.

Managing OpenEdge Database Resources

50

Each RM block contains four types of information:

• Block header

• Records

• Fields

• Free space

The block header contains the address of the block (dbkey), the block type, the chain
type, a backup counter, the address of the next block, an update counter (used for
schema changes), free space pointers, and record pointers. The block header is 16 bytes
in length. Each record contains a fragment pointer (which is used by record pointers in
individual fields) the Length of the Record field, and the Skip Table field (used to
increase field search performance). Each record needs a minimum of 15 bytes for
overhead storage and contains a Length field, a Miscellaneous Information field, and
data.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

51

Figure 7 shows the layout of an RM block.

Figure 7: RM block

Managing OpenEdge Database Resources

52

Index blocks

Index blocks have the same 16 bytes of header information as data blocks have. Index
blocks can store an amount of information that can fit within the block, and that
information is compressed for efficiency. Index blocks can only contain information
referring to a single index.

Indexes are used to find records in the database quickly. All indexes in the OpenEdge
RDBMS are structured as B-trees, and are always in a compressed format. This
improves performance by reducing key comparisons.

There are several key points to consider when discussing the structure of multiple
indexes:

• A database can have up to 32,767 indexes.

• There is always one B-tree per index.

• Each B-tree starts at the root.

• The root is stored in a _storageobject record.

For the sake of efficiency, indexes are multi-threaded, allowing concurrent access to
indexes. Rather than locking the whole B-tree, only those nodes that are required by a
specific process are locked.

Other block types

There are several other types of blocks. There a few that might be valuable to
understand:

• The master block

• Storage object blocks

• Free blocks

• Empty blocks

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

53

The master block

The master block contains the same 16-byte header as other blocks, but it is used to
store status information about the entire database. It is always the first block in the
database and is found in Area 6. The master block contains the tainted flags for
OpenEdge. Tainted flags tell OpenEdge there is a problem or abnormality with the
database. You can retrieve additional information from this block using the Virtual
System Table (VST) _mstrblk from the OpenEdge procedure editor. For example:

FIND _mstrblk.

DISPLAY _mstrblk WITH SIDE-LABELS.

You can also see this information in the OpenEdge Management console by viewing
raw VST data.

1. Select Resources from the menu bar.

2. Select the database that contains the data you want to view in the list frame.

3. Select Raw VST Data in the detail frame. A drop-down list of the available VST
data for the selected database appears.

4. Select the VST and format you want to view.

 To view raw VST data for a particular database in OpenEdge Management:

Managing OpenEdge Database Resources

54

Figure 8 shows an example of the HTML display of the _MstrBlk VST.

Figure 8: Viewing raw VST data in OpenEdge Management

Storage object blocks

Storage object blocks contain the addresses of the first and last records in every table
by each index. If a user runs a program that does a find first or find last, it is not
necessary to traverse the index. The find command obtains the information from the
storage object block and goes directly to the record. Storage object blocks are
frequently used, so these blocks are pinned in memory. This availability further
increases the efficiency of the request.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

55

Free blocks

Free blocks have a header, but no data is stored in these blocks. Free blocks can
become any other valid block type. These blocks are below the high-water mark. The
high-water mark is a pointer to the last formatted block within the database storage
area. Free blocks can be created by extending the high-water mark of the database,
extending the database, or reformatting blocks during an index rebuild. If the user
deletes many records, the RM blocks are put on the RM Chain. However, index blocks
can be reclaimed only through an index rebuild or an index compress.

Empty blocks

Empty blocks do not contain header information. These blocks need to be formatted
prior to use. These blocks are above the high-water mark but below the total number of
blocks in the area. The total blocks are the total number of allocated blocks for the
storage area.

1. Select Resources from the menu bar of the OpenEdge Management Console.

2. From the list frame, browse to the applicable database and select it.

3. Select Storage Areas in the Operation Views section of the detail frame.

 To display a storage area utilization page in OpenEdge Management:

Managing OpenEdge Database Resources

56

Figure 9 shows a database with no free space available. The percentage used and the
high-water mark are both at 99 to 100 percent, which means that the database is
extending into the variable extent. If this database did not contain a variable-length
extent, the database would crash if a user tried to extend the database.

Figure 9: Displaying storage area utilization in OpenEdge Management

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

57

Type I versus Type II storage area internals
Type II storage areas, also known as clustered storage areas, permit select grouping of
data into clusters. These clusters are tunable in size per area. The "Optimizing data
layout" section on page 70 provides more detail about why you might want to use
clustered storage areas. This section discusses the differences between Type I and
Type II areas. Type I areas have an area control block that keeps track of the allocated
space and the maximum amount of space within an area. Type II areas maintain an
Area Control Cluster, which contains an area block for area information, as well as
object blocks that contain the space allocation chains for each object (table, index,
BLOB, CLOB). This cluster is always the first cluster in a Type II area. As these objects
are now treated separately from one another, there is a concept of multiple free chains.
Each object will have enough useable space to grow within its clusters before having to
allocate another cluster. Those individual free chains are in addition to the free chain
for the area. Each cluster is chained together at the beginning, with a pointer to the
previous cluster, and at the end, with a pointer to the next cluster. So the first and last
blocks in a Type II area cluster are physically different because they contain the
pointer information. All other blocks remain the same but are sequential based on the
blocks per cluster setting for the area.

Understanding memory internals
The primary broker process allocates shared memory for users to access data within
the database. The users also use structures within memory to allow for concurrent
access to information without corrupting this information. For example, if two users
are able to update the same portion of memory with different updates, then only one
user’s updates would be reflected in the database. This type of situation leads to the
incomplete updating of memory.

It is important to understand the concept of locking and how it applies to this situation.
A locked record allows an update to complete without interference from other users. A
latch is a lock in shared memory that allows a user to make modification to a memory
block without being affected by other users. This latching approach has been
evolutionary since its inception in Progress Version 6.3. The original latches were
crude and heavy-handed. A latch was taken for the entire shared memory pool making
other users wait to make their modifications. As of Progress Version 8, there are
multiple latches per resource.

Managing OpenEdge Database Resources

58

Viewing locks and latches activity in OpenEdge Management

As shown in Figure 10, you can view these latches using OpenEdge Management.

Figure 10: Viewing locks and latches activity in OpenEdge Management

1. Select Resources from the menu bar of the OpenEdge Management console.

2. From list frame, browse to the desired database.

3. Select Locks and Latches in the Operation Views section from the database’s
detail frame.

 To view locks and latches in OpenEdge Management:

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

59

Understanding shared memory resources
Figure 11 shows an example of shared memory resources. Note that it does not include
all resources and is only used as an example. Also, this illustration is not to scale
because database buffers account for more than 90 percent of shared memory, and the
various latch control structures account for less than 1 percent.

Figure 11: Shared memory resources

The database buffers are vitally important. They provide a caching area for frequently-
accessed portions of the database so that information can be accessed from the disk
only once, and from memory several times. Because memory is so much faster than
disk, this provides an excellent performance improvement to the user when tuned
properly. The concept of database buffer tuning is explored further in the “Optimizing
memory usage” section on page 122.

Managing OpenEdge Database Resources

60

As Figure 11 illustrates, there are many resources inside of shared memory. Local
users (both end-user processes and batch processes) update these structures. If two
users access this database simultaneously and both users want to make an update to the
lock table (-L), the first user requests the resource by looking into the latch control
table. If the resource is available, the user establishes a latch on the resource using an
operating system call to ensure that no other process is performing the same operation.
Once the latch is enabled, the user makes the modification to the resource and releases
the latch. If other users request the same resource, they must retry the operation until
the resource latch is available. For more information on latching, see the “Optimizing
CPU usage” section on page 125.

The other processes shown in Figure 11 are page writers. These Asynchronous Page
Writer (APW) processes write modified database buffers to disk. You can have more
than one APW per database. The other writers, After-image Writer (AIW) and Before-
image Writer (BIW), write after-image and before-image buffers to disk. There can
only be a single BIW and a single AIW per database.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

61

Adding remote clients

Figure 12 illustrates how the process of adding remote clients adds a TCP/IP listen
socket and server processes.

Figure 12: Shared memory resource—adding remote clients

The remote clients send a message to the listen socket, which in turn alerts the broker
process. The broker process references the user control table and the server control
table to determine if the user can log in and to determine which server the user can
attach to. If the servers are not active, a server is started, depending on the server
parameters for this broker (parameters such as -Mn, -Mi, -Ma, and so forth). See
OpenEdge Data Management: Database Administration for additional information.
Once the proper server has been determined, a bi-directional link opens between that
server and the remote client. This link remains open until the user disconnects, or the
broker is shut down.

Managing OpenEdge Database Resources

62

You can use OpenEdge Management to monitor the user-to-server relationship.

1. Select Resources from the menu bar.

2. From list frame, browse to the desired database and select it.

3. Select User Activity in the Operation Views section from the detail frame. The
Users page appears:

 To monitor the user-to-server relationship:

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

63

4. Select the user you are concerned about—to display information about the user
and the server to which the user is attached, as shown:

Managing OpenEdge Database Resources

64

5. Select the server to which the user is attached to determine if there are other users
attached to the same server. Details for the selected server are displayed, as
shown:

This detail is particularly helpful when you are seeing performance problems that
are only impacting a subset of clients. If those clients are sharing a server with a
report process or some other read-intensive operation, you can determine the
problem and take corrective action.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

65

Understanding how blocks are manipulated
There are some operations that take place behind-the-scenes and which you have
limited control over except during the setup of a database. These are internal database
functions such as block manipulations. Although you do not have direct control over
how these operations are accomplished, you can set up your database to take advantage
of their behavior.

Record block manipulation
The process of adding a new record to the database is important because you want to
balance the compaction of data while avoiding data fragmentation. High compaction
rates allow you to read more records from disk in a single operation, and this process
allows you to increase efficiency. If you have many fragmented records, efficiency will
decrease because each fragmented record will require multiple block reads.

Adding new records to a database

When records are added to the database for the first time, space is allocated for these
records using a specific decision process, as illustrated in Figure 13.

Managing OpenEdge Database Resources

66

Figure 13: RM block allocation decision tree

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

67

1. If the block is not on an RM Chain block or on the RM Chain, then look at the
next block. This can be repeated 20 times.

2. If the block from the RM Chain is full or contains no open slots to accept the
record, remove the block from the RM Chain. This can be repeated 100 times.

3. If the block from the RM Chain has available space but not enough to store the
record, move the block to the end of the RM Chain and test the next block. This
can be repeated three times.

4. If no RM chain blocks are available, allocate a free block.

5. If no free blocks are available, allocate several empty blocks and update the high-
water mark.

6. If there are no empty blocks available, the last extent of the database area is
variable length, and there is available space at the operating system level, then
extend the database.

Updating existing records

The process to update an existing record is much simpler than adding new records.
Remember that you can cause record fragmentation by extensive record extension.
Sequential searches of records can take three to four times longer due to record
fragmentation. If you are careful during setup and application design, you can
minimize record fragmentation.

Consider the following when updating an existing record:

• If the new record is the same size as the original record, replace the original
record.

• If the new record is smaller than the original record, replace the original record
and adjust the free space in the block.

 To add new records to a database:

Managing OpenEdge Database Resources

68

• If the new record is larger than the original record and there is enough free space
to store the new record, replace the original record and use the available free
space.

• If the new record is larger than the original record and there is not enough free
space to store the additional information in the existing block, divide the new
record among two or more blocks. This is called fragmenting the record.

Deleting records

Within the OpenEdge database engine, changes have been implemented to improve
the efficiency of resource-intensive operations. Deleting a record is one of these
operations. To do this efficiently, postpone the deletion until the space is reused for
storage, thus eliminating an unnecessary write.

Consider the following when deleting records:

• A placeholder record replaces the record to support transaction rollback.

• The placeholder record can be removed once the transaction is complete.

• The actual removal is done later for performance reasons.

Index block manipulation
Index blocks are easier to deal with at a high level, and are not as structured as record
blocks. Index blocks can store a variable number of entries per block, and it is not
necessary to determine this number.

Index information is tightly packed. When information is put in the middle of an index,
it is sometimes necessary to make additional space for the inserted index entry. This
process is called an index block split. This can occur when, for example, you have an
index block that contains entries 1, 2, 4, and 5 and contains no free space. If you insert
entry 3 into this index, the information causes the block to split into two blocks, with
half going into each block. In this example, the original block contains entries 1 and 2,
while the new block (retrieved from the free chain, an empty block, or by extending
the database) contains entries 4 and 5. Once the split is complete, entry 3 is added to
the original block.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

69

One issue you might encounter when indexes perform a significant number of block
splits is that the index can become fragmented and need reorganization. Doing an
index compress accomplishes this and can be done while the database is running. The
user experiences only minimal impact. An offline index rebuild deletes all of the
entries and inserts them back into the database to yield the most efficient index
structure. However, this operation must be done when the database is offline.

The most important thing to remember about blocks is to avoid fragmentation. This
can be done through database setup and application design on the record block side,
and also through the use of utilities on the index side.

The importance of understanding the internal structure cannot be overemphasized. By
understanding the basics of OpenEdge database internals, you can make better
decisions regarding the setup and tuning of your system.

Managing OpenEdge Database Resources

70

Optimizing data layout
This section presents a general review of the elements that comprise a database and
discusses the importance of database design. A database is made up of storage areas.
Each storage area can contain one or more objects. A database object is a table or an
index. There are other objects, such as sequences and schema. Currently, you have no
control over the storage location of these objects.

Each storage area can contain one or more extents or volumes on disk. The extents are
the physical files stored at the operating system level. Each extent is made up of
blocks, and you determine the block size for your database. The block sizes choices
are: 1KB, 2KB, 4KB, and 8KB. You can only have one block size per database, but
each area can have a different number of records per block.

Proper database design is essential because all data originates from a storage area.
There are several items to consider when determining the layout of a database. The
first is your mean record size. This is easy if you have an existing OpenEdge database.
When you run a database analysis, this information is included in the output. Other
information is generally not as easy to obtain for the database administrator because it
requires knowledge of how the application is used. Even the designers of an
application might not know how the users are utilizing the design. For example, it is
important to know if a table is generally accessed sequentially or randomly. Is the table
frequently used, or is it historical and thus used infrequently? Do the users access the
table throughout the day or only for reporting purposes? Are the individual records
growing once they are inserted or are they mostly static in size? The answers to these
questions will help determine the size and layout of a database and allow you to take
the best advantage of your disks.

Sizing your database areas
When trying to determine the size of an area, you must look at the makeup of the
information being stored in that area. As stated before, an area can contain one or more
tables or indexes. The default area should generally be reserved for schema and
sequence definitions, as this will make conversions easier in the future. The first step in
this process, if you already have an OpenEdge database, is to do a table analysis. See
OpenEdge Data Management: Database Administration for details.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

71

The following example shows a portion of sample output for a table analysis:

 ---Record--- ---Fragment--- ---Scatter---

Table Records Bytes Min Max Mean Count Factor Factor

Work Orders 12,383 6,109,746 60 10,518 493 21,131 1.6 4.0

After doing a table analysis, you must focus on record count (Records) and mean
record size (Mean). Look at every table and split them according to mean record size.
In the vast majority of cases, use an 8KB-block size to better conform to the operating
system; the major exception to this rule is in Windows where a 4KB-block size is more
appropriate. Each record contains approximately 20 bytes of record overhead, so 20 is
added to the mean record size of each record prior to doing any calculations. These 20
bytes of overhead take into account the record and the RM block header overhead, as
outlined in the “OpenEdge database internals” section on page 49.

Block sizes

Why is an 8KB-block better on one system than another? The answer is how the
operating system handles files and memory. In Windows, the operating system
assumes that files and memory are handled in 4KB chunks. This means that all
transfers from disk to memory are 4KB in size.

It is good practice to match, or use, a multiple of the operating system block size, if
possible. This indicates that an 8KB block would work fine too, right? Well, not really.
The Windows operating system has been highly optimized for 4KB and will not
perform as well at an 8KB setting in the majority of cases. On UNIX operating systems
the block size is generally 8KB or a multiple of 8K. The block size is tunable.
Generally, an 8K-block size is best on UNIX systems, but there are exceptions to every
rule. The intention is to make a best estimate concerning that which will aid
performance and assist OpenEdge in merging with your operating system better. In
most cases, it has been proven that 8KB works best, with the exception of Windows
(where 4KB is best).

The only way to prove this is to benchmark performance on your system. You can
obtain hard data about block sizes using settings with the best performance
characteristics.

Managing OpenEdge Database Resources

72

Method for determining the number of records per block

Use the following formula to determine the number of records per block:

 Take the mean record size

 Add 20 to this number

 Divide 8192 (8K block size) or 4096 (4K block size) by the number in step 2

OpenEdge allows you to have anywhere from 1 to 256 records per block per area. The
number of records per block must be a binary number (1, 2, 4, 8..., 256).

Most of the time, the record length will not divide into this number evenly so you must
make a best estimate. If your estimate includes too many records per block, you run the
risk of fragmentation (records spanning multiple blocks). If your estimate includes too
few records per block, you waste space in the blocks. The goal is to be as accurate as
possible without making your database structure too complex.

Distributing tables across storage areas
Now that you know how many records can optimally fit in each block, you can review
how to distribute the tables across storage areas. Some of the more common reasons to
split information across areas include:

• Controlled distribution of I/O across areas

• Application segmentation

• Speed offline utilities

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

73

One other reason—to speed offline utilities—is valid until all utilities are brought
online. There is no reason to perform application segmentation at this time. However,
in the future having your data segmented might allow you greater flexibility with
maintenance. The cost to do this work now is relatively low if you are already splitting
some data, or moving from a previous version of Progress to OpenEdge.

Another reason to break out a table to its own area is how the table is populated and
accessed. In the cases where records are added to a table in primary index order, most
of the accesses to these records are done in sequential order via the primary index.
There might be a performance benefit in isolating the table. If this is a large table, the
performance benefit gained through isolation can be significant.

There are two reasons for the performance improvement:

• Database read will extract multiple records from the database, and the other
records that are retrieved are likely to be used. This approach improves your
buffer hit percentage.

• Many disk drive systems have a feature that reads ahead and places in memory
any item that it believes are likely to be read. Sequential reads take the best
advantage of this feature.

Finally, databases can contain different types of data in terms of performance
requirements. Data, such as inventory records, is accessed frequently, while other data,
such as comments, is stored and only read as necessary. By using storage areas you can
place frequently accessed data on a “fast disk.” However, this approach does require a
good knowledge of the application. You can determine the activity per table using
either OpenEdge Management or Virtual System Tables (VSTs). OpenEdge
Management enables you to trend the table usage over time to better determine the true
activity level of a table.

The overall goal in obtaining this information is to provide enough areas to achieve the
following:

• Greater control of information

• Speed for offline utilities

• Maximum record efficiency without sacrificing ease of maintenance

Managing OpenEdge Database Resources

74

The calculations previously made are used to determine the number of records per
block. In some cases you must make a borderline decision when choosing to store a
table in an area. For example, what should you do if a table has records per block set to
a lower number than the mean record size required to fill the block, or set to a greater
number of records per block that might cause record fragmentation? The following
example shows that the decision is fairly easy to make.

Example

Assume there is a table in a database with 1 million records and a mean record size of
41 bytes.

1. Add the record overhead (approximately 20 bytes) to determine the number of the
actual size of the stored record. For example:

Mean record size (41) + record overhead (20) = actual storage size
(61)

2. Divide that number into your database block size to determine the optimal records
per block, as shown:

Database block size (8192) / actual storage size (61) = optimal
records per block (134)

Here is your decision point. You must choose a number between 1 and 256 that is a
power of 2, for the records per block. This leaves you with two choices: 128 and 256.
If you choose 128, you will run out of record slots before you run out of space in the
block. If you choose 256, you risk record fragmentation. You make your choice
according to the nature of the records. If the records grow dynamically, then you
should choose the lower number (128) to avoid fragmentation. If the records are
inserted and are static in size, you should choose the higher number (256) because
generally OpenEdge will not fragment a record on insert. Most fragmentation happens
on update, so be cautious with records that are updated frequently and are likely to
increase in size.

 To distribute a table across storage areas:

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

75

Also, if you choose the lower value, you can determine this cost in terms of disk space.

1. Take the number of records in the table and divide by the number of records per
block to determine the number of blocks that will be allocated for record storage.
For example:

Number of records (1,000,000) / records per block (128) = allocated
blocks (7813)

2. Calculate the number of bytes wasted per block by multiplying the actual storage
size of the record by the number of records per block and subtracting this number
from the database block size, as shown:

Database block size (8192) – (Actual storage size (61) * records
per block (128) = Wasted space per block (384)

3. Take the number of allocated blocks and multiply them by the wasted space per
block to determine the total wasted space, as shown:

Allocated blocks (7813) * wasted space per block (384) = total
wasted space (3000192)

In this example, the total wasted space that would result in choosing the lower records
per blocks is less than 3MB. In terms of disk space, the cost is fairly low to virtually
eliminate fragmentation. However, you should still choose the higher number (256) for
static records, as this will enable you to fully populate your blocks and get more
records per read into the buffer pool.

 To determine the cost in terms of disk space:

Managing OpenEdge Database Resources

76

Consider wasted slots

Another issue to consider when choosing to use 256 records per block is that you will
be wasting slots in the block. Since the number of records determines the number of
blocks for an area, it might be important to have all of the entries used to obtain the
maximum number of records for the table. This is less of an issue with the introduction
of 64-bit recid areas in OpenEdge Release 10.1B. This does not mean that you should
set all of your areas to 256 records per block for maximum compaction. To make sure
you set your areas correctly, there is a method for determining the ideal records per
block setting and the ideal blocks per cluster setting that is described in the "Choosing
an appropriate block size" section on page 89.

Table 1 shows the maximum number of blocks for a 64-bit recid area by the records-
per-block setting and the database block size.

Table 1: Maximum rows per data storage area (approximate)

Database block
size

Records per
block

Records
per area

Approximate maximum
records per area (in M)1

1 237 137,439 M

2 238 274,878 M

4 239 549,756 M

8 240 1,099,512 M

16 241 2,199.024 M

32 242 4,398,048 M

64 (default) 243 8,796,096 M

128 244 17,592,192 M

8192 bytes
(8K)

256 245 35,184,384 M

(continued…)

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

77

Database block
size

Records per
block

Records
per area

Approximate maximum
records per area (in M)1

1 238 274,878 M

2 239 549,756 M

4 240 1,099,512 M

8 241 2,199.024 M

16 242 4,398,048 M

32 (default) 243 8,796,096 M

64 244 17,592,192 M

128 245 35,184,384 M

4096 bytes
(4K)

256 246 70,268,768 M

1 239 549,756 M

2 240 1,099,512 M

4 241 2,199.024 M

8 242 4,398,048 M

16 243 8,796,096 M

32 (default) 244 17,592,192 M

64 245 35,184,384 M

128 246 70,368,768 M

2048 bytes
(2K)

256 247 140,737,536 M

(continued…)

Managing OpenEdge Database Resources

78

Database block
size

Records per
block

Records
per area

Approximate maximum
records per area (in M)1

1 240 1,099,512 M

2 241 2,199.024 M

4 242 4,398,048 M

8 243 8,796,096 M

16 244 17,592,192 M

32 (default) 245 35,184,384 M

64 246 70,368,768 M

128 247 140,737,536 M

1024 bytes
(2K)

256 248 281,475,072 M

 1M = 1 million or 1,000,000

In the case of small tables, put the indexes with their associated tables for ease of
maintenance. For large tables (tables with many rows) isolating an index or a subset of
indexes to their own location will generally improve performance.

Determining space to allocate per area

You must determine the quantity of space to allocate per area. OpenEdge keeps data
and index storage at good compaction levels. In the best case, most data areas are kept
from 90 to 95 percent full and indexes are generally maintained at 95 percent
efficiency. It is generally advisable to use an 85 percent ratio. This is a reasonable
ratio. Using the 1-million-record Example section on page 74, you can see that the
records plus overhead would take 61 million bytes of storage. For example:

(41 bytes (Mean record size) + 20 bytes (overhead)) * 1,000,000 (Number
of records) = 61 million bytes

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

79

This is only the actual record storage. Now, take this value and divide it by the
expected fill ratio. The lower the ratio, the more conservative the estimate, as shown:

61,000,000 /.85 = 71,764,706 bytes (total storage needed)

To determine the size in blocks, divide this number by 1KB (1024 bytes). This step is
necessary because the amount of space needed will be expressed in the structure
description file (dbname.st) in kilobytes regardless of the block size of the database.
For example:

71,764,706 / 1024 = 70083 (1KB blocks)

If there are other objects to be stored with this table in a storage area, you should do
the same calculations for each object to determine the total amount of storage
necessary. If this is the only object to store in this area, consider future growth
requirements.

Using extents

Most users prefer binary numbers for their extent sizes because these numbers are
easier to monitor from the operating system level. These numbers also enable you to
see if problems occur, such as growing into a variable extent. In this case, you can
choose one 102,400KB extent to store the data, allowing room for expansion, and one
variable extent. Each area should have a variable extent as the last area to allow for
growth. Monitoring and trending should keep you from using this last extent, but it is
preferable to have it available if it is required.

Extents allow you to distribute your data over multiple physical volumes if you do not
have striping on your system. For example, you could split the 70MB of data in the
previous example across several physical volumes by reducing the size of each
volume. You could have eight fixed 10MB extents and one variable extent and “stripe”
your information across three drives.

Managing OpenEdge Database Resources

80

As shown in Figure 14, you could put the first, forth, and seventh extents on the first
drive, the second, fifth, and eighth extents on the second drive, and the third, sixth, and
variable extents on the third drive. OpenEdge fills these extents in order, so the first
10MB of data goes into the first extent, the second 10MB of data goes into the second
extent, and so on. By striping the extents, you will have a mix of old and new data.
While this is probably not as good as a hardware stripe of 128KB stripes, it does help
you eliminate variance on your drives.

Figure 14: Extents

Even if you do have striping, you might want to have multiple extents. In
Version 9.1C, Progress introduced large file support for Progress databases. This
allows the user to allocate extents up to 16GB in size. To turn on this feature, you need
to run proutil on your database with the enable large files parameter. (See OpenEdge
Data Management: Database Administration for additional information.) The old and
default limit is 2GB per extent. If you want to store more than this amount, you must
have multiple extents per area.

Another reason to have extents is indirection. Indirection occurs when a single inode
table cannot address all of the physical addresses in a file. An inode table is a table of
contents on a disk that is used to translate logical addresses to physical addresses. If a
second inode table is needed, you must do an extra I/O operation for every physical
request into the database. This activity is not good for performance. Most operating
systems claim to be able to directly address a 4GB file under best-case scenarios.
Through testing, the real number varies across operating systems, but a 1GB file seems
to be a safe size across all operating systems with modern file systems. On server-
based versions of Windows, you should use NTFS file systems for best performance.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

81

Index storage

So far, this chapter has only discussed record storage. The reason is that record storage
is fairly easy to calculate while index storage is not. Index compression makes
calculation difficult. The fact that the compression algorithm has been modified over
the years makes the calculation even harder. In an effort to make things easier, you can
review a database analysis and use the information from that activity to make your
decisions. Again, remember to allow room for growth and general overhead, the same
as with data storage.

If you have an existing database, you can take statistics to determine index storage
size. Without a database, you have to estimate the size. The number and nature of
indexes can vary greatly between applications. Word indexes and indexes on character
fields tend to use more space, while numeric indexes are significantly more efficient in
terms of storage. There are databases where indexes use more storage than data, but
these are the exception and not the rule.

In general, indexes account for approximately 30 percent of total storage. Therefore,
you can take 50 percent of your data storage as an estimate of index storage.
Remember that this percent might vary greatly, depending on your schema definition.
Consider this estimate as a starting point and adjust and monitor from that point
accordingly.

The following example highlights a portion of a database analysis report that shows the
proportion of data storage to index storage within an existing database. You can use
this information to determine the allocation of disk resources to the areas that are going
to contain the data:

SUMMARY FOR AREA "Student Area": 8

 Records Indexes Combined

Name Size Tot % Size Tot % Size Tot %

PUB.stuact 18.9M 12.6 9.7M 6.4 28.6M 19.0

PUB.student 30.3M 20.1 20.1M 13.4 50.5M 33.5

Total 115.3M 76.4 35.6M 23.6 150.8M 100.0

Managing OpenEdge Database Resources

82

Primary recovery area

The size of the primary recovery area, also known as the before-image file, is another
area for concern. This area is responsible for the recoverability of your database on an
ongoing basis. and frequently is very important to the system. The primary recovery
area is written to. If it is located on a slow disk, your update performance will be
affected. The size of this area varies depending on the length of transactions and the
activity on your system.

The primary recovery area is made up of clusters, which are tunable in size. When
records are modified, notes are written to this area. If a problem occurs or if the user
decides to “undo” the changes, this area can be used to ensure that no partial updates
occur.

For example, assume you want to modify all of the records in a table to increase a
value by 10 percent. You would want this to happen in an all-or-nothing fashion
because you could not determine which records were modified if the process
terminated abnormally. In this case, you would have one large transaction that would
modify all of the records. If a problem occurs during the transaction, all of the
modifications would be rolled back to the original values. This is important because if
you have several of these processes running simultaneously, the primary recovery area
could grow quite large.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

83

Let us review the structure of this area and how it is used and reused. This structure is
a linked list of clusters. The cluster size can be modified from small (8KB) to large
(greater than 256 MB), as shown in Figure 15.

Figure 15: Primary recovery area

The smaller the cluster size the more frequent the checkpoints occur. A checkpoint is a
synchronization point between memory and disk. While there is a potential
performance benefit from infrequent checkpoints, this must be tempered with the
amount of time it takes to recover the database.

The best way to determine the before-image cluster size is to:

• Monitor the database at the time of the day when you make the most updates to
the database.

• Trend the data from the database with OpenEdge Management.

• Review the duration of your checkpoints throughout the week.

Managing OpenEdge Database Resources

84

Ideally, checkpoints should happen no more than once every two minutes. If you are
checkpointing more often than necessary, you should increase your before-image
cluster size. This does not mean you should decrease the cluster size if it is happening
less frequently. The default of 512KB is fine for smaller systems with low update
volume, while a value of 1024KB to 4096KB is best for most other systems.

1. Select Resources from the menu bar, and from the list frame browse to the
database.

2. Select the Page Writers option from the Operations Views section of the
database’s Resource page

Figure 16 shows an example Checkpoint summary section.

Figure 16: Checkpoint summary section

 To view a checkpoint summary in OpenEdge Management:

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

85

As previously stated, the cluster size influences the frequency of the checkpoints for
the database. As users fill up a cluster with notes, they are also modifying shared
memory. The page writers (APWs) are constantly scanning memory, looking for
modified buffers to write to disk. At the first checkpoint, all of the modified buffers are
put in a queue to be written prior to the next checkpoint. The buffers on the modified
buffer queue are written by the page writers at a higher priority than other buffers. If
all of the buffers in the queue are written prior to the next checkpoint, then it is time to
schedule the current modified buffers. This is the goal. If all of the buffers are not
written, then you must write all of the previously scheduled buffers first and then
schedule the currently modified buffers. If you are checkpointing at the proper
frequency and you are still flushing buffers at checkpoint, you should add one more
APW and monitor further. If adding the APW helps, but does not eliminate the
problem, add another APW. If adding the APW does not help, search for a bottleneck
on the disks.

The format of the primary recovery area has been discussed, but not its size. There is
no formula for determining the proper size because the size of the area is so dependent
on the application. You should isolate this area from other portions of the database for
performance reasons. If you only have one database, you can isolate this area to a
single disk (mirrored pair), as the writes to this area are sequential and will benefit
from being placed on a single non-striped disk. If you have several databases, you
might want to store your primary recovery areas on a stripe set (RAID 10) to increase
throughput.

Managing OpenEdge Database Resources

86

Optimizing database areas
This section details database area optimization. Although some of the information
presented in this section might be found in other sections of this book or other
manuals, it is repeated here to present this information in one place for easy reference.
The goal of area optimization is to take advantage of the OpenEdge architecture and
the operating system.

Data area optimization
Following a few simple rules can make your data areas easy to maintain and provide
optimal performance for users.

Storage Areas

The primary reasons for splitting data are to:

• Keep individual storage areas manageable in size

• Reduce data scatter and spread data access across physical devices (by storing the
areas on different devices)

In the past, records from different tables stored in a single area could be intermingled.
This would cause the data to become scattered throughout the area as records from
various tables were added, deleted, and modified. In addition to reducing scatter, the
OpenEdge database has the ability to do fast object delete. If you want to delete a table
from the database in a Type I area, OpenEdge must look at each record individually in
order to do the deletion. With a Type II area, it is possible to issue the command "drop
table" and the table can be deleted with a single operation: updating the first cluster for
the object on the free chain for the area. Because the clusters are linked together, if the
first is moved the others will follow without the need for additional updates. This is
most likely something you will not do every day but it demonstrates the power of the
Type II area.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

87

Splitting off the schema

By splitting off the schema and sequences from other portions of your database, you
can make future upgrades to OpenEdge and your application more transparent. One of
the operations that takes place during most major version changes of OpenEdge is a
metaschema change. The metaschema is a set of definitions for the internal structure of
data. Your schema definitions create the rules by which data can be added or modified
within your application. The metaschema serves the same purpose for the definition of
your schema. By eliminating information, other than your schema definitions and
sequences from the metaschema area, the task of updating this information is reduced.

Eliminate Data Scatter

There are two general types of data scatter: physical scatter and logical scatter.
Physical scatter occurs when the records from a single table are spread throughout the
area, and intermingled with other tables' records. The only way to avoid physical data
scatter in Version 9 was to put a single table in an area. This would make your
database layout overly complex, as you would need to maintain one area per table.
This would also increase maintenance costs, since the database administrator would
need to monitor and maintain each of these areas.

In OpenEdge 10, the concept of clustered storage areas (called Type II storage areas)
was introduced. Type II areas “cluster” or group the data objects (such as tables)
together. The cluster size is definable per area. The cluster sizes can be 8, 64, or 512
blocks in size. For example, an 8KB block size database with a Type II area cluster
size of 512 blocks will group 4MB worth of record or index blocks. By grouping the
data together, the efficiency of data access is increased because the physical scatter is
reduced. This is especially true for reporting, but testing has also shown that
performance is increased with all types of data access. Consequently, the use of Type
II areas is recommended whenever possible. By using Type II areas you will reduce
physical scatter, but you still run the risk of having logical scatter.

Managing OpenEdge Database Resources

88

Logical scatter occurs when records are stored in a different order than they are most
commonly requested. This happens all of the time. As records are entered into the
database, they are stored in the order in which they are entered or in places where
records have previously been deleted. Generally, over time your data will become
more and more logically scattered. One fix for this is to dump and reload the data, but
this can be costly in terms of the uptime of the application, and it is impossible in the
case of a 24 hour operation. Where it is possible to have an outage, dumping and
reloading the table is a viable option. The dump and reload operation is discussed in
the "Overview of full dump and reload migration" section on page 94. The main point
to remember is to dump the records in the order in which they are most used. In many
cases, there is a primary index that is not the index which is primarily used for data
retrieval. To determine the most-used index, look at the _IndexStat VST to see which
index has the most read operations.

Although using Type II areas is a best practice, there are times when using Type I
areas can make sense. An example might be when there are tables that have very few
records, such as control files or application-maintained counters. Also, it is
recommended to have the schema area contain only schema, to have one Type I area
for storing small tables, and to store the remaining data in Type II storage areas.

How to split data

There are several things to consider when determining how to split your data across
storage areas. First, evaluate the large tables. If there are tables that are several
gigabytes in size, they should be put into their own areas. Then consider grouping
tables with like-sized records. Another thing worth considering is how and when the
data is used. If there are some tables that are busy during the day and some tables that
are used for day-end processing, it might be best to split these tables into areas to
provide the greatest scalability for your application. The size of these tables is relative.
For example, a 1GB table might not be considered large, except when considering a
database that contains only 1 GB of data total. You must use your own judgment as to
what "large" means. One way to look at large and small is if you have a single table
that comprises over 10% of your database, that table can be considered a large table for
your environment. A good general goal is to keep the number of areas to 10 or less for
small to medium sized databases. This makes a system relatively easy to maintain.
This number is obviously too small for a large, complex operation, and at the same
time, perhaps too large for a very small database. These are general guidelines when
starting the evaluation process for the number of areas.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

89

What to do with indexes

There are various schools of thought on this subject, but a general recommendation is
to separate indexes from large tables and thus have a separate large table index area.
For smaller tables, it is generally acceptable to keep the indexes with the tables. One
approach is to have some areas dedicated to data and others dedicated to indexes. For
example, in a situation where there is a relatively small table that is highly utilized, it
might justify splitting the indexes from the data to alleviate potential contention for
area resources. The data utilization level must be very high for this type of problem to
occur but when in doubt it is better to be safe than sorry, since it is harder to reallocate
data after it has been loaded into an area.

Choosing an appropriate block size
Matching the database block size to the operating system allows for a more efficient
transfer of data. If you designate a block size that is too small, the operating system
retrieves more blocks than is optimal for your request, and that transfer of additional
information might, or might not, be useful. If the additional information is not used by
the application, then the transfer is wasted. Larger blocks are generally better because
of the way indexes behave. If each block contains an optimal amount of information,
then you will require fewer index blocks and fewer index levels to contain and retrieve
the data. The number of index levels in a B-tree is critical to efficient data retrieval. If
you eliminate a level from an index, you save one additional I/O operation per record
request.

Determining records per block

To determine the number of records per block, divide database block size by the
product of mean record size (from database analysis) plus 20 bytes for block and
record overhead.

Managing OpenEdge Database Resources

90

Table 2 shows good guidelines for records per block table . If you are at the low end of
the range for most of your records you might want to choose the next greater records-
per-block setting, because it is better to fully pack your blocks and risk a little
fragmentation, than to have wasted space in every block.

Table 2: Records per block table (approximate)

Mean record size Database block size Records per block

1 - 3 1024 64

4 - 44 1024 32

45 - 108 1024 16

109 - 236 1024 8

1 - 12 4096 256

13 - 44 4096 128

45 - 108 4096 64

109 - 236 4096 32

1 - 44 8192 256

45 - 108 8192 128

109 - 236 8192 64

237 - 492 8192 32

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

91

Determining blocks per cluster

Generally, the number of blocks per cluster is determined by the number of records in
a table, and the optimal records-per-block setting. Larger tables require larger blocks
per cluster settings. Table 3 suggests the minimum number of records required to fill
one cluster completely. You might want to choose a smaller blocks-per-cluster setting
if you will only fill a few clusters.

Table 3: Minimum records per table (approximate)

Records per Block Blocks per Cluster Minimum Records

32 8

64

512

256

2048

16384

64 8

64

512

512

4096

32768

128 8

64

512

1024

8192

65536

256 8

64

512

2048

16384

131072

Managing OpenEdge Database Resources

92

Keeping extents small to eliminate I/O indirection

The size of the extent is largely a product of the operating system and the file system
where the database resides. In the past, it was prudent to keep extent sizes less than
500MB to avoid I/O indirection. I/O indirection occurs when all of the addresses for a
file cannot be contained within a single inode table. The inode table is the table of
contents for the file. When an address is requested from a file the requester refers to
the inode table, then gets the block from the disk based on the information in the inode
table. In the case of I/O indirection, multiple inode tables are maintained for a single
file. Requests look at the primary and then the secondary inode tables, and then get the
data block. This additional operation causes degradation in performance and should be
avoided. Generally, files less than 2GB have little chance of becoming fragmented and
requiring a secondary inode table. 2GB should be viewed as a good general maximum
extent file size in order to avoid I/O indirection. For very large databases, keeping the
extent sizes as low as 2GB might cause too many extents, so larger extents would be in
order. To reduce the chance of I/O indirection in these cases, you should lay out your
data extents on new file systems and use 8GB as a maximum. To do this, you must
enable the "large file" setting for the database, which is a good practice for all
databases in any case. For more information on this setting, see the "Enabling large
files" section on page 93.

Keeping areas small for offline utilities

Currently, most utilities for OpenEdge are configured for online maintenance.
However, there are still some utilities that require you shutting down the database prior
to running them. For these utilities, you should limit the amount of data-per-area to
reduce the amount of downtime needed for the utility to run.

The best example of this principle is the index rebuild. If you do an index compact and
an index fix, you can achieve nearly the same thing as a rebuild. However, it might be
necessary to do an index rebuild due to index corruption or some other reason. If you
only need to rebuild one index, you can scan the entire area where the records for that
index are stored to ensure you have a pointer to every record. If all of your records are
in one area, this can take a significant amount of time. It is much faster to scan a
portion (only those records in the same area) of your records than the entire database.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

93

Always have an overflow extent for each area

The last extent of every area, including the primary recovery area, (but not the after-
image areas), should be variable length. Monitoring, trending storage capacity, and
growth should eliminate the need to use the variable extent. However, it is preferable
to have one if you anticipate filling all of the fixed extents and, at the same time,
cannot shut down the system in order to grow the database. A variable extent allows
the database to grow as needed until it is possible to extend the database.

Enabling large files

You should always have "large files" enabled for your database. However, just as you
never want to grow into the variable extent of your data areas, you also want to avoid
using the "large files" feature. This feature should be viewed as a safety valve for
unanticipated growth.

Enabling large files allows you to support extent sizes up to 1TeraByte (TB), which is
1000GB, provided that the operating system supports large files. On UNIX, it is
necessary to enable each file system where the database resides for this feature to
work. In Windows, a file can fill the entire volume, so by default, large files are
disabled (for compatibility reasons).

To enable large file support for a database, execute the following command:

proutil dbname -C enablelargefiles

Partitioning data

Partitioning data by functional areas is a reasonable way to split your information into
small pieces to reduce the size of a given area. This activity allows you to track the
expansion of each portion of the application independent of other portions. At some
future point, it might be possible to manipulate areas independently of each other.
When and if this time comes, you will be well-positioned if your tables are partitioned
when the initial split of your data is done.

Another benefit of partitioning your data relates to a corrupted database. You can more
easily identify data in a corrupted area of your database by partitioning.

Managing OpenEdge Database Resources

94

Migrating to Type II areas

Migrating to Type II areas should be done when it makes sense for the business. It
should not be done just for the sake of taking advantage of a new feature. There are
many ways to transition your existing database from Type I areas to Type II. The most
obvious method is to dump all of your data from your existing database and load it into
a new Type II structure. There are also other ways to do in-place conversions.

All of these methods will cause some disruption to operations. The goal is to minimize
the disruption. The obvious approach (dump and load) is also the most disruptive,
since the application will not be available until the process is complete. There are ways
to do this process in parallel, resulting in a series of short outages. You can use
database triggers to capture the interim changes (however, this approach is outside the
scope of this book). Such an approach might be a consideration if you cannot afford
the downtime that any of the approaches listed in this book will require.

Overview of full dump and reload migration

Follow these guidelines to dump and reload your database:

Note: Many databases use the _User table and sequences. If this is the case for your
application, do not forget to dump the _User table contents and sequence
values when dumping and loading your database.

1. Do a database analysis of the existing database.

2. Back up and then verify the backup of your existing database.

3. Build a structure description file using the database analysis output.

4. Dump your existing data definitions.

5. Dump your data. (See the "Data Dumping and loading" section on page 96.)

6. Modify the data definitions (.df) file to represent the new locations of your data
objects.

7. Build your new database structure (you might need to delete your existing
database first).

8. Copy the empty database into your structure.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

95

9. Load the data definitions.

10. Verify that everything is where you want it to be (through the Data Dictionary or
via a database analysis).

11. Load your data. (See the "Data Dumping and loading" section on page 96.)

12. Verify the load via database analysis.

13. Back up the new database.

The database analysis is the source of the mean record sizes for all of your records. It
also provides a count of the number of records in the table. You can use the second
database analysis, which is completed after the data load, to compare the number of
records per table to the original count, to verify they match.

Always back up the database and verify your backup before any conversion activity:
this may be your only recourse for a failed conversion. It is makes sense to have a plan
that schedules each of the operations and a time when the process must be completed.
If an operation is not completed by a certain time, you must revert to the original
installation so that business operations are not affected. It is very important that you
adhere strictly to the plan you establish. If your plan says fall back at 12:00 on Sunday
and the process is not complete by then, you should stop the process. You might think
it will only take a few more minutes to complete, but you would not be the first person
to be wrong about this assumption. If you do misjudge the timing, you could affect
overall operations because you did not adhere to the plan.

You might need to edit your data definition (.df) file. If you are already using Type I
areas and you are moving to Type II areas, then no changes to the .df file are needed.
If you need to make changes you can search the .df file with a text editor and look for
the word “AREA”. By default, everything is in the “Schema Area”. As previously
stated, it is recommended that you store only schema data in the schema area.

Note: If you embed a space in your area name, you must quote the area name every
time you refer to it with a utility. For that reason, avoid using space (" ") and
instead use underscore ("_"). For example: "Data Area" would require quotes
whereas Data_Area does not. Each is equally descriptive but using a name with
the underscore is easier to maintain. These things seem trivial initially but over
time you will appreciate them.

Managing OpenEdge Database Resources

96

Data Dumping and loading

There are many ways to dump your data. Using the Data Dictionary is the simplest
method. You only need to select the tables you want to dump in the admin section of
the data dictionary and then select where they should be dumped. The problem is that
the dump and load are synchronous and sequential. Also, the write I/O is excessive, as
there is a write to an intermediary file (the .d) prior to the load into the new database.
Custom code can eliminate this by performing a buffer copy from one database to
another; however this requires enough space for two copies of your database.

When doing a dump and load, you might have the following questions:

• Should you turn indexes off on the load? That depends on your goals. To get the
best performing resultant database it is best to turn off indexing during the load
and do an index rebuild at the end.

• What if the goal is to load the data in an order other than primary index order?
You must write custom code to dump the records in a specific order.

An easy way to speed up this process is to multi-thread both the dump and load
operations. The dumping process is easy to multi-thread as most systems contain only
a few large tables. Use one thread each, to dump each of the large tables and one
additional thread to dump the rest of the tables. There is a point of diminishing returns
on multi-threading that is different for each system. You should do some testing to
determine the best number of threads for your system. If you are writing customized
code to do the dump, you can specify ranges of records within a table to further multi-
thread if that proves beneficial. It is good practice to use private buffers (-Bp) for each
dumping client so one client does not monopolize the buffer pool.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

97

Multi-threading a load is a little trickier as the goal is to get the best result in the best
time, and sometimes these two objectives are at odds with each other. Generally, one
thread per storage area is the best policy as this will give you the best database with
good performance. Some general rules about loads are:

• Execute the loads in multi-user mode.

• Increase the BI cluster size to 128MB or larger.

• Remember to set the BI cluster size value back to the regular running value once
the load is complete.

• Start background writers (BIW and several APWs).

• Turn off after-imaging, or do not turn it on until after the load is complete.

Once the load of data is complete, you can start the index rebuild process if necessary.
The last thing to do is to verify the new database. This can be done through a simple
count of the records (or the database analysis) before and after the process. Once the
data has been verified, the users can be allowed back onto the system.

The Bulk Loader

The Bulk Loader utility is easy to use but it is completely single-threaded and requires
an index rebuild once the data has been loaded. Almost any other option is better for
databases of any size larger than a gigabyte. If simplicity is your only requirement, the
Bulk Loader may be an option, because the process is easy. Dump your table contents
and definitions, and create a Bulk Loader description file. Once the dumps are
complete, build your new structure, copy the empty database into it, and load the data
definitions. You can then run the Bulk Loader utility and, once it has finished, run the
index rebuild and database verification operations.

Managing OpenEdge Database Resources

98

Binary dump and load

The binary dump and load feature has been around for quite some time; first in
undocumented form and later in documented form. With OpenEdge 10, it is possible to
use the binary dump to dump via a secondary index or you can dump specific records
with the dumpspecified qualifier. There are still considerations when loading a single
table in a multi-threaded fashion. This type of load causes logical scatter of the records
which is the issue you are trying to fix with the dump and load process. A
recommendation is to multi-thread the dump with dumpspecified on the most used
index (not necessarily the primary index) and then load the dumped files sequentially
into the new database to get the best (least-scattered) database. Refer to OpenEdge
Data Management: Database Administration for details on how to use dumpspecified.
As with Data Dictionary or custom code methods, it is important to do the following:

• Increase the before-image cluster size

• Execute the load process in multi-user mode with 1 thread per area

• Make sure a before-image writer is active

• Invoke several after-image writers

• Ensure after-imaging is not enabled

• Verify the database once the load process is complete

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

99

Primary recovery (before-image) information
On systems where updates are done frequently, it is important to make the read/write
access to this database area as efficient as possible, but the write access is most
important. The following sections provide simple tips to create an efficient
environment for the primary recovery area.

General structure rules

These rules apply to both the primary recovery area and the data areas:

• Do not make them too large.

• Keep the number of areas manageable.

• Keep schema separate from data.

• Use Type II areas for all data, except schema and very small tables.

• Split off large tables first, then split by record size.

• When splitting it off into areas, consider how it will be used.

• Always make the last extent variable-length.

• Enable large files as an additional safety valve.

Enabling large files is particularly important on the primary recovery area, since this is
the place most likely to experience issues. A large update program with poor
transaction scoping or a transaction held open by the application for a long period of
time, can cause abnormal growth of this area. If the fixed portion of an area is 2GB in
size, it is possible that the system could start extending your variable portion in that
same transaction. Only then do you notice that you might need more than 2GB of
recovery area to undo the transaction. If you are large-file enabled, and have enough
disk space, there is no problem. If you are not large-file enabled, the database might
crash and be unrecoverable because there is no way to extend the amount of space for
the recovery area without going through a proper shutdown of the database.

Managing OpenEdge Database Resources

100

Sequential access

The primary recovery area is sequentially accessed. Items are written to, and read
from, this area in a generally linear fashion. If you are able to isolate a database’s
primary recovery area from other database files and other databases, then it is a good
idea to store the extents for this area on a single disk (mirror).

While striping increases the throughput potential of a file system, it is also particularly
effective for random I/O. The striping of the primary recovery area can cause
additional disk head movement if this area is isolated. If the area is not isolated from
the database, or you are storing the primary recovery areas of several databases on the
same disk, it makes more sense to use striped disks because the I/O will be fairly
randomized across the databases.

Before-image grow option

The before-image grow qualifier of proutil allows you to preformat BI clusters before
the user enters the database. Preformatting allows you to write more recovery notes
and to fill more clusters before the database needs to make a reuse decision. If the
reuse decision is made less often, then it is more likely that the oldest cluster is ready
for reuse and is reused. If the primary recovery area does not experience any abnormal
growth, you can keep a contiguous format to this area, which is good for performance.
Your database must be down for you to grow the BI file (primary recovery area).

The command to preformat BI clusters is:

proutil dbname -C bigrow #

Where # is the number of clusters you want to add to your primary recovery area.
These are additional clusters to the number of formatted clusters that you already have
in the primary recovery area. Generally, this command is run after a truncation of the
BI file so there are zero allocated clusters at that time.

After-image information
So far in this chapter, only the data and before-image portions of the database have
been extensively considered. The after-image file is used to enable recovery to the last
transaction, or to a specific point in time in the case of media loss. There are several
other reasons to implement after-imaging, but its role in a comprehensive recovery
strategy is the most important.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

101

The after-image file is like the before-image file in the sequential nature of its access.
However, it does not have automatic reuse like the before-image file. Because of this
limitation, in versions prior to OpenEdge10, it required an administrator's action to
reuse space. Currently, using the OpenEdge AI Archiver is the standard means of
implementing and administering after-imaging. If you intend to perform replication,
the proper implementation of after-imaging is necessary, as after-imaging is an integral
part of replication.

After-imaging is the only way to recover a database to the present time in the case of a
media failure (disk crash or other disaster). It also provides protection from logical
corruption by its “point-in-time” recovery ability.

For example, assume a program accidentally runs and incorrectly updates every
customer name to “Frank Smith.” If you have mirroring, you now have two copies of
bad data. With after-imaging, you can restore last night’s backup and roll forward
today’s after-image files to a point in time just prior to running the program. Every
non-read-only database that gets updated should run after-imaging. This is the only
way to ensure that up-to-the-moment data is available in the case of a system disaster.

After-imaging with the OpenEdge AI Archiver

The following sections describe how to use the OpenEdge AI Archiver (also known as
the AI File Management Utility):

• Isolating after-image files for disaster recovery

• Setting up after-imaging

• Determining the number of extents

• Variable versus fixed extents

• Extent states

• Multiple extents

• Sequential access

• Sizing after-image extents

• Enabling after-imaging

Managing OpenEdge Database Resources

102

• Enabling the AI Archiver

• Starting the database with the AI Archive options

• Adding AI extents

• Determining where to archive after-image files

• Determining how long you should keep archives

• Selected AI Archiver commands and startup options

• Cleaning up archived AI files

Isolating after-image files for disaster recovery

For performance reasons, you should isolate the primary recovery area (BI file) from
the other portions of your database. A different kind of isolation is required for the
after-image extents. The after-image files must be isolated on a different system, or
different drives, to provide maximum protection from media loss. If you lose a
database or before-image drive, you can replace the drive, restore your backup, and use
the after-image file to restore your database. If you lose an after-image drive, you can
disable after-imaging and restart the database. If the after-image extents are isolated
from the rest of the database, you will only lose active transactions. Sometimes this is
difficult to do because you might have several file systems accessing the same physical
drive, but the isolation needs to be at the device and file-system levels.

Setting up after-imaging

OpenEdge supports one or more after-image extents per database. Each extent of the
after-image file is its own area with a unique area number. It is more common to refer
to these areas as extents. To support a high-availability environment, it is necessary to
have more than one extent for each after-image file.

Determining the number of extents

With the AI Archiver active you require two extents minimally, but it is advisable to
have more than two. You should be prepared to support one day of transactions in the
AI files, at a minimum, and this normally requires more than two AI extents.
Consequently, five extents is a realistic minimum in most situations.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

103

Variable versus fixed extents

This section lists the reasons for using variable or fixed extents.

Some reasons to use variable extents are:

• They are easy to maintain. There is little or no need to monitor the extent size
between maintenance sessions.

• There is very little extra overhead for extending the AI file. The system does this
automatically, with minimal impact on database performance.

• Variable extents reduce disk usage, since there is no waste in unused, pre-
allocated extent space.

• There is a possibility of disk fragmentation if the AI extents are on a shared file
system. However, this risk is usually offset by the other considerations.

Some reasons to use fixed extents are:

• You must understand how the database is updating/adding data, so you can
anticipate allocating new extents.

• You will obtain slightly better performance, since the pre-allocated extents never
have to request more space from the OS.

• There is little or no risk of fragmentation because the extents are allocated at the
same time and are usually contiguous.

Extent states

Each extent has three possible states:

• Empty — An empty extent is empty and ready for use.

• Busy — A busy extent is one that is currently active. There can be only one busy
extent per database.

• Full — A full extent is a closed extent that contains notes. It cannot be written to
until the extent is marked as empty and readied for reuse by the database
administrator.

Managing OpenEdge Database Resources

104

Multiple extents

Multiple extents allow you to support an online backup of your database. When an
online backup is executed, the following occurs:

• A latch is established in shared memory to ensure that no update activities take
place.

• The modified buffers in memory are written (pseudo-checkpoint).

• An after-image extent switch occurs (if applicable).

• The busy after-image extent is marked as full and the next empty extent becomes
the busy extent.

• The primary recovery area is backed up.

• The latch that was established at the start of the process is released.

• The database blocks are backed up until complete.

Sequential access

The after-image file is sequential like the primary recovery area. See the “Primary
recovery (before-image) information” section on page 99 for recommendations.

Sizing after-image extents

The after-image area differs from all other areas because each extent can be either a
fixed or a variable length. Each extent is treated as its own area. It is fairly common for
people to define several (more than 10) variable-length extents for the after-image file.

To choose a size for the extent, you must know how much activity occurs per day and
how often you intend to switch after-image extents. You can define all of your extents
as variable length and see how large they grow while running your application between
AI switches. To accommodate above-normal activity, you must have extra extents.
What are the criteria for making AI extents fixed length? If you are concerned about
fine-grained performance, fixed length extents always write to preformatted space.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

105

Preformatting allows you to gain:

• Performance by eliminating the formatting of blocks during the session

• Use of a contiguous portion of the disk

Most operating systems are fairly good at eliminating disk fragmentation. However, if
you have several files actively extending on the same file system, there is a high risk of
fragmentation.

Enabling after-imaging

Use the following commands to enable after-imaging:

Offline:

rfutil dbname -C aimage begin

Online:

probkup online dbname output-file enableai

No other options are required for these commands.

Enabling the AI Archiver

The AI Archiver is a service that starts when the database starts. It marks busy AI
extents as "full" and archives them to the specified archive location at a specified
interval. It also takes full extents (made full by database backup, filling of a fixed
extent or the enabling of a quiet point) and archives them to the specified archive
location.

To enable the AI Archiver, use one of the following commands:

Offline:

rfutil dbname -C aiarchiver enable

Managing OpenEdge Database Resources

106

Online:

probkup dbname enableaiarchiver setdir directory setinterval
#_of_seconds

If you enable after-imaging online you must archive AI files manually, or enable the
AI Archiver at the same time with both the enableai and enableaiarchiver options.
When enabling the AI Archiver online, you also need to specify the archive directory
and archive interval at the same time. See OpenEdge Data Management: Database
Administration for details

Starting the database with the AI Archive options

You can specify the directory for the AI system with the -aiarchivedir startup
option. You can also determine the frequency at which AI data is archived to the
archive directory with the -aiarchiveinterval option. It is advisable to use a
parameter file (.pf) for these options, for consistency and ease of maintenance. You
should specify the .pf file in all startup commands and utilities for consistency.

Adding AI extents

When AI extents are added to the database, the amount of space allocated is specified
in the structure description file (.ST). The structure description file is described in
detail in OpenEdge Management: Database Guide and Reference.

Use one of the following commands to add extents:

Offline:

prostrct add [structure-description-file]

Online:

prostrct add [structure-description-file]

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

107

By default, the prostrct command will look for a database-name.st if you do not
specify the structure description file. It is recommended that you specify a structure
description file name for auditing and source code control (for example, add.st or
version.st). After running a prostrct add or a prostrct remove command, you
should run the prostrct list command to ensure that the structure description file in
your database directory reflects what is on your system.

Determining where to archive after-image files

The best case is to write the data to a second system (for example, to network disks). If
there is a system-wide catastrophe, having the AI files on another system provides
better assurance that the AI data will be intact, and will be available for a backup of the
database.

The only risk of this option is possible performance degradation. However, this risk is
far outweighed by the reward of greater assurance of protection from losing the
system.

A middle of the road approach, if a secondary system is unfeasible, is to write the data
to its own disk on the production system. The risk here is obvious: the loss of the
whole system loses the archives as well, but the benefit is that it is a convenient
alternative, and might be faster than a remote system.

The worst case (which should not be utilized if at all possible) is to archive to the
database or AI disk. The risk here is obvious—the loss of that disk also loses the
archives. The reward is hardly worth considering—lower cost. The value of the data is
almost always worth more than the cost of the disk drives it is stored on, and the cost
of loss to the businesses usually outweighs both.

Determining how long you should keep archives

At a minimum, you must retain AI archives until the primary data is archived off site
(on tape or second computer system). The most practical choice is to maintain one
week’s worth of archives. This means that on Monday, after the archives are done for
the day, you can delete last Monday’s archives. A problem might arise if you needed to
restore an entire week’s worth of AI files. This would take a very long time, but it
would still be preferable to losing data.

At a maximum, retaining files for one month is usually sufficient to guarantee data
recovery. Again, the risk is a very long recovery period but this is certainly preferable
to no recovery.

Managing OpenEdge Database Resources

108

Selected AI Archiver commands and startup options

This section describes some of the AI Archiver commands and startup options. For a
complete list of options, see OpenEdge Data Management: Database Administration.

Roll Forward Utility (rfutil) options

aiarchiver enable

Enables the AI Archiver and establishes the location of the archives and the
archive interval (where applicable)

aiarchiver end

Disables the AI Archiver but does not disable after-imaging itself.

aiarchiver setdir

Allows the administrator to move the archive directory while the database is
running. Subsequent archives are placed in this directory.

aiarchiver setinterval

Allows for the modification of the after-image archive interval while the database
is running. Alternatively, it can set an interval for databases with no interval set.

aiarchiver extent

Archives and empties an extent in one command. It is a replacement for aimage
new, the copy of AI file and aimage empty. One issue with this command is that
you lose some information regarding what failed in a failure situation.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

109

Startup options

-aiarchiveinterval #

Determines the frequency (in seconds) of after-image archival upon startup.

-aiarchivedir directory-name

Determines the directories where the after-image archive files will be placed
when archived. This can be a comma separated list to specify multiple directories
for archives.

Cleaning up archived AI files

Once a file has been archived and backed up, it can be removed from the system. In
most cases, you should back up the archived after-image files on a daily basis at least.
But you might only want to delete archives that are older than a given period (for
example, one week) to reduce recovery time. If the archives are maintained for a
greater period of time, in the event that you need to use your backup, you will know
that you have the correct after-image files on the system to get you back up to current
status without having to sort through other backups.

Use the following commands to remove files from a directory and its subdirectories
that are older than a given number of days:

On Unix/Linux: Use find with -mtime +days. For example:

find archive-dir -mtime +7 -exec \rm {} \; 2>&1 > /dev/null

In Windows: Use forfiles.exe from the Windows resource kit. For example:

forfiles /P drive:\archive-dir /m *.a* /D -7 /C "CMD /C del /q @FILE"

Managing OpenEdge Database Resources

110

Notes:

• Test these commands before moving them into production as they will delete
files that are older than a week. Because, these commands do not care what they
delete. It cannot be stressed enough the need to test them on a test system before
putting them on your production system.

• These commands are fairly non-standard for the uninitiated database
administrator.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

111

Replicating with OpenEdge
Replication is the process in which updates to one database are applied to a second
database in a systematic fashion to keep the second database in sync with the first.

Reasons to replicate
Some reasons to consider replicating your database are:

• Back up purposes:

- Provides a second copy of the database from which a backup can be
made.

- Eliminates the impact of the backup on normal operations.

• Reporting purposes:

- An independent reporting database reduces the impact of reporting on
normal operations.

- The buffer pools of the source and target databases can be tuned
separately.

• High availability purposes:

- The reason most people utilize replication.

- The goal is to replicate your system (databases included) to a secondary
host so in the event of an outage, you can quickly transition operations to
the new host.

- True high availability requires that all aspects of the system (for example,
disks, CPU, and memory) be considered. This book briefly touches on
these considerations. However, the main focus is on the database portion
of the process.

Managing OpenEdge Database Resources

112

Types of Replication
There are two general types of replication: Real-time (synchronous) replication and
asynchronous replication. In the OpenEdge world, real-time replication can only be
accomplished with the use of the OpenEdge Replication product from Progress
Software Corporation. Asynchronous replication involves applying after-image files
from the production (source) database to a secondary (target) database, and can be
done at any time; hence the term asynchronous. In addition, there are types of
hardware replication provided by disk manufacturers which can produce the same
result. However, support for this type of replication comes from the hardware
manufacturer and not through Progress Software Corporation, so hardware replication
is not addressed in this book.

OpenEdge Replication

OpenEdge Replication provides synchronous, or real-time replication between a source
database and up to two target databases. A replication server process is established
against the source database. The replication agents (which can be viewed as clients)
make requests for updates from the replication server. The setup and administration of
this replication process are covered in the "Implementing OpenEdge Replication"
section on page 115.

Log-based Replication

In this process, after-image files are periodically taken from the source system and
applied to another database. The benefit of this is that there is a delay in the application
of the after-image files. If an error occurs, such as a program being run that changes all
of your customer last names to “Smith”, the administrator can interrupt in the process
to prevent data corruption from being propagated to the target database. The primary
drawback is that there is a delay in the application of the logs and thus a greater
potential of data loss if you were to have a total system failure (for example, as a result
of fire or flood) that would preclude using the after-image files to recover to the last
transaction. Another drawback is that this process is not automated, but it can be, and
an example of how to do this is described in the following section.

1. Add after-image files to your production (source) database.

2. Enable after-imaging.

 To implement log-based replication:

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

113

3. Back up your database.

4. Mark all “full” after-image extents as empty.

5. Restore your backup to a different target, preferably a different machine in a
different location.

6. Periodically mark extents as full. You can use the rfutil utility with the aimage
new qualifier, do a backup (online or offline), or enable and disable a quiet point
on the production (source) database.

7. Copy full extents to target location.

8. Apply full extents to the target database.

9. Mark applied extents as empty. Use rfutil with aimage empty qualifier.

If you already have after-imaging enabled then you can start with step 3.

In this scenario, the target database cannot be opened because this will cause
subsequent applications of after-image files to fail.

1. Add after-image files to your production (source) database.

2. Enable after-imaging.

3. Enable the AI Archiver.

4. Back up your database. This will cause the current busy after-image extent to be
marked as full. All of the information in the full extents will be incorporated into
the backup. Consequently, any full extents at this point will be archived by the AI
Archiver but will not need to be applied to the target database.

Note: Steps 2 through 4 can be combined into a single command if desired

5. Restore your backup to a different target, preferably a different machine in a
different location.

 To implement log-based replication with the AI Archiver:

Managing OpenEdge Database Resources

114

6. Copy archived extents from after the backup to the target location. It is important
to copy only the after-image extents from after backing up, since only the archives
from before and the first archive after the backup will be included in the backup,
as stated in step 4.

7. Apply archived after-image extents to the target database.

With this method, the management of extents is handled by the AI Archiver. However,
the same rules apply to the target database since if it is opened, subsequent applications
of after-image archives will fail.

Hardware-based Replication

In hardware-based Replication, the disk subsystem applies changes to files on the
source file system to a second array. This option is useful for application files and
other files such as the print spooler and cron. However, when hardware replication is
applied to an OpenEdge database, there is the chance that in the event of a failure in
the disk subsystem, changes to data might not be replicated. Because of this chance, it
is recommended that you use this process only as a secondary method of replication in
conjunction with one of the software types of replications.

Components of OpenEdge Replication
This section describes the components of OpenEdge Replication:

• After-image files — The source of the data to be replicated.

• The Replication server — The server fields requests from agents and supplies
the correct after-image log information for processing by the agent. It is
configured with the database.repl.properties file in the source database
directory

• Replication agent processes — These processes request information from the
replication server for application to the target database. They are configured by
the database.repl.properties file in the target database directory

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

115

Implementing OpenEdge Replication
This section provides an overview of the steps for implementing OpenEdge
Replication, both online and offline.

1. Implement after-imaging (See the "Enabling after-imaging" section on page 105
for details). This can already be in place or can be done online.

2. Enable site replication on the source database:

proutil source-db -C enablesitereplication source)

3. Move the source replication properties file into the database directory. (See the
"Replication properties file examples" section on page 119 for more information.)

4. Back up your database online with the -REPLTargetCreation option:

obkup online source-db output-file -REPLTargetCreation)

5. Make sure you have either a structure file in place or a structure created.

6. Restore the backup in its target location:

prorest target-db input-file

7. Enable site replication for the target:

outil target-db -C enablesitereplication target

8. Move the target replication properties file into the database directory. (See the
"Replication properties file examples" section on page 119 for more information.)

9. Start the target database with -DBService and -S service-name-or-number.

10. Issue the start agent command on the target database:

Dsrutil target-db -C connectagent source-db [agent-name | ALL]

 To implement online OpenEdge Replication:

Managing OpenEdge Database Resources

116

1. Shut down the source database.

2. Add after-image files (if necessary).

3. Enable after-imaging (if necessary).

4. Enable the AI Archiver (if necessary).

5. Move the properties files into the database directories on the source and target
machines.

6. Enable site replication on the source database, using proutil with the
enablesitereplication source qualifiers.

7. Back up the database. Use OpenEdge backup or an OS utility and the rfutil
utility to mark the database as backed up. Use rfutil with the mark backedup
qualifier.

8. Restore the backup on the target machine.

9. Enable site replication on the target machine. Use proutil with the
enablesitereplication target qualifier.

10. Start the source database, using proserve with the -DBService replserv
qualifier or use the Progress Explorer. There is no need to use –DBService with
Progress Explorer as it will automatically see the properties file and start the
replication server. Remember it is important to set –pica (see the following
section on "Using -pica on source database startup.")

11. Start the target database, using proserve with the -DBService replagent and
-S replication_port options.

 To implement offline OpenEdge Replication:

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

117

Using -pica on source database startup

The -pica option defines the amount of space allocated for the interprocess
communication (IPC) queue between the RDBMS and the replication server. This IPC
queue handles after-image transaction note information, (not the actual notes) to be
used for the replication server and agents. You can set –pica even without replication
being enabled. This would allow you to easily implement replication online without
needing to shutdown to increase -pica.

The default value for this parameter has changed between OpenEdge versions. The
default value (64k starting with Release 10.1C and 6k prior to Release 10.1C) is too
small in any case. There are few options where it is appropriate to set the value of a
parameter to its maximum. The -pica startup option is one possible exception, since
the system cost is so low and the penalty for having too small a value can be relatively
high. The maximum value in Release 10.1C is 8192 (prior to 10.1C it is 2048). These
are the recommended values. Starting with Release 10.1C, setting -pica to 8192 will
only consume 8MB of RAM on your system but will support around 70,000 write
notifications. The penalty for having it set too low is that write operations will freeze
until the target machine can catch up and clear some space for more notifications. In
the case where the production server is much more powerful than replication server,
the production machine can process updates at a faster pace than the replication
machine. The -pica will allow for buffering of activity to handle bursts of updates. If
your system is continually running into the -pica limit even though it is set to its
maximum, some resource is constraining OpenEdge Replication. The most likely
candidates would be the network throughput capacity or the target machine throughput
capacity.

In summary, always set the -pica parameter, and always set it to its maximum.

Managing OpenEdge Database Resources

118

Transition

Transition is the process of changing the role of your database. The possible roles are:
source, target, and normal. Source and target are almost self-explanatory. The source is
just that: the source of replication data to the target. The normal role is a database that
is not involved in replication. A transition from a target to normal would be set up to
occur upon failure of the source. The transition role becomes important when there is a
failure of the source, and it is necessary to transition the target database from one role
to another. This entails redefining the role of the target database. There are two
transition types: manual and automatic. Manual means that you must manually
intervene to re-define the role of your database. Automatic means that the target
database will automatically change roles from a target to either a source or a normal
(including adding after-image files and enabling after-imaging) with no human
intervention. The transition type is defined in the database.repl.properties file (See
the "Replication properties file examples" section on page 119). The recommended
transition property is manual for server section.

It is a major process to activate a replication database, and such a decision should be
done manually. In the case of disaster recovery, many decisions might need to be made
about the replication process. Because there are so many special cases, people can
make the decisions better than some algorithm. In addition, there is the risk of data
loss, since in automatic transition, there is no opportunity to apply the last transactions
from the after-image file. With automatic transition, the data will be current up to the
latest applied transaction. However, it is possible that there are a few seconds of
information in the process of being replicated which will not have been applied. With
manual transition, it is possible to retrieve the last after-image file and apply the
remaining transactions. while the automatic mode switches the role without waiting to
see if there are any transactions to be applied.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

119

Replication properties file examples
This section provides examples of source and target Replication properties files.

Example of the source.repl.properties file

This file manages the various properties for the source system, including replication,
server and agent configuration, and transition. There are four primary sections, with
the possibility of an additional section if there are two agents. For all available source
properties entries, see the OpenEdge Replication User Guide.

[server]
 control-agents=agent1
 database=<source-db>
 transition=manual
 transition-timeout=600
 agent-shutdown-action=recovery
 repl-keep-alive=0
[control-agent.agent1]
 name=agent1
 database=<target-db>
 host=<target-host>
 port=6931
 connect-timeout=120
 replication-method=async
 critical=0
[agent]
 name=agent1
 database=<source-db>
 listener-minport=4387
 listener-maxport=4500
 repl-keep-alive=0
[transition]
 database-role=[reverse | normal]
 responsibility=primary
 auto-begin-ai=1
 auto-add-ai-areas=1
 transition-to-agents=agent1
 ai-structure-file=ks1.addai.st
 restart-after-transition=1
 source-startup-arguments=-DBService replserv
 target-startup-arguments=-S 6931 -DBService replagent
 recovery-backup-arguments=primary.recovery.bak

Managing OpenEdge Database Resources

120

This example has one agent (agent1). It is possible to have two agents. In this case, the
control-agents property in the server section would list a second agent (for example:
control-agents=agent1,agent2) and that would require a second control-agent section.
A second agent would allow you to replicate to a second data base, providing more
options in case of a failure of the primary system. But it would also mean increasing
the complexity of your recovery plan by an order of magnitude. A dual agent scenario
is recommended only when there are very specific needs for a second copy of the
database. A good example is one replicated copy for reporting and another copy on a
system with no user access, in order to provide for a backup of last resort. The added
complexity in the environment is usually not worth the additional security required in
the vast majority of cases.

In the control-agent section, the asynchronous replication method allows for
transactions to be applied on the source database without having to wait for the target
to apply them. The other option is synchronous. However, the synchronous option
means that users on the primary system must wait for transactions to be applied to the
target system before the primary system is released to do other work. This has been
proven to have a very negative affect on application performance and thus is not
recommended unless absolutely necessary. Asynchronous replication is best for
performance. As long as the network and target machines are suitably tuned, the
databases will stay within seconds of each other in terms of synchronization.

In the control-agent section of the properties file is the critical setting which
determines whether the source system can continue to function even if connection with
the target is lost. Setting the parameter value to 0 will allow for greater resiliency. If
the replication agent or the target machine fail for some reason, a value of 0 will not
affect the production database because the target database is deemed not critical to the
source database. In case of a failure, you might need to disable site replication and fix
the problem before re-establishing the target database. Or, the problem might be as
simple as restarting the replication agent. In any case, you do not want a failure on the
target side to cause a failure on the source side, and the critical setting of 0 will prevent
this from happening.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

121

Example: target.repl.properties

This file handles the properties for the target system. The sections are similar to the
source properties file since in reality this properties file could become the source
properties file after transition. For all available target properties entries see the
OpenEdge Replication User Guide.

In the agent section, a small port range (in this example 4387 to 4500) reduces your
exposure to outside intrusions. This is especially important for wide-area network
implementations where the port range may be much more restricted, possibly down to
a few ports, to support the agents.

The ability to add and enable after-imaging automatically reduces the risk of human
error when transitioning the database to a source or normal. The default transition role
is from target to normal. This is most common when there are problems on the original
source machine or database. However, it is possible to bring the original target
database up as a source and point to the original source as a target. This would be
useful for applying operating system upgrades. The target database can be brought
down and transactions would back up on the source side. Then the target machine
could then have the operating system upgrade applied. The databases can then be
brought back into synchronization with each other and then the roles reversed to apply
the upgrade to the original source (now target after transition) machine. This reduces
the operating system upgrade time to a small window while the databases are being
transitioned. In general, however, the target is brought up as a source, and a new
database, restored from a backup, is brought up as the new target.

Summary

If you follow these guidelines, your implementation of OpenEdge Replication should
go smoothly:

• Replication is very easy to set up.

• Always use -pica and set it to its maximum value.

• Use asynchronous replication.

• Avoid making the target database critical to your environment.

Managing OpenEdge Database Resources

122

Optimizing memory usage
Optimizing memory usage can best be described as taking advantage of the memory
that you have. In most cases, a system benefits from additional memory, but
sometimes, it is not possible to purchase additional memory.

This section focuses on the trade-offs between user and broker memory and how to
best use the available memory.

Why the buffer hit percentage is important
A short explanation is that the greater the percentage of time that the buffer is utilized,
the lower the percentage of time the disks are utilized. Since memory is faster than
disks, you will get better performance with a better buffer hit percentage.

A more lengthy explanation has to do with the meaning of the numbers. For example, a
90 percent buffer hit percentage equates to 10 disk reads for every 100 requests to the
database manager. If you increase your buffer hit percentage to 95 percent, you are
only doing 5 disk reads for the same number of requests, which is a 50 percent
reduction in requests to the disk. A small change in buffer hit percentage can equate to
a large reduction in disk I/O. This is especially noticeable at the high end. Changing
from 95 percent buffer hit percentage to 96 percent represents a 20 percent reduction in
disk I/O, so it is important to check the numbers, rather than just monitor the numbers.

Increasing memory usage
Because memory is a limited resource, it is important to use it properly. In the case of a
database application, it is important to increase broker parameters first because the
payback extends across all users and the system as a whole. This fact is demonstrated
with the previous database buffer hit percentage example. This example shows how a
small change on the broker side can dramatically affect the entire system. The size of
the change on the broker is usually smaller in relation to any self-service client changes
you might make.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

123

For example, a 1000 buffer increase for the –B parameter on the broker of an 8KB-
block-size database will cost you 8MB of RAM while an 80KB increase on the –mmax
parameter for a 100 user system will cost the same 8MB of RAM. In the majority of
cases, a buffer increase has a greater overall impact than the client change. This is a
simple example, but it points out that you should always tune your broker parameters
first. Once that is complete and you still have RAM to allocate, you can focus your
attention on the self-service client parameters.

Decreasing memory
Determining where to cut back on memory is difficult. The previous section discusses
increasing broker memory first and at client parameters second. However, when
decreasing memory you should look at client parameters first and broker parameters
second.

Considering where you can reduce memory might or might not be obvious. First
consider operating system buffers. The database engine bypasses operating system
buffers with the use of –directio, so the need for operating system buffers is limited.
Operating system buffers are still used for temporary file I/O for any client processes
that reside on that machine. Most operating system manufacturers allow modifying the
number of buffers that can be allocated to the operating system. If you are using the
-directio startup option, then you can reduce the amount of operating system buffers
to approximately 10 percent (in most cases). One major exception is systems with very
limited memory (less than 256MB). In these instances, leaving the parameter at its
default value is the best practice.

Using OpenEdge memory-mapped procedure libraries also helps to reduce memory
usage by allowing the users to use a common version of the code rather than loading a
copy into –mmax. This reduces the amount of –mmax needed for each client. (See
OpenEdge Deployment: Managing ABL Applications for details about memory-
mapped procedure libraries).

Managing OpenEdge Database Resources

124

Private buffers (-Bp)

Private buffers allow a read-intensive user to isolate a portion of the buffer pool. Up to
25 percent of buffers can be allocated as private buffers. Private buffers work as
follows:

1. The user requests a number of buffers to be allocated as private.

2. As the user reads records, if the corresponding buffers are not already in the buffer
pool, the records are read into these buffers.

3. Instead of following the rules for buffer eviction, the user only evicts buffers that
are in their private buffers. By default, the buffer that was least recently used is
evicted. Private buffers are maintained on their own chain and are evicted by the
user who brought them into memory.

4. If another user wants a buffer that is currently in another user’s private buffers,
this buffer is “transferred” from the private buffers to the general buffer pool. The
transfer is a process of removing the buffer from the user’s private buffer list and
adding it to the general buffer list. The buffer itself is not moved.

The general idea is to share memory where you can, use memory efficiently where
possible, increase memory on the broker side first, and ultimately increase client
memory usage.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

125

Optimizing CPU usage
As a database or a system administrator, there are a few things you can do to more
efficiently use the CPU resources of your machine. The major consumer of CPU
resource for your system should be the application code. Therefore, the greatest impact
on CPU consumption can be made with application changes. Other resources are
affected by application code as well, but there are things that you can do as an
administrator to minimize problems associated with other resources. This is not the
case with CPU resource.

Understanding the -spin parameter
The broker allocates shared memory, and each portion of memory can be updated
independently. This design is both positive and negative. It adds complexity to the
database relative to keeping one portion of memory from being updated by two users
simultaneously.

OpenEdge solves this problem through the use of spin locks. Each portion of memory
contains one or more locks to ensure that two updates cannot happen simultaneously.
These locks are called latches, to differentiate them from record locks. When a user
modifies a portion of shared memory, the user gets a latch for that resource and makes
the change. Other users that need the resource respect the latch. By default, if a latch is
established on a resource and a user needs that resource, that user tries to access the
resource once and then stops trying. On a single CPU system, you want to try to access
the operation only once because the resource cannot be freed until the resource with
the latch can access the CPU. This is the reason for this default action.

The default action is not very efficient on a multiple CPU system because a significant
amount of resource time is used to activate the user on the CPU. Effort is wasted if the
resource is not available. Typically, the resource is only busy for a very short time, so
it is more efficient to ask to obtain the resource many times rather than ask once, go to
the end of the CPU queue, and when arriving at the top of the CPU queue, ask a second
time to get the resource. Using the –spin parameter, you can ask for a resource
thousands of times. The –spin parameter determines the number of retries before
giving up.

Managing OpenEdge Database Resources

126

How to set –spin

Generally, a setting between 2,000 and 10,000 works for the majority of systems, but
this varies greatly. The best way to set -spin is to start with a setting of 2,000 and then
monitor the number of “naps per second” per resource. If the naps per second value for
any given resource exceeds 30, try changing the value of –spin. You can do this while
the system is running through promon, provided the value of –spin is not 0 through the
promon R&D option.

Note: The adjustment of –spin is generally an increase, but there are documented
cases where a decrease in –spin has had a positive effect on performance.

Viewing latches in OpenEdge Management

The easiest way to view latches is to use OpenEdge Management. Figure 17 shows an
example of the Latch Summary section within the Locks and Latches Operations
view page for a selected database resource. This page is cumulative; you must note the
number of latches for each sample and the amount of time between samples. (You can
change the auto refresh frequency rate in User Preferences.) You can calculate the
values.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

127

Figure 17: Latch summary in OpenEdge Management

Note: Naps are listed as Time Outs in OpenEdge Management.

CPU bottleneck: Look at your disk drives
Indications that you are out of CPU resources might only be masking an issue with
another resource, and in most cases it is a disk issue. If you see a CPU bottleneck, first
make sure that you do not have a runaway process, and then, second make sure that
your other resources are working efficiently.

Managing OpenEdge Database Resources

128

3
Performing System Administration

This chapter covers the following system administration topics:

• Understanding the database administrator’s role

• Ensuring system availability with trending

• Ensuring system resiliency

• Maintaining your system

• Profiling your system performance

• Advantages and disadvantages of monitoring tools

• Common performance problems

• Other performance considerations

• Periodic event administration

Managing OpenEdge Database Resources

130

Understanding the database administrator’s role
The specific tasks of the database administrator vary from company to company, but
the role includes the following common responsibilities:

• Providing predictable system availability — The administrator must
understand the state of the system at any given moment, and where it is going in
terms of resource utilization to provide reliable system availability to users. This
involves more than just knowing how the system works. It demands a deeper
understanding of the trends in system utilization over time. It also requires an
understanding of the business as a whole, which can only be provided by the
management of the company. However, management will need your help in
translating business plans into technology choices.

• Providing a resilient system that can recover from disasters — The database
administrator must look at potential problems and determine if and how these
problems are addressed by the disaster recovery plan. It is important to both the
document items that will not be addressed and the items that will be addressed in
the disaster recovery plan. The focus of the plan should be on recovery rather
than the backup process; a backup is useless if you cannot recover it.

• Providing reliable system performance — Users need to know how long a task
is going to take so they can plan around that expectation. The application plays a
huge role in overall performance. However, it is your job, as administrator, to
ensure that tasks take the same amount of time every day by taking advantage of
system resources and eliminating bottlenecks.

• Performing periodic maintenance — This task might only be performed once a
year, but must also be taken into consideration in a complete administration plan.
The small details of each task might change at the time of execution, but the
overall process should be laid out in advance.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

131

Ensuring system availability with trending
The primary goal of the database administrator is to make sure that data is available to
users. Most OpenEdge-based applications require multiple resources to function
properly. This section centers on trending of those resources.

Running out of resources is the second most likely cause of system failure. (Hardware
failure is the most common.) It takes persistence to ensure maximum system
availability, and exercising this persistence is precisely the role of the database
administrator.

The OpenEdge database is very reliable which you should take into consideration
when making hardware decisions. The focus of this section shifts to trending,
maintenance, and contingency planning for the database.

When determining the source of a problem, the first question asked is: What has
changed? If you are trending your system, you can determine if there is a difference in
the amount of work (reads, writes, commits) being done, the number of users on the
system, or if the system is consuming more resources than usual.

The trending of resources is extremely important; if you know how fast you are using
additional resources, you can determine when you will run out. Trending also allows
you to plan for growth and to avoid potential problems within the database and at the
system level. On most systems, disk capacity and database storage areas are the most
dynamic areas in terms of growth. These areas are the best places to consider trending.

Trending database areas
It is important to understand not only how much data is in the area today, but also how
much growth to expect. On existing databases, you should first consider the storage
area high-water mark. The high-water mark is established by the number of formatted
blocks (RM, index, and free) in an area. In an area with many empty (unformatted)
blocks, data is allocated to the empty blocks before the system extends the last extent
of the area. As stated the previous chapter, it is important to have the last extent of
each area defined as variable length to accommodate unanticipated growth. The goal is
to never use the variable extent but to have it available if necessary.

Managing OpenEdge Database Resources

132

Each environment has a different amount of required uptime. Some systems can come
down every evening while others only need to be shut down once a year for
maintenance. With careful planning you can leave your database up for long periods of
time without the need for a shutdown. In most cases, the OpenEdge database does not
need to be shut down for maintenance.

The operating system might need to be shut down periodically for maintenance or for
an upgrade. Examples of this type of maintenance are: clearing memory, installing
additional hardware, or modifying the operating system kernel parameters. In
Windows, it is generally necessary to reboot the system every 30 to 90 days to avoid
problems, while on most UNIX systems once a year is more common. You must plan
for growth to cover the period of uptime that is appropriate for your system.

Enabling trending for your database in OpenEdge Management

Start trending for your database. This can be done using OpenEdge Management,
which will monitor each database and store the information for trending purposes, if
necessary.

1. Select Resources from the menu bar.

2. Click New Resource Monitor.

3. Select Database if the database is managed.

4. Select the database that you want to trend or migrate (if it is not listed).

 To trend database storage areas from within the OpenEdge Management console:

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

133

5. From the database’s Monitoring Plans page, click Edit. The Edit page appears:

6. Select the Trend Performance Data check box.

7. Click Save.

Using VST code

You can also view database storage information using custom VST code. The
following example shows the basic code you need to trend the size of your database
areas:

FOR EACH _Area WHERE _Areanum = the area to be monitored:
 FOR EACH _AreaStatus OF _Area:
 DISPLAY _Area-name _AreaStatus-TotBlocks _AreaStatus-HiWater.
 END.
END.

Note: This code displays the information to the screen. However, to trend this data
without OpenEdge Management, you must write the output to a file or into a
database for future reference.

Managing OpenEdge Database Resources

134

Trending application load
One statistic that most administrators do not keep track of is the amount of work that is
completed per day on their system. By trending database activity such as commits and
database requests, you can determine when the greatest workload occurs on the system
and the growth pattern of this workload over time.

Workload information can be valuable information. If you encounter a problem, you
can see whether there is an abnormal workload on the system or if there is some other
issue. In cases where additional customer records are added to the database, you might
notice that the workload on the system is increasing even though the number of users
and the number of transactions are not increasing. This indicates that there might be an
application efficiency issue that needs to be addressed before it becomes a problem. It
will also help you to understand your need for additional resources before loading even
more records into the database. Knowing this information prior to the event will help
you plan effectively.

There might be other internal database information that you would like to monitor,
such as checkpoints or record-locking activity. These items trend in a similar fashion,
and if you have enabled trending from within OpenEdge Management, these items will
be available to report on, too. See Chapter 4, “Guidelines for Applying OpenEdge
Management,” on page 205 for more information on reporting your OpenEdge
Management data.

Trending operating system information
The approach and rules are the same for disk and memory trending, but the tools to
obtain this information vary from operating system to operating system. OpenEdge
Management really simplifies this process. If you are in a heterogeneous environment,
you will fully appreciate having one interface that monitors database and operating
system resources. To gather operating system information without OpenEdge
Management, you must gather information from an operating system command like
sar or iostat and put that information into a database or operating system file for
future reference. With OpenEdge Management, you only need to monitor and trend the
resource to gather this trending information for future reference.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

135

The steps to trend an operating system resource are similar to the steps to trend a
database resource. Figure 18 shows a sample monitoring plan page for a CPU resource.

Figure 18: Trending a CPU resource

Trending system memory
Memory usage increases as users and functionality are added to the system. There is a
dramatic change in performance when the memory resource is exhausted. The amount
of paging and swapping are key indicators to monitor. An administrator should focus
on physical paging as the primary indicator of memory utilization.

Managing OpenEdge Database Resources

136

By monitoring operating system utilities like sar and vmstat during busy periods of
the day, you can determine the health of the memory resources. Example 1 shows the
sar command and its output.

Example 1: sar command and output

Command:

mymachine: sar –pgw 10 1

Output:

SunOS mymachine 5.7 Generic_106541-15 sun4d 07/09/03

15:28:28 atch/s pgin/s ppgin/s pflt/s vflt/s slock/s

 pgout/s ppgout/s pgfree/s pgscan/s percentufs_ipf

 swpin/s bswin/s swpot/s bswot/s pswch/s

15:28:38 4.48 8.26 106.77 0.60 4.28 0.00

 12.14 27.66 27.66 0.00 0.00

 0.00 0.0 0.00 0.0 1557

The sar command has many options. In Example 1, virtual paging (-p option),
physical paging (-g option), and swapping (-w option) are requested. The command
requested 10-second samples and only one sample. The output from the command is
broken into one line per command line option. The virtual faulting numbers are not as
important as the physical faulting numbers because most systems can do thousands of
virtual faults per second without a noticeable effect on performance.

The primary item to focus on is the pgscan/s value. This value represents the number
of pages that are being scanned per second to find pages for use by active processes.
When this number starts increasing by large amounts it can indicate the need to either
reduce your memory usage or increase the amount of available memory (that is,
purchase more memory). The swap values should stay near or at zero because even
small amounts of swapping have a negative effect on performance and require you to
either reduce memory consumption or increase available memory.

Currently, OpenEdge Management only tracks total memory consumption for physical
and virtual memory. This can be a misleading indicator of memory utilization because
operating systems will often use up “idle” memory for non-critical items like operating
system buffers. This could falsely represent memory usage. Trending this information
can be helpful in circumstances where virtual memory usage is in question.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

137

Trending system disks
Disks, like storage areas, must be monitored and trended to see usage patterns and
anticipate future needs in terms of both storage and throughput capacity. Each system
resource can be viewed and trended through OpenEdge Management.

1. Select Resources from the menu bar.

2. Select System from the list frame, and then select the Disk resource.

3. Select the disk for which you want to enable trending.

4. Click Edit for the monitoring plan.

5. Select the Trend Performance Data check box, as shown:

6. Click Save.

 To enable trending for disk storage capacity:

Managing OpenEdge Database Resources

138

Within OpenEdge Management, each disk must be enabled separately if it was not
enabled at setup time. If you enabled all disks upon installation, then you can disable
by deselecting the Trend Performance Data check box for each disk you do not want
to trend. You can still spot check unmanaged resources from within OpenEdge
Management, if needed.

Setting alerts for variable extent growth
You need to be concerned with the use and the growth of your variable-length extents.
Again, the goal is never to grow into these. You should have alerts on your areas to tell
you when you must add space to eliminate the possibility of growth of these extents.

Another way to alert yourself when one of your variable extents is growing is to place
all of the variable extents in one file system. Then put an alert on the file system to tell
you when one of these extents has grown. You can monitor each variable extent
individually, but this single-file-system method simplifies the process by having one
alert for all databases. Any simplification you can build into the process is beneficial.

Additional factors to consider in trending
The following list identifies other trending-related factors you should consider:

• One of the greatest impacts on performance and availability of data over time is a
fluctuation in the number of users.

• The volume of data involved is another factor to consider when evaluating
performance.

• A poorly written query on a large amount of data causes a performance impact.

Keep in mind that performance impact is not always linear. An example of this is a
repeating query that scans the entire table for a particular record or pattern. When the
table is small, all of the information can be stored in memory. But once the table grows
beyond the size of the buffer pool, it will cause a significant amount of degradation to
the system due to continual physical reads to the disk. This not only effects the query
in question, but all other users accessing the database.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

139

Process monitoring
Applications have dependencies on processes as well as resources. If your application
depends on a background job to print reports, monitor the background job to ensure
your system is working properly.

This is one area that most monitoring tools omit, as the information is vastly different
from system to system. Consequently, it is very important to take time to inventory the
critical processes on your system, uniquely identify each process, and determine if it is
working properly. Most processes need no intervention as long as they are running,
and a monitor can be as simple as looking for these processes in the process table.

The status of other processes can be more difficult to determine. In some cases, there is
a tool or operating system command that can be used to determine the status of a
process. For example, the proadsv –query command can be used to determine the
status of the AdminServer process. This command can be put in a job within
OpenEdge Management to periodically query the status of the AdminServer process,
or in a script or batch file at the operating system level.

Testing to avoid problems
The best way to avoid problems on your system is to test prior to implementation.
Most users think of testing only their application code. However, it is also necessary to
test other aspects of the system including administration scripts and applications, such
as backup software, hardware, middleware, and other infrastructure.

Managing OpenEdge Database Resources

140

Types of testing

Testing is a long and meticulous process when done properly. Users can forget to test
the basics. There are three types of testing:

• Limits testing — Exceeds hardware and software system limits and ensures
system reliability.

• End-to-end testing — Examines an entire operation, checks the integrity of
individual processes, and eliminates compatibility issues between processes. For
example, looking at the order entry process from the customer’s phone call to the
delivery of goods.

• Unit testing — Examines a process in isolation. Unit testing should be done
during early development and again as the initial step in the user acceptance
process prior to implementation.

You can also run tests on the individual system hardware components in isolation to
ensure there are no faults with any item. Once this testing is complete, you can run a
stress test to test the items together. A well designed test includes your application
components, making an end-to-end test possible. For a complete check of the system,
execute the stress test while running at full capacity and then simulate a crash of the
system to check system resiliency.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

141

Modifications to verify the integrity of data
OpenEdge now allows you to verify the integrity of your data during operations. While
there have not been many cases where problems occur during forward processing, it is
wise to have an extra layer of security in terms of data integrity. The options described
in Table 4 have been in the core product for quite a while. However, to be publicly
available, they required Progress Software Corporation to provide a special kernel with
the options exposed as public API / command options. Progress Software Corporation
has used these options for diagnostic purposes for some time. The value of these
options was determined to be beneficial to customers, so, they are now available for
everyone to take advantage of them.

Table 4: OpenEdge physical consistency check startup options

Startup option Description

-DbCheck Physical consistency checking of all index and record
blocks except BLOB data type blocks

-IndexCheck indexname Physical consistency check for the specified index

-TableCheck tablename Physical consistency check for the specified table

-AreaCheck areaname Performs a DbCheck for an area

The primary benefit of the options in Table 4 is knowing that you have these checks in
place. In addition, they provide an extra layer of protection. The question is: At what
cost? The options described in this section provide extra analysis with little or no
noticeable effect on application performance. While there has not been an exhaustive
test of the performance implications of using these options, initial testing shows that
the affect on performance will not be noticeable in the majority of cases.

As is the case with any new feature, you should test these options in your environment
to ensure that your performance will not be affected. In addition, you should
implement these options one at a time in production. That way you will know if any
given option causes performance degradation or some other change to your
environment.

In summary, these options provide an extra level of security with little or no effect on
application performance. It is advisable to implement these options after testing to
deliver extra data analysis, while at the same time, making sure that your environment
is not effected by the addition of these options.

Managing OpenEdge Database Resources

142

These startup options can be implemented from a single session (_progres -1),
a multi-user session (_mprosrv), or from utilities (such as _proutil or _rfutil). You
can also turn on these options at run time via the promon utility. (promon > R&D >
Administrative Functions > 8. Enable/Disable block consistency check).

Index block consistency checks

These are the checks performed for index blocks (for both read and write operations):

1. Validates the index root block

2. Verifies the _storage object record

3. Checks the object number

4. Checks that the index block dbkey is represented as root block value

5. Validates the index header (checks that total length of key elements does not
exceed the total length of data portion of the block)

6. Validates data

7. Verifies that the compression size of the previous key element is smaller than the
size of the current key element

8. Insures the key represents the minimal difference value between keys (minimal
separator check)

9. Verifies that the first key element contains a dummy entry

10. Verifies that the information size for non-leaf block is equal to 4

11. Checks that the information size for leaf blocks is greater than 0 and less than or
equal to 33 (33 indicates presence of a bitmap)

12. Checks key elements beyond the first element to ensure the key size is greater than
0 and less than the maximum key element size

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

143

13. Checks that traversal through all key elements in the block reaches the end of the
data portion of the block

14. Checks that the number of keys (not elements) from the index header equals the
number extracted from the traversal through the data portion of the block

Record block consistency checks

These are the consistency checks performed for record blocks:

Note: These checks apply to write operations only.

1. Checks the block type to make sure this is an RM (record manager) block.

2. Validates the block chain type to ensure the block is on the appropriate chain (it
should not be on the index delete chain).

3. Ensures that the number of records in the block does not exceed the records per
block specified for the area.

4. Ensures that the number of free record slots does not exceed the records per block.

5. Checks each directory entry in the record block to ensure:

6. There is a valid record offset within the block.

7. The record size is valid.

8. Validates that the sum of the number of bytes used to store records and the number
of free space bytes does not exceed the size of the data portion of the block.

9. Optionally checks that record overlapping is done if the utility is called by the
dbtool utility. (See OpenEdge Data Management: Database Administration for
details on using the dbtool utility.)

Index physical consistency can be verified at any time via an option in the index fix
utility (proutil database -C idxfix [-continue]). The -continue option tells
the utility to continue checking even if errors are found. By default the utility stops at
the first inconsistency.

Managing OpenEdge Database Resources

144

Record block consistency can be verified at any time via the dbtool utility. Option 8
on the dbtool menu is Record Block Validation. This validation can be done for the
entire database, or for a single area. Additionally, you can specify a validation level
selected. Level 0 is akin to all the physical consistency checks that are done at run
time. Level 1 will do those checks in addition to record overlaps within the block.
Level 1 checking is only available online via the dbtool utility. All errors are reported
into the database log file.

Run-time and roll-forward memory overwrite verification

Run-time and roll-forward memory overwrite verification is enabled with the use of
the -MemCheck parameter on single-user sessions, on multi-user sessions, or with
utilities, as well as online via the administrative functions in the promon tool.

Where the options in Table 4 (-DbCheck, -AreaCheck, -TableCheck and -IndexCheck)
focus on physical verification of data -MemCheck does a consistency check on potential
memory overwrites in the buffer pool.

All index and record blocks that use the database service (single, multi-user, or
utilities) are checked prior to the write of a before-image note and the subsequent
database block write.

The length of the write is checked to prevent writes that exceed the database block
size.

All index block splits are verified in the following ways:

• Manipulation of the root block

• Creation of the left sibling block (the block being used to take the first half of the
index data)

• Creation of the right sibling block (the block being used to take the second half of
the index data)

All index inserts are checked in the following ways:

• Insertion into a leaf block

• Insertion into non-leaf block

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

145

Ensuring system resiliency
Resiliency is the ability to recover in the case of a disaster. The goal in a disaster is to
appear to the outside world as though nothing happened. In the case of a Web site, if a
customer or potential customer cannot access your site, that customer might be lost
forever. You must gain the trust of your customers, both internal and external, so they
will work with you in making effective use of your system resources. The trust you
gain from being able to deal effectively with bad situations will increase your ability to
succeed.

This section will answer the basic questions regarding the creation of an effective
recovery strategy and show you where to invest your time and energy to create a
complete solution. It is referred to as focusing on a recovery strategy. You want to
focus on recovering from various situations, and not merely on the process of backing
up your system.

Many users tend to focus on the backing up activities and not on recovery. If you had a
good backup of your database, but you neglected to back up your application code, you
are in as much trouble as if you had failed to back up your database because there is no
effective way to access your data. Efforts to possibly obtain third-party application
code back from the vendor, or to re-create an in house application, will be a waste of
time if you cannot serve your customers.

Why backups are done
More and more companies rely on online systems to do very basic portions of their
business. If a system is down for any period of time, it affects the ability of these
companies to do business. Consequently, it is important to protect your data and
applications. Problems can occur for several reasons, including hardware failure,
software failure, natural disaster, human error, or a security breach. The goal of a
complete backup strategy is to appear to the outside world as though nothing has
happened, or at worst to minimize the amount of time that you are affected by the
problem. A secondary, but equally important goal is to reduce, or eliminate, data loss
in case of a failure.

The best way to increase system resiliency is to prevent failure in the first place. The
best way to do this is to implement redundancy, like disk mirrors, into your design.
This will minimize the probability of hardware problems that cause system failure.

Managing OpenEdge Database Resources

146

Even with redundant hardware it is possible to encounter other issues that will cause a
system outage. This is the reason to implement a complete backup strategy. A
complete backup strategy needs to take many things into account, including:

• Who performs the backups

• Which data gets backed up

• Where the backups are stored

• When the backups are scheduled

• How the backups are performed

• How often the current backup strategy is reviewed

A backup strategy must be well-designed, well-implemented, and periodically
reviewed and, if necessary, changed. The only time a problem is found is when the
backup is needed, but by then it is too late. When systems change it is often necessary
to modify the backup strategy to account for the change. You should also periodically
test your backup strategy to ensure that it works before a problem precipitates its use.

Creating a complete backup-and-recovery strategy
A great deal of time and money are spent on backup and recovery strategies. However,
they are often not tested and revised based on the discoveries made.

A complete backup strategy should try to balance the probability of the problem
occurring with the amount of data loss in a given situation and the amount of time and
resources spent on backups. A disk failure is a relatively likely event compared to a
fire or a flood. This is the reason to have redundancy at the disk level—to reduce the
probability of failure. A fire or flood is less likely, and most people understand that
they would lose some data (provided they were informed about this probability prior to
the disaster).

It is also important to include the users in the disaster-planning process. They are the
real owners of the data and can provide helpful input with the probability/data loss/cost
trade-off decision.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

147

It is possible to provide near-100-percent reliability, but there is a large cost to doing
this. In the case of an emergency services organization that needs as close to 100
percent reliability as possible, a failure on its part could cost lives. It must have
complete, duplicate systems at a second location with available staff in the event their
primary location is knocked out by a disaster. Your situation might allow for the loss
of some data and the loss of the availability of the system in a trade-off for lower cost.
It is important to focus on the entire system and not just the databases and applications.
You must also weigh the cost/benefit of each strategy. While you are doing this
analysis, you must include the people who run the business to determine their
requirements. It is sometimes useful to put a price on lost data and downtime because
it makes it easier to do the final cost/benefit analysis.

The following sections identify the key areas to consider when devising a complete
backup-and-recovery strategy.

Who does the backup?

In most cases the system administrator performs backups of the system on a regular
basis. When the system administrator is unavailable, some businesses have other
personnel to handle the backups. It is best to have one central person responsible for
the overall process and all archiving activity.

What does the backup contain?

An application consists of many diverse components, including databases, application
code, user files, input files, third-party applications, and so on. Remember that your
application is made up of an OpenEdge release, your application source and object
code, middleware such as the AppServer, and associated operating system files.

The best way to determine what needs to be backed up is to become familiar with the
vital processes within your organization, and note activities and systems such as:

• The systems that are involved

• The software application files

• The data that is used throughout the process

Managing OpenEdge Database Resources

148

Where does the backup go?

The media that you use for backups must be removable so it can be archived off site to
better protect data from natural disaster. Consider the size of your backup in relation to
your backup media. For example, tapes with a large storage capacity are a practical and
reliable option to back up a 20GB database.

Tape compatibility is also a consideration. You might want to use the backup tapes on
more than one system. This will allow you to back up on one system and restore to
another system in the case of a system failure. A Digital Linear Tape (DLT) is
supported on many platforms and can be used to help move data from one system to
another or to retrieve an archive.

Archiving off site is as important as the backup itself. If a fire, flood, or other natural
disaster destroys your building, you can limit your data loss by having your backup at a
separate location. This can be a formalized service, or as simple as placing the
completed backup tapes at a person’s house. However, it is important to make sure you
have access to your archives 24 hours a day, seven days a week. This is especially
important if data is stored in a private residence and the catastrophe occurs when that
person is not available.

How to label a backup

Proper labeling of your backup media is essential. Every label should contain:

• The name of specific items stored on the tape. A tape labeled “nightly backup”
has no meaning without the ability to cross reference the items contained in the
nightly backup.

• The date and time when the tape was created should appear on the tape. In
situations where multiple tapes are made in one day, you must know which tape
is more current.

• The name or initials of the person who made the tape, to ensure accountability for
the quality of your personnel’s work.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

149

• Instructions to restore the tape. There should be detailed restore instructions
archived with the tape. The instructions should be easy to follow and might
include specific command information required to do the backup.

• The volume number and the total number of volumes in the complete backup set.
Labels should always read “Volume n of n.”

Note: Always write-protect the tape before archiving and write-enable the tape
before using it for backup.

When do you do a backup?

Perform a backup as often as practical, balancing the amount of data loss in a failure
situation with the interruption to production that a backup causes. To achieve this
balance, consider these points:

• Static information, like application files that are not being modified, only needs
to be backed up once a week, or less often.

• Most database application data should be backed up at least once a day.

In cases where data is backed up once a day, it is possible to lose an entire day’s work
if the disks fail or some natural disaster strikes at the end of the day. If you performed
multiple backups throughout the day but only archived once a day, you would be better
protected from a hardware, software, or user error, but your protection from most
natural disasters would be identical. By moving the intra-day tapes from the machine
room to a different portion of your office, you decrease the probability of a fire in the
machine room destroying your tapes.

Using PROBKUP versus operating system utilities
Among knowledgeable administrators, there are debates concerning the use of the
OpenEdge PROBKUP utility versus operating system utilities. Also, there is a great deal
of misinformation about when and how to back up a system while leaving it online.
This section discusses these issues in detail.

Managing OpenEdge Database Resources

150

Understanding the PROBKUP utility

The PROBKUP utility was created to back up databases. It has many nice features that
make it unique, including:

• The PROBKUP utility is database-aware.

Database aware means that it can scan each block to ensure it is the proper format
during the backup process. It takes longer to do this scan, but the added integrity
checking of potentially seldom-used blocks is worth the small performance
degradation.

• PROBKUP has an online option.

This online option allows you to back up a database while the database is
available to users. Since the PROBKUP utility is database-aware, it knows when the
structure of the database changes regardless of the number of disks/areas/extents.
Therefore, the syntax of the command does not need to change when the
structure of the database changes.

How PROBKUP works

The following steps briefly identify the PROBKUP process:

1. Establish the database latch (online only).

2. Do a pseudo checkpoint (online only).

3. Switch AI files (if applicable).

4. Back up the primary recovery area.

5. Release the database latch (online only).

6. Back up the database.

The database is backed up from the high-water marks downward. Free blocks are
compressed to save space. Online backups represent the database at the time the
backup started. All transactions started after the backup has begun will not be in the
database when a restore and transaction rollback occurs.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

151

The reason for the pseudo-checkpoint in an online backup is to synchronize memory
with disk prior to backing up the database. This synchronization is critical since the
PROBKUP utility can then back up all of the data that is in the database or in memory at
that moment. Other utilities can only back up the information on disk, thus missing all
of the “in memory” information.

Note: This pseudo-checkpoint affects the “buffers flushed” information in the VSTs
for the database, which will in turn affect PROMON and OpenEdge
Management. Therefore, you need to note the number of flushed buffers
before and after the backup to ensure that you only track those buffers flushed
during normal operations. The importance of this statistic is discussed in the
“Monitoring buffers flushed at checkpoint” on page 163.

Adding operating system utilities to augment PROBKUP

The PROBKUP utility backs up only the database and primary recovery area. This utility
does not back up the after-image files or even the database log file.

All complete backup strategies use operating system utilities to back up additional
important files on the system such as programs, application support files, and user
home directories. Some administrators choose to back up their database to disk with
PROBKUP and use an operating system utility to augment the database backup with other
files to get a complete backup on one archive set. Also, you should back up your after-
image files to separate media from the database and before-image files to increase
protection, as discussed in the “After-imaging implementation and maintenance”
section on page 154.

Managing OpenEdge Database Resources

152

Using PROBKUP or operating system utilities

Table 5 lists the advantages and disadvantages of the of PROBKUP utility.

Table 5: Advantages and disadvantages of PROBKUP

Advantages Disadvantages

Has online backup capability — Because
PROBKUP is the only utility that is database aware,
it is the only utility that is designed to back up a
running database. There are methods using the
PROQUIET utility that achieve similar results in
conjunction with an operating system utility, but
generally those methods are more cumbersome
and time consuming.

Performs block level checking of database —
The PROBKUP utility retrieves each block from the
database and, because it is database aware, it
performs some tests on each block to ensure it
has the proper format. This is not a total check of
each record, but a block level verification.

Knows when structure has been modified so it
is easier to maintain — Because the PROBKUP
utility uses the database structure file to
determine the location of all of the information
inside the database, it is aware when changes are
made to the structure. With other utilities, you
need to keep track of the locations of all of your
database areas and extents.

Does not back up empty blocks — The utility
only looks at blocks below the high-water mark,
so if you have additional allocated space in the
database, it is not necessary to back it up. Other
utilities will back up the entire database including
blocks above the high-water mark.

Only backs up the database — The PROBKUP
utility only backs up the database and the primary
recovery area. All other components must be
backed up using some other utility.

Performs slightly slower — The slight reduction
in performance versus operating system utilities is
due to the block level checking that is done by
PROBKUP. The performance trade-off is worth it.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

153

Table 6 lists the advantages and disadvantages of the operating system utilities.

Table 6: Advantages and disadvantages of operating system utilities

Advantages Disadvantages

Ability to do a complete backup — With
an operating system utility you can back
up the entire application.

Tight integration with the operating
system — Operating system
manufacturers are better able to support
your use of their utilities. This integration
makes it easier to combine the backup
with other utilities in some cases.

Integration with third-party tools —
The operating system might allow you to
integrate with an enterprise backup tool.
PROBKUP can also be integrated, but it
requires you to first back up the database
to disk and then move it to tape with an
operating system or third-party tool.

Performance is generally better — Since
the utility does not do any block level
checks, it can get information off to tape
faster than a PROBKUP in most cases.

More difficult to maintain — When adding extents or
otherwise modifying the database structure, you need to
ensure that your backup takes the new locations into
account.

No online capability — The only way to back up an
OpenEdge database in an online fashion using
operating system utilities is to “quiet” the database with
the PROQUIET command. Once the quiet point has been
established, you can back up the database with an
operating system or third-party tool. The quiet point
can only be disabled after the entire database is backed
up. Your users cannot log into or out of the database or
make any modifications for the duration of the quiet
point.

Limited integrity checking — Most utilities allow you
to check to ensure that the blocks on tape are the same
as the blocks on disk. If there are problems with the
blocks on disk, these integrity checks will not find the
problem.

Managing OpenEdge Database Resources

154

After-imaging implementation and maintenance
After-imaging provides an extra layer of protection around the database. Every high
availability system should implement after-imaging. It is essential that you have a good
backup and recovery plan prior to implementing after-imaging.

Once started, the OpenEdge after-image feature keeps a log of all transactions that can
be “rolled-forward” into a backup copy of the database to bring it up-to-date.

The primary reason to enable after-imaging is to protect you from media loss. This can
be the loss of a database, a primary recovery area disk, or a backup tape. In the case of
a lost backup, you can go to the previous backup and roll-forward to bring the system
up-to-date. This solution assumes that your after-image backup was not stored on the
same piece of media as the database backup that you were unable to recover. (This is
the main reason for doing a backup of your data on one tape or tape set, and your after-
image files to a second tape.)

After-imaging provides user error protection. This feature is not available from any
other source.

This section describes how after-imaging works. For example, if a user or a developer
runs a program that updates all of your customer records to the same name, mirroring
would not protect you. It would store two copies of the bad data. With after-imaging,
you can restore the previous night’s backup and roll the data forward to a point in time
just prior to the moment the program was run. Without after-imaging, the most likely
recourse is to restore from the last backup and manually retype the day’s transactions.

After-imaging can also be used to keep a “warm” standby copy of your database. This
standby database can be stored on the same system as the primary copy. However, for
maximum protection you would normally store it on a different system. Progress
Software Corporation provides replication with greater flexibility through its
OpenEdge Replication product, while after-imaging provides a way to do a “poor
man’s replication.” This form of replication allows you to periodically update your
standby database by transferring after-image files from the primary database and
applying or rolling-forward those files to the standby database. In the case of a system
failure, you can apply the last after-image file to the standby database, and start using
the database with significantly less downtime to the users. If it is not possible to apply
the last after-image file to the database, you will lose only the data entered since the
last application of the after-image file.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

155

Note: Users have been using this method since Progress introduced after-imaging to
the product. It is known to be reliable.

Table 7 and Table 8 present the advantages and disadvantages of using after-imaging
replication and site replication, respectively.

Table 7: Advantages and disadvantages of after-imaging replication

Advantages Disadvantages

• Included with the product (inexpensive)

• Time-tested reliability

• Initial setup time (custom code)

• Ongoing maintenance

• Read-only access only to the standby
database

• No synchronous option

Table 8: Advantages and disadvantages of OpenEdge Replication

Advantages Disadvantages

• Synchronous replication ability

• Ease of maintenance

• Read/write access on primary and
standby

• Cost

• Greater infrastructure requirements

After-image-based replication is a viable alternative for users who want an extra layer
of protection for their systems but cannot, or do not, need to implement site replication.

Managing OpenEdge Database Resources

156

Testing your recovery strategy
The only valid backup is your last tested backup. This underscores the need to test your
backup strategy on a regular basis. This does not mean that you should delete your
production database and restore from backup to “see if it works.” It is best if you can
restore your database to a different location on disk, or better yet to a different system.

How often should you test your backup? If you are using an operating system utility to
back up your database, it is a good idea to test your backup any time you modify the
structure of your database. Since PROBKUP is database-aware you might not need to test
for structure changes. However, it is still wise to test at least twice a year.

You need to test the backup and the process when there are changes in staff, or times
when the administrator might be out of town. Any member of the IT staff should be
able to perform a well-documented recovery process. If you do not have an IT staff,
you need to ensure that each person who might be required to restore the system can
follow the documented recovery procedures.

Your recovery procedures should be scenario-based. Common recovery scenarios,
such as a loss of a disk (database, after-image, or application files, for example), fire,
flood, and so on, must be clearly documented with step-by-step instructions describing
how to determine the root cause of the problem and how to recover from the event.

You hope you will never need to use your recovery plan. However, if the plan is well
documented and the users were involved in the cost/benefit trade-offs in the beginning,
then you will never be second-guessed or lose the trust of your user base because of a
disaster.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

157

Maintaining your system
Do not let OpenEdge’s ease of maintenance lead you to become complacent about
maintaining your system. The health of the system should be monitored every day.
This can be done using a tool such as OpenEdge Management, or by manually using
scripts.

The areas that are most important to monitor are the areas that will cause a
performance problem or cause the database to stop running. While the issues that cause
the database to stop running are the most important to identify before they fail,
performance problems are often equally important to system users. A slow system
erodes the users’ confidence in the system, and they will begin to look elsewhere for
their information. A slow Web site might drive users to go elsewhere for information,
and they might never return.

This section identifies which areas to monitor and the ways to monitor these resources.

Note: This section does not present a comprehensive list of resources to monitor.
Keep in mind that your system will most likely have additional resources that
warrant monitoring.

Daily monitoring tasks
It is too easy to become complacent when you have a smooth, well-running system.
Unless you setup a routine of daily tasks, you might end up relegating system
monitoring to the bottom of your priorities, and it might slip into a problem state when
you least expect it. Establish and execute a simple set of daily tasks to avoid impending
problems.

The following sections describe the resources you should monitor on a daily basis.

Managing OpenEdge Database Resources

158

Monitoring the database log file
The database log file contains a wealth of information about database activities.
OpenEdge places a lot of information in the file beyond simple logon and logoff
information. For example, when the database is started, all of your startup parameter
settings are placed in the log file. This information can be used to verify the settings in
your PF file (parameter file) or your conmgr.properties file.

You should regularly pay attention to error log entries in the log file because
OpenEdge places serious errors in this file when they occur. Most users do not report
an error to the administrator unless it happens more than once. Error details are
automatically recorded to the log file. This provides an administrator with accurate
data so that the appropriate corrective action can be taken.

The former method for locating these errors required an administrator to scan the
database each day, or several times a day, looking for specific words or patterns. This
could be automated through the use of the grep command on UNIX/Linux and through
the search function in Windows. OpenEdge Management can perform this task for you
by searching for multiple patterns in the log file.

1. Select Resources from the menu bar.

2. From the list frame, browse to and select the database that has the log file you
want to monitor.

3. Select Log File Monitor.

 To create custom error search criteria in OpenEdge Management:

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

159

4. Click LogFileMonitor_RuleSet.

5. Click View Library Definition.

6. Click Add Rule.

7. Click Create Criterion. The Create Search Criterion page appears:

The criterion created in this example allows external programs to store items in
the database log file and generate alerts from within OpenEdge Management.
Also, OpenEdge Management lets you create your own rule sets and run them
against your own log files.

Using the PROLOG utility

The log file for a given database should be truncated on a regular basis to keep the
length manageable. The PROLOG utility is used to keep the log file manageable, and
should be run after you back up the log file.

Managing OpenEdge Database Resources

160

Monitoring area fill
The fill rate of area extents should be checked every day. With OpenEdge
Management, you can set an alert to tell you if your database is growing past a
configurable limit. For example, you can tell OpenEdge Management to send you an
alert when a particular area is greater than 90 percent full. This allows you to plan an
outage when it is convenient for the users to address increasing the size of the area.

In addition to alerts, you might want to have a snapshot view of where the system is
today. This can be done with VST code by looking at the _AreaStatus table. The two
columns that show your area fill status are:

• _TotBlocks — Represents the total space allocation for the area

• _HiWater — Represents the amount of used space within the area

You can graphically display this data in OpenEdge Management using the Storage
Areas Utilization page.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

161

1. Select Resources from the menu bar.

2. From list frame, browse to and select the database.

3. Select Storage Areas from the Operation Views section in the detail frame. The
Storage Area Utilizations page appears:

Monitoring buffer hit rate
The buffer hit rate measures the percentage of time the system is retrieving records
from memory versus from disk. In OpenEdge Management, you can trend this rate and
setup alerts for when it falls below a certain level. However, you should view the
buffer hit rate throughout the day to ensure that the users are getting consistently
acceptable performance. A good goal for buffer hit rate is 95 percent.

 To monitor area fill:

Managing OpenEdge Database Resources

162

As stated in Chapter 2, “Managing OpenEdge Database Resources,” on page 205 a
buffer hit rate of 95 percent equates to five physical I/O operations for every 100
requests to the database manager. Some applications never achieve this level, but
perform fine, while other applications need higher buffer hit rates to meet user
requirements.

Figure 19 shows a portion of the OpenEdge Management Vital Signs page that can be
displayed from the Operations View. It displays content related to a test database.
This example shows that the commit workload varied throughout the day but the buffer
hit percentage remained constant above 98 percent. This percentage indicates
consistent performance for the users.

Figure 19: Monitoring buffer hit rate in OpenEdge Management

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

163

Monitoring buffers flushed at checkpoint
Buffers flushed at checkpoint are a good indicator of APW and checkpoint efficiency.
The APW’s job is to keep writable buffers at a low count. Also, you do not want
frequent checkpoints where the database and memory are synchronized. If you are
seeing an increase in buffers flushed during your prime operating times, and they
cannot be attributed to an online backup, you should make adjustments. Solutions to
this issue are discussed in the “Monitoring system resources (disks, memory, and
CPU)” section on page 163.

If you are monitoring using PROMON, you obtain the buffers flushed at checkpoint
readings at the beginning and at the end of the prime operating hours and store them.
Storing a reading can be as simple as writing it down when you read it from PROMON. If
you create VST code, you can store the data to a file. If you are using OpenEdge
Management, you can look at the information in the OpenEdge Management Trend
Database as seen in the Operations View in Figure 19,

While the PROMON option requires multiple checks throughout the day, the other
methods let you check your APW and checkpoint efficiency once, at the end of the
day. The example in the “Monitoring buffer hit rate” section on page 161 shows that
despite high load during certain times of the day, it is possible to eliminate buffers
flushed at checkpoint. This can be done with proper tuning of the before-image cluster
size and the proper number of APW processes.

Monitoring system resources (disks, memory, and
CPU)
The system resources that require monitoring vary from system to system, but disk fill
rate — along with memory and CPU utilization — are generally resources that need to
be watched daily. Memory and CPU are less important because if overused, these
resources will generally only cause a performance issue, while overusing disk
resources can cause an outage. The following sections present a few examples that
explain how to use different utilities to monitor these system resources.

Managing OpenEdge Database Resources

164

Using sar

Example 2 shows a sar output for CPU activity (-u option to sar) taken during a peak
period of the day. The samples are 60 seconds in duration and repeated ten times to
give a ten-minute picture of the CPU activity.

It is important to take longer samples to yield more accurate results. Many users take
5- to 10-second samples so they can see the samples more quickly, but it is very
difficult, if not impossible, to tune the system down to this level. Longer samples (5 to
10 minutes) provide a good general picture.

Note: Keep in mind that samples that ranging from 5 to 10 minutes will miss short
duration CPU spikes that you can capture with 1-minute samples.

Also, the average at the end provides you with (in this case) a 10-minute sample for
overview purposes. This example shows that the amount of system CPU and the wait
on I/O time has been kept to a minimum, and there is still idle time. This indicates that
there is additional capacity to accommodate growth in workload or in the number of
users on this machine.

Example 2: Using sar to monitor system resources

mymachine: sar -u 60 10

SunOS mymachine 5.7 Generic_106541-15 sun4d 07/10/02

09:55:15 percentusr percentsys percentwio percentidle

09:56:15 67 5 3 24

09:57:15 68 5 5 23

09:58:15 56 3 3 39

09:59:15 54 2 2 42

10:00:15 54 2 2 43

10:01:15 53 3 3 41

10:02:15 52 3 3 41

10:03:15 53 2 2 43

10:04:15 54 2 2 42

10:05:15 65 3 4 28

Average 58 3 3 37

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

165

Using Task Manager

In Windows, this same CPU and memory information is available at the operating
system level. It displays on the Performance tab in the Windows Task Manager, as
shown in Figure 20. The issue with the Windows Task Manager is that the refresh
rate for the CPU is too fast. Even on the lowest setting the screen refreshes every five
seconds. This is useful for a general picture during peak periods, but it does not
provide a mechanism for keeping a long-term history or good granularity of the data. It
will, however, let you know when you are out of CPU resource.

Figure 20: Windows Task Manager

Managing OpenEdge Database Resources

166

Using OpenEdge Management

OpenEdge Management can store and report on CPU resource usage over time. There
is no need to look at the system in the middle of the night while your nightly
processing is running because OpenEdge Management can gather this information 24
hours a day.

Figure 21 shows a portion of the standard OpenEdge Management CPU Summary
report. OpenEdge Management provides hourly averages so you can see how the
system ran in your absence. Also, each sample is stored in the OpenEdge Management
Trend Database. If you need to look at each sample to perform a more in-depth
analysis, you can extract the information from the OpenEdge Management Trend
Database using a custom report. Customized reports are discussed further in Chapter 4,
“Guidelines for Applying OpenEdge Management” on page 205.

Figure 21: CPU Summary Report

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

167

As shown in Figure 22, OpenEdge Management’s File System Operations view
displays:

• Storage information about all file systems

• Database files that are on each file system

This information makes it easy to determine disk space utilization considerations. The
file system level is a better indicator than the physical disk level. Administrators
should visit this page at least once a day.

Figure 22: File System Operations view

Managing OpenEdge Database Resources

168

Periodic monitoring tasks
There are tasks that you must perform on a periodic basis to promote monitoring of
your system. Some of these tasks, like database analysis, should be done monthly.
Other tasks should only be done as necessary, such as an index compress. On UNIX
and Linux systems, you can schedule these tasks in cron. In Windows, you can use the
Scheduled Tasks application.

OpenEdge Management provides a single interface to schedule all database-related
tasks, including periodic maintenance to the database. In fact, you can schedule any
type of task inside of the OpenEdge Management Job Scheduler.

Over the years there has been a migration of utility functions from offline to online.
This gets Progress closer to being able to run in the “dark room” scenario. There are
three types of utilities: Online, offline and "kind-of" online. In most cases, online
utilities can run while the database is running and users are accessing data with little or
no effect on overall performance. Offline utilities are utilities that require a shutdown
of the database and no user access is allowed for the duration of the utility. "Kind-of"
online utilities are those utilities that run while the database is up in multi-user mode
but will interrupt user access to the data.

The utilities described in the following section are a selection of the total utilities
available in the product. The lists contain some new, modified, and frequently-used
utilities with OpenEdge. This section is not meant to act as documentation for these
utilities but merely to point out what is available and some possible uses. For complete
documentation of these utilities, see OpenEdge Data Management: Database
Administration.

Online database utilities
The following sections describe some of the database utilities and options you can use
when the database is online:

• Database analysis utility

• Index compact utility

• Index fix utility

• Structure addition utility

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

169

• Enable after-imaging online option

• Enable the AI Archiver online option

• Binary dump of only specified records option

• Enable and disable site replication option

Database analysis utility

The following points relate to using the database analysis utility:

• Use the database analysis utility to expose table and index storage information.

• Run this utility at least once every three months while users are accessing the
database with low-to-moderate impact on performance.

• Use the utility’s information to determine if you must either rebuild your indexes
or make modifications to your database structure.

The database analysis report details table storage information and helps you to
determine if tables must be moved to other areas or must be reorganized to reduce
scatter. However, the area of index utilization is generally more dynamic and needs to
be analyzed on a regular basis.

Index efficiency is important. If your data is 100 percent static, then your index
utilization should be 100 percent to provide you with the maximum number of index
entries per block. Unfortunately, this is not the case with most applications because
most applications perform substantial numbers of inserts and modifications, which
impact the indexes. It is best to have sufficient space left in the index blocks to add
additional key values without introducing the need for an index block split.

In an index block split, half of the information in an index block is moved to another
block, and the index pointers are adjusted to include the new block. Block splits are
very expensive operations and they can reduce overall performance during the split.
The split can also cause index fragmentation. If your indexes are small, there is no
problem with a few cases of block-splitting or some fragmentation, but as indexes
grow in size and activity, it is in your best interest to keep them in prime operating
condition.

Managing OpenEdge Database Resources

170

Look at the _indexstat table within the database to monitor index block splits. This
VST is not enabled by default; it must first be enabled and subsequently disabled when
you are finished gathering data. There is overhead associated with this feature, so it
should only be enabled for the time required to gather your statistics and make the
necessary modifications to your administrative plan.

You can enable this VST using these options:

• Use the Progress Explorer to start the database. Then specify index base and
index limit options in the Other Server Arguments field on the Default
Configuration Properties window.

• From the command line, use the –indexbase and –indexlimit options on broker
startup (PROSERVE).

You should be most concerned with index splits. When the trend in the number of
splits for a given time period increases, run index compaction to reorganize the data.

Index compact utility

The index compact utility is one of the only ways to improve the performance of your
physical data layout without either locking users out of the records or markedly
affecting performance during the process. This utility re-normalizes the data within an
index while the database is up in multi-user mode. There is generally very little
performance degradation while the utility is running and its positive impact can be
quite noticeable.

The index compact utility tends to be used in an evolutionary manner. To determine
the index utilization rate and the size of the index, you can do a database analysis
(proutil with the dbanalys option). You initially look for large indexes (thousands of
blocks) with low utilization rates (less than 70%). The indexes that fall into that
category are the first indexes to be compacted. If you do the analysis and subsequent
index compacts on a regular basis, you will find fewer and fewer indexes will have low
utilization. You can then include smaller indexes and indexes with greater utilization.
Generally, indexes that have greater than 80-85% utilization can be left alone. If you
have many inefficient indexes and you need to prioritize your index compacts, you can
look at the _IndexStat virtual system table to determine which indexes are most
heavily traversed.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

171

Note that this utility can only increase the index utilization rate, it cannot reduce it.
You can specify the packing factor for the index, but if you choose a number less than
the current utilization it is ignored and the index entries are normalized at their current
packing factor. You specify the packing factor as a percentage with no other parameter
at the end of the command (for example: proutil database -C idxcompact
table.index 80). The index compact utility reorganizes the data and maintains an
80% packing factor for each index block. There are cases when less compact indexes
are better, as described in the "Offline database utilities" section on page 173. Also
note that even though this utility runs quickly, you should be aware that it does a
significant amount of logging to both the before- and after-image journals. Therefore,
before running this utility, make sure that there are no long-running transactions active
and make sure you have enough after-image space to support the running of the utility.
The worst case scenario would be that you would modify every block in the index once
for each pass of the utility. The number of levels in the index plus 1 determines the
number of passes. So, a 3-level index could potentially modify every block in the index
four times while running the index compact, and each of these modified blocks are
written to the journals.

Index fix utility

The index fix utility corrects leaf-level index corruption while the database is up and
running. You should run this utility if you get an error indicating an index problem.

The limitation of this utility is that if the index error is at the branch-level rather than at
the leaf-level, you must use the index rebuild utility to correct the problem. The major
benefit is that you can run the index fix utility while users are accessing the database
with minimal performance impact.

Structure addition utility

Prior to OpenEdge 10, if you wanted to add extents or areas to your database you were
forced to shutdown the database. This is no longer the case. With the prostrct
addonline command, you can add to existing areas or add whole new areas to the
database without having to shutdown. If you fail to catch the growth of an area before
it gets to the variable extent and that extent resides on a disk with very little space, you
can use this utility to add another fixed and another variable extent on a device that has
additional capacity, without the need to shutdown the database.

Managing OpenEdge Database Resources

172

Enable after-imaging online option

Although there is value in running with after-imaging enabled, you might not be able
to afford the outage to add after-image extents and enable after-imaging on your
database. Now, with the ability to add extents online through prostrct addonline and
the enableai switch on the probkup command, it is possible to do both operations
while the database is in multi-user mode. Once you have the after-image extents added
to your structure, you do a backup using the probkup command with the enableai
switch. Then you have your backup and after-imaging is enabled.

Enable the AI Archiver online option

As with the ability to enable after-imaging online you can also enable the after-image
archive online through the enableaiarchiver option. It is even possible to enable
after-imaging and the AI Archiver in one command. See OpenEdge Data
Management: Database Administration for details.

Binary dump of only specified records option

You can run a binary dump on specific records while the database is running. In the
past, you could only run one binary dump on a table at a time. With dumpspecified
you can range-match your binary dumps so you can have several dumps running at the
same time, thus reducing your outage time to do a dump and reload of a large table,

Enable and disable site replication option

You can now enable and disable replication online. It is as important to be able to
disable site replication as it is to enable it. If you have a replication problem in the
middle of your busy period and you do not have time to determine the source of the
problem you can disable site replication online. Once the busy period is over and you
figure out the issue, you can enable site replication, resource the target database, and
start the replication process—all without affecting the database's users.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

173

Offline database utilities
The following sections describe some of the database utilities you can use when the
database is offline:

• Index rebuild utility

• Move schema utility

• Update schema utility

• Enable large database files command

• Update virtual system tables utility

Index rebuild utility

This index rebuild utility has largely been replaced by the online index compact and
index fix utilities, which—when run together—approximate the total index rebuild.
The purpose of an index rebuild is to increase index efficiency and to correct errors.
You get significantly better organization within the indexes by sorting the indexes
prior to merging them back into the database. You do this by answering “yes” to the
question “Do you have enough room for sorting?” when running the utility. Be aware
that sorting requires substantial disk space (50 to 75 % of the space of the entire
database when choosing all indexes). If you have a database that is greater than 3GB,
you should investigate and use the dbname.srt file to distribute these sort files.

Use the index rebuild utility when either of the following conditions are true:

• You can afford the downtime it requires.

• A database with index corruption forces a rebuild of an index. In other cases, you
can use the index compress utility to improve the efficiency of the indexes with
minimal impact to users or you can use the index fix utility to correct the problem
while the database is still running.

Drawbacks to the index rebuild utility

The primary drawback to using the index rebuild utility is that the database must be
offline when the utility is run. Again, you can use a combination of online utilities,
including index fix and index compact, to approximate the effect of an index rebuild.

Managing OpenEdge Database Resources

174

A previous drawback was that you could not choose a level of compression with this
utility. The utility tried to make indexes as tight as possible. While high compression is
good for static tables, dynamic tables tend to experience a significant number of index
splits right after this utility has been run. This affects the performance of updates to the
table. However, this utility now supports a packing factor and it is a multi-threaded
process. The ability to change the packing factor can have a positive effect on
performance for inserts. By lowering the packing factor with the –pfactor qualifier,
you can determine the amount of compaction you want as a percentage. If the table
was a reference table that was infrequently updated, then a packing factor would be the
best option. If the table was frequently updated and infrequently queried, then a
packing factor would be more appropriate. Tests show that a less compacted index can
lead to faster insert operations, significantly faster in some cases. However, deletes and
queries on this index will be slower. Testing also shows that indexes with a packing
factor of 80% are faster than 100% packed indexes for insert, but almost identical in
terms of query operations. So, updated tables would probably benefit from a setting of
80% for the packing factor. This is one of the main differences from index compact, as
the index compact utility can only increase the packing factor and normalize the date in
the index. It does not have the ability to reduce the packing factor for the index.

Even with the decrease in update performance, the overall benefit of this utility is often
desirable. The performance degradation is limited in duration, and the rebuild will
reduce I/O operations and decrease scatter of the indexes.

Move schema utility

The move schema utility lets you the move the database schema into a separate area. It
is used primarily after a conversion from an older release of Progress. You can move
the data and indexes out of the area through a variety of methods (table move, buffer
copy, dump and reload, etc.). The problem with using these methods is that the area
will still continue to consume disk space because the schema remains in the area. After
using the utility to move the schema (proutil databasename –C mvsch), then you can
use the truncate area utility to reclaim the diskspace.

Note: You must truncate the before-image file before executing this utility. Also, it
is strongly recommended that you do a backup of your database prior to
executing this command as the command itself is not recoverable. If a
problem occurs during the schema move, your only option is to go to backup.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

175

Update schema utility

The update schema utility adds any new, missing meta-schema definitions to your
database. Missing definitions can result from having an older database which has only
had simple conversions done, and has never had a total conversion to the latest version.
This utility brings your meta-schema up-to-date, and if you are on the latest meta-
schema, the utility informs you that you are all set.

Enable large database files command

This command allows single files to exceed the 2GB limit provided your operating
system will allow it. The limitation for this command is that it is only available for
enterprise systems.

Update virtual system tables utility

This utility adds virtual system table (VST) information to the metaschema of your
database. The misconception is that if you update VST information one time in your
database, you will not have to do it again. OpenEdge includes incremental
improvements to the virtual system tables between releases, so it is recommended that
you run this utility after you upgrade versions of OpenEdge. This recommendation
even applies when updating within major releases, for example 10.1B to 10.1C. If
there are no updates, this utility reports that your virtual system tables are up-to-date.

“Kind of” online utilities
You can run the "kind of" online utilities (table move and index move) when the
database is up in multi-user mode, but the user is locked out from using the database
object for the duration of the utility's run time. Before the introduction of Type II areas
it would take a significant amount of time for either of these utilities to run, as the
whole area where the data object existed might have to be traversed to execute the
move of that object. With Type II areas only the blocks containing the object you want
to move are traversed, which makes these utilities many times faster. A tested example
involved moving a 2GB table from one area to another under Type I and Type II
databases. The Type I database took 1 hour to move the object while the Type II
database was able to move the object in under 2 minutes. The difference in this to the
business may be the difference in doing the operation versus not doing the operation.

Managing OpenEdge Database Resources

176

Table move utility

The table move utility moves a table from one area to another. Potentially, you can use
this utility as a way to get from Type I areas to Type II areas, but the initial table
moves from the Type I areas are slow due to the performance characteristics of Type I
areas. If the record size changes materially and is larger, you can start to fragment
records. If the record size changes materially and is smaller, you have the potential for
wasting space. To avoid these problems, you can move the table from the original
Type II area to a new Type II area with an appropriate setting for record per block.
You should test this utility on a copy of your database before using it against
production data.

Index move utility

The index move utility moves an index from one area to another. Unlike data blocks,
index blocks never share space with other indexes at a block level. But this does not
exempt the blocks within an index from becoming scattered in Type I areas. You could
use this utility to move the indexes to Type II areas or to move indexes from one Type
II area to another, to further segregate the indexes. The performance characteristics of
the index move utility are similar to those of the table move utility, in regards to Type I
versus Type II area moves. Note that just as with the table move utility, you should test
the index move utility on a copy of your database before using it against production
data.

Running the utilities
You can run all of these utilities from the command line. You can also use OpenEdge
Management to schedule these utilities to run at specific times. OpenEdge
Management provides templates to run common utilities, or you can run existing script
or batch programs.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

177

Defining an OpenEdge Management job

1. Select Jobs from the menu bar.

2. Select Create Job.

3. Enter the information requested on the page. For example:

Note: In the Command line field, enter only the command itself with no options.
Enter all options in the Command parameters field.

 To define an OpenEdge Management job:

Managing OpenEdge Database Resources

178

Scheduling an OpenEdge Management job

Once a job has been created and tested it can then be scheduled to run when needed.
The output status of a job can trigger an alert, if necessary, so you know if a utility was
completed successfully every night.

1. Select Jobs from menu bar.

2. Select the job you want to schedule from the list of defined jobs in the list frame.

3. Click Schedule. The Job Schedule page appears:

From this page, you can schedule the job to run once, or on a regular basis.

 To schedule an OpenEdge Management job:

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

179

Truncate BI and BIGROW
The before-image file or primary recovery area varies in size, depending on the
transactions scoping within your application. Sometimes you will experience abnormal
growth of this area, such as when you make schema changes or wholesale changes to a
table in the database. These circumstances warrant truncating the BI file to recover the
space.

Generally, you do not want to truncate the BI file every time you shut down the
database. When the BI file is truncated for any reason, the database engine must
reformat the recovery space to make it usable. If this reformatting is done while the
system is running, it can cause noticeable performance degradation. Consequently, you
should extend the BI file to accommodate normal growth. You can do this with the
PROUTIL command’s BIGROW option. With this command, you specify the number of
clusters that you want the BI file to grow by. By preallocating these BI clusters and
eliminating the formatting of clusters during normal processing, you can eliminate a
substantial performance drag on the system.

Understanding dump and load
Determining when to perform a dump and load is a constant struggle. If you set up
your database correctly, your records should not get fragmented and only your indexes
should need reorganizing. This index reorganization is the primary benefit of a dump
and load. Usually, about 80 to 90 percent of the benefit of a dump and load can be
achieved with an index compress, as described in the “Index compact utility” section
on page 170. However, you might need to dump and load to reorganize your database
into different areas or extents due to changes in application requirements.

A fast dump and load process is important, since the system will not be available to
users during the process. Some administrators have engineered change tracking to
allow users access to data during the dump and load process, with only a short outage
to apply the changes to the target database before providing access. However, this is an
application-specific process and is outside the scope of this manual. This section
focuses on standard OpenEdge utilities.

Before performing a dump and load, it is important to have a good backup of your
existing database. This backup provides you with a fallback position should something
go awry.

The basic dump and load options are described in the following sections.

Managing OpenEdge Database Resources

180

Data Dictionary dump and load

Follow these rules when performing a Data Dictionary dump and load:

• Multi-thread both the dump and the load. Generally, you should add sessions on
both the dump and the load until you cause a bottleneck on the system.

• Pay close attention to avoiding disk variance in the database and with the dump
files to achieve maximum throughput. This means using all of the disks on the
system evenly. For example, you might want to make use of your BI disks
because they will be idle during the dump portion of the process. In this instance,
you should focus on I/O throughput, not storage capacity.

• Contrary to popular belief, it is better to leave the indexes enabled during reload.
This does not make for efficient indexes due to index splits during the load
process, but since the indexes are built at the same time the data is loaded, you
can take advantage of the multi-threaded nature of OpenEdge. The indexes can be
reorganized later through the use of an index compress. Otherwise, the index
rebuild is a single-threaded process.

Bulk loader

This option is good because it is simple. However, the load process combines two
single-threaded operations on the load side with the dictionary dump processes. The
bulk loader itself is single-threaded; files are loaded sequentially with the indexes
turned off. This option necessitates a single-threaded index rebuild process. The bulk
load process itself runs fairly quickly. However, it is not possible to run multiple
copies of this utility simultaneously, so you must run an index rebuild at the end of the
process. Therefore, it does not scale well on multi-processor systems.

Binary dump and load

This option is much faster than the previous methods described. The original
implementation allowed for multi-threading of both the dump and the load. However,
it did not allow for building indexes during the process and made the user do a single-
threaded index rebuild. This limited the overall scalability of the process.

This limitation has been eliminated with the index build option on the binary load
utility. Due to its multi-threading abilities, this utility, when used in conjunction with
the index build option, provides the best overall dump and load performance in the vast
majority of cases.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

181

Profiling your system performance
Performance is a matter of perception. Users say performance is slow or fast based on
many factors. It is best to take perception out of the equation by establishing some
baselines on important aspects of your system.

Establishing a performance baseline
The primary reason to establish the baseline is to enable you to quantify changes in
performance from changes in your load or application. The most difficult part of
establishing a baseline is determining which operations are critical to the effective use
of the system. You want the list of operations to be complete, but you also want to
avoid having too many items on the list. Too many items will increase the amount of
work needed to establish reliable baselines.

The basic rules that follow should allow you to narrow down the number of tasks that
need baselines to a manageable number. You might want to have two sets of
baselines—one for daytime processing and one for end-of-day processing.

Tasks that require baselines include:

• Tasks that are done many times throughout the day (such as creating orders,
process control, and data entry tasks)

• Tasks that are important to the user (such as Web site queries, customer support
screens, and order entry tasks)

Tasks that do not require baselines include:

• Periodic tasks (such as monthly and weekly reports)

• Little-used portions of the application

• Reporting (because it generally falls into the above two categories and because
you can schedule most reporting outside of your primary operating hours).

Managing OpenEdge Database Resources

182

Collecting your baseline statistics

Once you have determined which items you want to use as benchmarks, you can plan
your strategy.

You can modify the application code to collect this data, which is the most accurate
method, but it is also time consuming and costly. An easier way to perform data
collection is to time the operations on a stopwatch. This is fairly accurate and easy to
implement. To determine the best timing baseline for each task, perform timing in
isolation while nothing is running on the system. When the best timing baselines have
been established, repeat the task during hours of operation to establish your under-load
baselines. It is best if you can train one or two individuals in each area to do these
timings. This way, if there is an unrecognized performance problem, there will be
someone trained to detect it and report the results so you can understand its magnitude.
This also shows users that you are concerned with performance and it helps to establish
a rapport with the users.

Understanding your results

Once your task times have been established, you must analyze the results.

As mentioned, it is best to establish the baselines while there are no reports of any
problems on the system. This will establish what is normal on your system. If users are
reporting problems, you can compare the current timings against your baselines to see
if the problem is real or imagined. If there is a material difference in the current timing,
you must start analyzing performance on the system with monitoring tools such as
PROMON, VSTs, OpenEdge Management, and operating system utilities.

Performance tuning methodology
Always analyze problems starting with the slowest resource and moving to the fastest.
Thus, the first place to start is disks, then memory, and finally CPU efficiency. Before
you start looking at the system, you must make sure that the application is performing
correctly. Correct application performance has the greatest effect on performance. This
is easy to determine by looking at the number of database requests per user. If most
users have tens of thousands of requests but a few users have millions of requests, you
should question those users about what they are doing with the system and then look at
those portions of the application for inefficiencies.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

183

When looking at the PROMON Block Access screen (option 3) output in Example 3, you
can see that most users are in the tens of thousands for numbers of requests. You
should contact these users to determine how they are using the system.

Example 3: PROMON Block Access screen
Block Access:

Type Usr Name DB Reqst DB Read DB Write BI Read BI Write AI Read AI Write

Acc 999 TOTAL 54844706 3828058 156560 957 12017 911 23145

Acc 0 abackman 100224 3007 7 912 869 911 4256

Acc 5 1 0 0 0 10522 0 0

Acc 6 1 0 0 0 0 0 0

Acc 7 1 0 86649 0 0 0 0

Acc 8 1 0 69823 0 0 0 0

Acc 9 DB_Agent 118388 2094 0 0 0 0 0

Acc 10 adam 49038107 3488666 2 0 0 0 0

Acc 11 lori 7829 153 0 0 0 0 0

Acc 12 john 985551 164519 1 0 0 0 0

Acc 13 connie 13886 292 0 0 0 0 0

Acc 14 michael 213915 30250 0 0 0 0 0

Acc 15 abackman 0 0 0 0 0 0 0

Acc 16 adam 4013915 130250 0 0 0 0 15982

Acc 17 frank 3416 82 0 0 0 0 0

Acc 18 jean 13358 375 0 0 0 0 0

Acc 19 wayne 83985 2063 0 0 0 0 0

Acc 20 arlene 53915 1350 0 0 0 0 0

Acc 21 carl 83742 2094 0 0 0 0 0

Acc 22 sue 114471 2863 0 0 0 0 0

If these users are doing the same jobs as everyone else, the cause of the problem might
be how those users are using the application. This is more common with off-the-shelf
applications than with custom applications. The business rules for an off-the-shelf
application might not match the business process exactly.

A good example of this is an application that is written for companies with multiple
divisions, and the application expects the user to enter a division code as a unique
identifier. However, suppose a company that has only one division bought the product
and the users were not trained to enter a division code. This application might not have
an index defined to find records efficiently without a supplied division code. While this
can be rectified on the application side, you must discover the problem before you can
address fixing it. The solution might be to train users to enter a division code until an
application modification can be made.

Once you have ruled out the application, you can start looking for common problems.

Managing OpenEdge Database Resources

184

Advantages and disadvantages of monitoring tools
The tools needed to examine performance issues range from cryptic (iostat) to full-
featured and easy-to-use (OpenEdge Management). This section describes your tool
options, and the benefits and drawbacks of each option.

Table 9 shows the advantages and disadvantages of monitoring tools such as TOP,
IOSTAT, VMSTAT, SAR, and MONITOR.

Table 9: Advantages and disadvantages of system tools

Advantages Disadvantages

• Free

• Instant access to information

• Standard

• Displays only OS information

• Some provide graphical information
only without a command-line interface

• With the exception of sar, there is little
or no history stored unless the user
writes custom code

Table 10 shows the advantages and disadvantages of the OpenEdge PROMON utility.

Table 10: Advantages and disadvantages of PROMON

Advantages Disadvantages

• Included with OpenEdge server license

• Good current view data

• Menu interface only; there is no
command line

• Difficult to capture and store history for
trending

• Database information only

• No comprehensive storage area
information

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

185

Table 11 shows the advantages and disadvantages of monitoring with OpenEdge
VSTs.

Table 11: Advantages and disadvantages of VSTs

Advantages Disadvantages

• Flexible

• Comprehensive database information
available

• High learning curve for interpreting the
information

• Requires knowledge of ABL

• No operating system performance
statistics

• Custom code for all aspects, including
storage of trending data

Table 12 shows the advantages and disadvantages of monitoring with OpenEdge
Management.

Table 12: Monitoring with OpenEdge Management

Advantages Disadvantages

• Easy-to-use interface

• Common tool for both operating system
and OpenEdge data

• Simple storage of trending data

• Remote administration capability

• Databases must be in or migrated to the
conmgr.properties file for all
functions to work

• Limited customization ability

• Additional licensing cost

Managing OpenEdge Database Resources

186

Common performance problems
The common performance problems include:

• Disk bottlenecks

• Memory bottlenecks

• CPU bottlenecks, including performance issues such as a runaway process

Disk bottleneck causes and solutions
Disks are the slowest resource on a host base system, so it is important to resolve
issues in this area before proceeding to other areas of concern. Generally, when people
report performance issues, this is the first place to look for the cause of the problem.

Causes

The most likely causes of disk-related performance problems are:

• Disk variance

• Application issues

• Low database buffer hit rate

Disk variance

All disks are capable of doing approximately 100 I/O operations per second. If one
disk is doing all of the work, then the maximum number of I/O operations possible is
around 100. Additional disks functioning at the same time will increase the throughput
potential of the system and increase performance to the users.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

187

Disk variance can be seen though sar. Example 4 shows two issues:

• Two disks are doing significantly more work than the other disks.

• The amount of wait time is greater for those disks that are working harder. In this
case you could move items off of the heavily used disks and onto the more lightly
used disks.

There are many cases where there is extra storage capacity available on the disks, but
due to the utilization of the disks for I/O operations, it is advisable to add disks to
increase throughput capacity.

Example 4: Viewing disk variance using sar
16:59:58 device percentbusy avque r+w/s blks/s avwait avserv

17:00:58 nfs2 0 0.0 0 0 0.0 0.0

 sd0 0 0.0 0 5 0.0 23.3

 ssd2 0 0.0 2 29 0.0 1.8

 ssd5 0 0.0 0 1 0.0 4.8

 ssd6 0 0.0 0 3 0.0 12.1

 ssd7 0 0.0 0 1 0.0 12.6

 ssd10,g 0 0.0 0 2 0.0 10.8

 ssd11,g 1 0.0 1 29 0.0 13.8

 ssd12 99 3.6 2 307 128.5 145.8

 ssd15 2 0.0 1 23 0.0 16.0

 ssd16 1 0.0 1 9 0.0 13.7

 ssd17 3 0.0 3 47 0.0 12.0

 ssd20 4 0.0 3 60 0.0 14.6

 ssd21 99 2.1 5 239 107.2 116.5

 ssd26 1 0.0 5 71 0.0 1.7

Application issues

A poorly written application can cause a significant drain on the system. When
tracking down performance problems, you should always consider the application
before you look at the hardware. Prioritize the portions of the application to be
investigated and corrected before modifying startup parameters. Changes to startup
parameters can improve performance without any application modifications, but the
effects of these changes are not as durable as application changes.

Managing OpenEdge Database Resources

188

In terms of application procedures, it is important to avoid running heavy reports
during the hours of heavy On-Line Transaction Processing (OLTP). Running reports
during this period can have a significant impact on performance for the users. This is
because reports generally look at historical data and OLTP users look at current data.
When a report is run, the old data needed by the report replaces the new data required
by the OLTP users. When that new data is needed again by the OLTP users, they must
retrieve it from disk rather than from memory. While a report is running, it can force
the new data to be flushed from memory once again, and this vicious cycle can
continue as long as the report is running.

Low database buffer hit rate

As previously noted, it is important to achieve the maximum buffer hit rate possible
without causing other problems on the system (such as excessive paging or swapping).
If the buffer hit rate is too low, you will be forcing users to access the disk rather than
memory for information. Since memory is an order of magnitude faster than disk, the
objective is to retrieve as much data as possible from memory and as little as possible
from disk.

Solutions

Some of the solutions to the previously-stated problems include:

• Balancing I/O across available disks

• Using –Bp to reduce impact of reporting

• Increasing database buffers

• Increasing throughput capacity or redistributing I/O load

Balancing I/O across available disks

If you have many disks on your system, be sure to spread your database and
application files across as many physical disks as possible. Remember that application
files are generally read only once, so it is more important to spread your database
across the maximum number of disks to achieve maximum throughput. You must
monitor the number of I/O operations per second on the disks to determine if you are
approaching the throughput threshold for the disk.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

189

Using –Bp to reduce impact of reporting

Private buffers allow users to have a personal, or private, buffer pool within the
database buffer pool. The –Bp client startup option allows you to allocate some of the
general buffer pool for private use. It is possible to allocate up to 25 percent of the
general buffer pool in private buffers.

The private buffer option helps reduce the impact of reporting on other database users
by using and reusing the same portion of memory over and over again. Each user of
private buffers keeps a list of data in these buffers. Instead of looking for space in the
general buffer pool, which would affect other users, they look in their own list of
buffers for the least-recently-used buffer and overwrite that buffer. This option is only
effective for report or read-only users since only unmodified buffers can reside in a
private buffer pool list. If a modification is made to the buffer, then that buffer is taken
off the private buffer list and added to the general buffer pool list. These lists are
known as least-recently-used (LRU) chains because the least-recently-used item is
taken off the top of the list and reused first.

Increasing database buffers

By increasing the amount of memory available for database buffers, you can put a
larger percentage of your database into memory. The theory behind this is that you
actively use only a small percentage of your database, and if you can put this portion of
your database into memory, you can avoid doing disk I/O and you can increase
performance.

However, there is a point of diminishing returns on increasing buffers. Once you get a
high buffer hit rate, it takes a large increase in buffers to further increase the buffer hit
percentage. Remember, those small percentage increases can have a fairly large effect
on performance. Moving from a 95 percent to a 96 percent buffer hit rate represents a
20 percent decrease in disk read operations, as the number of physical reads per 100
requests will be reduced from 5 to 4. This is a consideration when looking at the
reasons for increasing buffers and the benefit in performance to users.

Another item to consider is whether there is a more effective use of the memory, such
as client memory.

Managing OpenEdge Database Resources

190

Increasing throughput capacity or redistributing I/O load

It is possible that you do not have enough disk throughput capacity on the system. If
you have balanced the disk I/O across the available disks, increased the database
buffers to get optimal efficiency, and tried offloading tasks to other periods of the day,
and you still have a disk bottleneck, your only recourse might be to purchase additional
disk drives. Remember that it is better to buy several small disks than one large disk
even though they might have the same storage capacity. The smaller disks will have a
greater combined throughput capacity.

Memory bottleneck causes and solutions
Although disk bottlenecks are likely to have the biggest performance impact because
they are the slowest part of the system, a memory bottleneck in the wrong place can
also cause an immense amount of disk activity. If your disk problems persist after you
have done everything possible to correct them, then you should investigate your
memory resources and settings.

Causes

The possible causes of memory bottlenecks are:

• Improper allocation of memory resources

• The operating system uses more memory than necessary

• Other applications

Improper allocation of memory resources

If you have unused databases running on your system, they are consuming memory
you could allocate elsewhere. You might have databases with high user memory
consumption, causing excessive physical paging and swapping on the system. Perhaps
high memory allocations are excessive and could be reallocated to other resources.

The operating system uses more memory than necessary

Some operating systems will allocate excessive amounts of memory if left unchecked.
With a few modifications to the kernel, you can limit your exposure to this
phenomenon.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

191

Other applications

On many systems OpenEdge is not the only application using resources. Consequently,
it is important to analyze all the applications on the system and balance the resources
of one application against another. There are many cases where an application is
initially very small, so its resource usage is not noticed. However, over time the usage
and resource footprint grows and adversely impacts the entire environment.
Consequently, all applications on a system should be monitored for their memory
consumption.

Solutions

Possible solutions to application problems include:

• Use memory for the common good

• Limit operating system buffers

• Support for large shared memory segments

• Think outside the box

Use memory for the common good

Memory should be used first for items that will benefit all users, and if there is
memory still available, then allocate it to individual users or processes. Generally, you
want to look at the buffer hit rate for all of your databases and get the best performance
you can before investigating other issues and solutions. There are exceptions to the rule
in the individual process area, notably background tasks that are used to do reporting
and other common tasks.

Limit operating system buffers

Some operating systems will dynamically allocate memory to accommodate as many
modified buffers as possible. However, it is a good idea to limit operating system
buffers to 10 percent of physical memory. OpenEdge handles most of its own I/O and
does so even more with the use of the –directio parameter on broker startup.

Managing OpenEdge Database Resources

192

Support for large shared memory segments

The size of a Progress shared memory segment has always had an arbitrary limit.
When Progress limited the shared memory segment size, it effectively limited the
amount of memory you could allocate for database buffers. This problem is even more
pronounced for multi-database applications.

Starting with OpenEdge 10, there is no longer an arbitrary limit. You can now support
up to 32GB in a single shared memory segment. This is particularly important for
operating systems like AIX, where the number of shared memory segments that a
single process can attach to is set at a fixed limit.

Think outside the box

Using memory is not always a choice between different operating systems and
OpenEdge parameters. One example of using resources in a non-traditional way is to
use RAM disks. If you do a significant amount of I/O to the temporary files on your
system, you might want to create a RAM disk with some of your memory. This will
accommodate the temporary files and eliminate some I/O to the disk subsystem. You
must be very careful about how and when you use this option, and you must have a
very thorough understanding of how much space you are using with temporary files.
You do not want to cause a reliability problem with the adoption of this idea.

CPU bottleneck causes and solutions
Once you encounter a CPU bottleneck with no other bottlenecks on the system, your
only recourse is to buy more CPU capacity. This is easier said than done. CPU time is
divided into user, system, wait, and idle time. Your goal is to achieve the maximum
amount of user time as possible. A practical system profile is 70 percent user, 20
percent system, 0 percent wait, and 10 percent idle. The most common problem is that
the CPU is waiting for another resource, in most cases the disk, and all of the CPU
time is being used waiting for this resource. On most systems, this is very easy to see
because the percentage of waiting on I/O will increase. However, on some systems this
time is logged as idle time. When the time is logged as idle time rather than waiting on
I/O, you must monitor the disks to see if the percentage of idle time increases in direct
opposition to performance on the system.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

193

Common causes for CPU issues include:

• Runaway processes

• Improper setting of the OpenEdge –spin parameter

Runaway processes
It is possible for a single process to use 100 percent of the CPU time on a single-CPU
system. In many cases all of the time is logged as user time on the CPU. Although this
looks good on paper, it does not represent reality.

By focusing on the amount of time a single process uses on the system, you can see
processes that exceed a particular threshold and report those processes to the
administrator. By monitoring your system over time, you can determine both the
average and the maximum amount of time a process uses on the system. Processes that
use significantly more CPU time must be investigated by the administrator. Note that
in some cases high CPU time is justified for intensive portions of the application, but it
is easy to spot a pattern and weed out the “good” from the “bad.” This is easier to do
on UNIX-based systems than on Windows systems. Fortunately, the problem is much
less prevalent in Windows than it is on UNIX. This is because Windows is a closed
environment and therefore has fewer ways to do things in an out-of-the-ordinary
manner than can be done on UNIX-based systems.

Improper setting of the OpenEdge –spin parameter
On systems that have multiple CPUs, OpenEdge provides a mechanism that allows
users to do multiple simultaneous operations. The problem occurs when these
operations “step on each other’s toes.”

OpenEdge implemented latches to address this issue. Latches are very fine grained
locks in shared memory. Before a user process can change a memory structure, it must
establish a latch to ensure the resource is not in use by another user. That way, no other
user will modify the resource while the first user is making a change. When
establishing the latch, the CPUs check with each other to ensure that two processes
(users) are not trying to do the same thing at the same time. Once that check has been
completed, the first user process gets the latch, makes the change in shared memory,
and releases the latch.

Managing OpenEdge Database Resources

194

All of this occurs at memory and CPU speeds, so thousands of operations can be
completed in a second. The problem manifests itself when the first user has established
the latch and a second, third, or fourth user tries to manipulate the same resource. By
default, each user asks for the resource one time and relinquishes the CPU if the
resource is not available. This is very inefficient, since a significant amount of system
overhead is used to initially render the process active in the first place. So, instead of
asking once for the latch, it is better for the process to ask many times in an effort to
get the latch. It is cheaper in terms of system resources to ask thousands of times, and
in some cases tens or hundreds of thousands of times, to get the latch. Because of the
relative inefficiency of the CPU queue, multiple requests are preferable to asking once,
getting refused, and going to the end of the CPU queue only to come to the top of the
queue to ask again and finally get the resource. The problem manifests itself as high
system time on your CPU monitor.

The OpenEdge -spin parameter is set to indicate the number of requests to make for
the latch before going to the end of the CPU queue. For most multi-CPU systems, a
good starting point is a setting of 2,000 for –spin. Settings between 2,000 and 10,000
work well in the majority of cases.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

195

Other performance considerations
Other performance areas to consider include the following:

• BI cluster size

• Page writers

• Database block size

• Procedure libraries

BI cluster size
The BI cluster size determines the frequency of checkpoints on the system. The larger
the cluster size, the longer the time frame before the database engine will attempt to
reuse the clusters. A reuse scenario requires a checkpoint. Your goal is to have
checkpoints occur on an infrequent basis. A scenario of one checkpoint every two
minutes during the highest update times of the day is still too high. On many systems, a
fairly low cluster size of 1024KB (1MB) will yield checkpoints every 30 minutes for
most of the day, with some higher frequency during peak periods. On most systems,
1024KB should be the lowest setting to consider. If your workload warrants an
increase, you should increase it to 2048KB and then monitor checkpoint frequency. If
it is still too high, increase it to 4096KB, and monitor again, and so on. Most low-to-
mid-update systems fall into the 1024KB-to-4096KB range. Increase your BI cluster
size only if you are on an enterprise version of OpenEdge that will allow you to
implement page writers.

Managing OpenEdge Database Resources

196

Page writers
The enterprise version of OpenEdge provides a mechanism to expedite the task of
writing database buffers to the disk. There are several kinds of page writers: before-
image, after-image, and asynchronous. The before-image writer and the after-image
writer are easy to understand and set. If you have a read-write database, you should
have a before-image writer. If you have after-imaging enabled, you should have an
after-image writer. You can only start one of each per database. The more complex
scenario is the use of asynchronous page writers (APWs). These synchronize the
modified buffers in the database buffer pool in shared memory with the database files
on disk. If you are doing updates to the system, you should start with one APW and
then monitor the buffers flushed at checkpoint.

You can monitor the buffers flushed at checkpoint using the PROMON Activity (option
5) screen, as shown in Example 5.

Example 5: PROMON Activity screen
Activity - Sampled at 07/10/02 17:50 for 30:44:17.

Event Total Per Sec Event Total Per Sec

 Commits 853 0.0 Undos 3 0.0

 Record Updates 107290 0.9 Record Reads 259518607 2345.2

 Record Creates 291993 2.6 Record Deletes 1 0.0

 DB Writes 158701 1.4 DB Reads 8213547 74.2

 BI Writes 12092 0.1 BI Reads 967 0.0

 AI Writes 23289 0.2

 Record Locks 181966214 1644.4 Record Waits 217 0.0

 Checkpoints 11 0.0 Buffers Flushed 0 0.0

Rec Lock Waits 0 percent BI Buf Waits 0 percent AI Buf Waits 0 percent

Writes by APW 99 percent Writes by BIW 88 percent Writes by AIW 0 percent

Buffer Hits 7 percent

DB Size 308 MB BI Size 64 MB AI Size 182 MB

FR chain 660 blocks RM chain 10 blocks

Shared Memory 83332 K Segments 1

0 Servers, 5 Users (5 Local, 0 Remote, 0 Batch),2 Apws

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

197

You can also use OpenEdge Management to monitor buffers flushed. Figure 23 shows
the Checkpoint summary section of the Page Writers Operations view page.

Figure 23: Viewing buffers flushed in OpenEdge Management

If you see “buffers flushed at checkpoint” increasing during the performance-sensitive
portion of the day, and this increase is not attributable to a quiet point or an online
backup, you should add one APW process. If you keep increasing the number of
APWs and you do not see a corresponding decrease in buffers flushed at checkpoint,
then most likely you have a disk bottleneck.

Database block size
As stated previously, in most situations an 8KB database block size is the optimal
setting for most operating systems other than Windows. For Windows systems, a
setting of 4KB is more appropriate. By synchronizing the database block size with the
operating system block size, you will get better performance. When you read a single
database or index block on an 8KB block size database, you will get eight times the
information you would get for a 1KB block size. Also, if the operating system handles
disk to memory transfers in 8KB chunks, as most operating systems do, and you only
ask for a 1KB block, you run a high risk of wasting 7KB of transfer space that will
contain information that you will never use.

Managing OpenEdge Database Resources

198

Procedure libraries
OpenEdge procedure libraries let you eliminate unnecessary disk I/O. Normally, when
a program is read from disk to be executed, a copy of it is placed in the local sort (SRT)
file in case it needs to be retrieved. This copy process causes a moderate-to-high
amount of disk activity. If a program is stored in a procedure library, the client process
does not store a copy of the program in the sort file. (You can override this with the –
pls parameter.) For host-based systems this can represent a significant reduction in
temporary file I/O, which is very likely to increase performance.

Conclusion
Performance tuning is more art than science in many cases. It is necessary to view the
system as a whole and realize that an improvement in one area might cause a problem
in another. The overall goal is to work the bottleneck to the fastest resource, which is
the CPU. Once you have achieved that, you can rationalize additional hardware
expenditures to scale your application even higher. It is always important to look at the
application itself to make sure that you are not just “throwing hardware at the
problem.” Once you have an efficient application to work with, you can take advantage
of the system to run the maximum number of users at the highest performance level
with the fewest resources possible.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

199

Periodic event administration
There are some tasks that are performed only occasionally on the system. These tasks
require thought and advance planning to decrease their impact and maximize the
benefit to the business. Many of the items listed in this area could be considered luxury
items, but if you are well positioned in the other aspects of your system, you can invest
some time in these tasks to round out the management and maintenance of your
system.

Annual backups
The annual backup is generally viewed as a full backup of the system that can be
restored in the event of an emergency. The most common use of the annual backup is
for auditing purposes. These audits can occur several years after the backup is taken, so
it is very important to be able to restore the system to its condition at the time of that
backup. In the United States, it is possible for the Internal Revenue Service to audit
your company as far back as seven years. It is not likely that you will be on the same
hardware seven years from now. You might be on compatible hardware if you are
lucky, but most likely you will be on different hardware with a different operating
system. Consequently, it is important to plan thoroughly for such an eventuality.

One way to guarantee platform independence is to dump your important data to ASCII
and back it up on a reliable, common, and durable backup medium. Some people
prefer optical storage over tapes for these reasons. Also, don’t overlook the application
code and supporting software, such as which release of OpenEdge is being used at the
time of backup. If you are not going to dump to ASCII, you must obtain a complete
image of the system. If you take a complete image and are audited, you must find
compatible hardware to do the restoration. It is also important to use relative path
names on the backup to give you greater flexibility during the restoration. Finally, you
must document the backup as thoroughly as possible and include that information with
the media when sending the backup to your archive site.

Managing OpenEdge Database Resources

200

Archiving
A good IT shop always has a complete archiving strategy. It is generally not necessary
to keep transactional data available online for long periods of time. In most cases, a 13-
month rolling history is all that is necessary. This can, and will, change from
application to application and from company to company. You must have a thorough
understanding of the application and business rules before making a decision
concerning when to archive and how much data to archive. In most cases, you should
keep old data available offline in case it is needed. In these scenarios, you should
develop a dump-and-purge procedure to export the data to ASCII. This format is
always the most transportable in case you change environments or want to load some
of the data into another application such as Microsoft Excel. Always make sure you
have a restorable version of the data before you purge it from the database. An archive
and purge can dramatically improve performance, since the system will have far fewer
records to scan when it is searching the tables.

Application modifications
Changes to applications require careful planning to reduce interruptions to users.
Although there might be a process to test application changes at your site, database
administrators should consider it their responsibility to verify expected application
changes. The most effective way to do this testing is to have a test copy of your
database that is an exact image of what you have in production and a thorough test plan
that involves user participation.

Making schema changes

Schema changes can take hours to apply if they are not done properly. If the
developers tested the application of schema changes against a small database, they
might not have notice potential problems. A small database could apply an inefficient
schema update in a short period of time and would not raise any red flags. If you have
a full-size test environment, you can apply the schema change and know
approximately how long it will take to complete. It is important to understand how
long this process takes, since the users of the application will be locked out of the
system during the schema update.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

201

You should apply schema changes in single-user mode to avoid potential problems
with schema locks. If you do not have a full copy of production in your test
environment, you can apply the changes in multi-user mode and watch the number of
updates that are being done by the process. If you see hundreds or thousands of
requests being done, you can estimate the amount of time required based on the
relative size of the test database versus the production database. This estimate will not
be 100 percent accurate, but it will give you a general idea as to how much time you
will need to schedule for the outage of this operation.

As Figure 24 illustrates, you can use OpenEdge Management to determine the number
of database requests a user has performed. You must look at the number of requests
before and after doing the schema change operation. This information is also available
through the PROMON Block Access screen (option 1).

Figure 24: Monitoring user requests in OpenEdge Management

Managing OpenEdge Database Resources

202

It is difficult to determine which user number you are. You can log in with a unique
ID, and figure it out though a process of elimination, or run the following program
from within the OpenEdge editor to determine your user number:

FIND _MyConnection.

DISPLAY _MyConn-UserId.

Making application code changes

The amount of time it takes to apply application code changes can be greatly reduced
by an advance compilation of your code against a CRC-compatible copy of your
production database. To maintain CRC compatibility, start by creating a basic
database, which is one that contains no data—only schema definitions. Use the basic
database to seed a production database and a development database. The basic
database is also saved, so you will have three copies of your database. If you already
have a production database in place, the basic database is obtained by dumping the
schema from those databases.

As development occurs on a test copy of the database, the production and basic
databases remain unmodified. When you are ready to promote your schema changes
from development to production, first make an incremental data definition dump from
the Data Dictionary by comparing the development schema with the basic database.
The incremental data definitions can be applied to the basic database, and you can
compile your application against that database. Second, the incremental data
definitions can be applied at a convenient time on the production database (after
appropriate testing). While the incremental data definitions are being applied, you can
move the r-code you created against the basic database into place avoiding additional
downtime to compile the application code.

Migration of OpenEdge releases

Migrating releases of OpenEdge can be as easy as running a conversion utility or as
complex as a dump and load of your databases. And, in most cases, minor version
changes can be made without running a conversion utility. It is important to test even
minor version changes and service packs or patches in your test environment prior to
promoting the code to production. When making a major version change, you must do
additional analysis prior to making any changes. Major version changes also require
that you test the conversion process for performance and reliability prior to applying
the new version to your production environment. In almost all cases, even major
version upgrades go very smoothly, but you never want to become complacent.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

203

When you have everything in your database set up properly, you are ready to run the
conversion utility. Generally, the actual conversion of the database will only take a few
minutes, so it is not a major undertaking to convert the test environment and verify that
conversion. After the verification has been done on the test database, you can decide
how to proceed with the production application and databases. If you are unhappy with
your setup for any reason, it might be wise to do a more complex conversion.

One possible motivation for considering a complex conversion might be that you have
a significant amount of record fragmentation in the database. A complex conversion
might start with a simple conversion to take advantage of new features in the new
version. Then you would do a dump and reload of your tables to establish a new
database structure. By using a multi-phase approach, you can minimize your risk by
providing a fall back position if there are problems during the migration. It is
imperative to have good, tested backups before applying a new version of OpenEdge
or application code to the system. The same is true even when applying minor versions
and patches to the system.

Summary

The ideal system plan accounts for all aspects of system administration and
maintenance, even those items that are done on an irregular or occasional basis. If you
plan and test properly, you can avoid potential problems and provide a predictable
environment for users. In general, people do not like surprises. This is especially true
with business systems, so establishing accurate schedules for all tasks is very important
and will build confidence in your system.

Managing OpenEdge Database Resources

204

4
Guidelines for Applying OpenEdge
Management

This chapter provides guidelines for installing, configuring, and using OpenEdge
Management, as described in the following topics:

• Introduction

• Making practical resource monitoring decisions

• Configuring OpenEdge Management for your environment

• Remote monitoring

• Performance considerations

• Configuration Advisor

• The File Monitor

• Creating custom reports using ABL

• Creating custom jobs

Guidelines for Applying OpenEdge Management

206

• Extending usefulness of existing OpenEdge Management functions

• Troubleshooting your OpenEdge Management installation

For more information about the tasks discussed in this chapter, refer to the OpenEdge
Management product documentation where you will find comprehensive installation,
configuration, and usage instructions. The OpenEdge Management product
documentation set includes the following manuals:

• OpenEdge Management: Installation and Configuration Guide

• OpenEdge Management: Resource Monitoring Guide

• OpenEdge Management: Database Management Guide

• OpenEdge Management: Alerts Guide and Reference

• OpenEdge Management: Servers Guide

• OpenEdge Management: Reporting Guide

• OpenEdge Management: Trend Database Guide and Reference

• OpenEdge Revealed: Achieving Server Control with OpenEdge Management

OpenEdge Management customers receive this documentation with the OpenEdge
Management product. You can also access documentation from the Progress Software
Developers Network (PSDN) at:
http://www.psdn.com/library/kbcategory.jspa?categoryID=1410.

http://www.psdn.com/library/kbcategory.jspa?categoryID=1410�

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

207

Introduction
Throughout this manual you have been introduced to OpenEdge Management as a tool
to monitor and trend computer, operating system, and OpenEdge resources. The
benefits of the product include:

• A common interface to monitor and view resources across operating systems and
platforms

• Automatic trending of resources upon installation

• Alerts to identify potential trouble spots

• Ability to automatically configure alert thresholds

While it is easy to recognize the value in such a product, you also must be aware that a
certain amount of effort is needed to set up and maintain OpenEdge Management so
that it generates the best results.

OpenEdge Management can provide a snapshot of the current status of a resource, or a
trend of resource utilization over a period of time. This trending information is stored
in an OpenEdge database, which is called the OpenEdge Management Trend Database.
This database needs to be maintained like any other database on your system. Backups,
tuning, and other maintenance activities are required to run the OpenEdge
Management Trend Database properly, and to preserve and protect your data.

Guidelines for Applying OpenEdge Management

208

Making practical resource monitoring decisions
During the OpenEdge Management installation process, you must make decisions
regarding the resources that you want to monitor and trend. You also need to think
about the frequency of monitoring. If you monitor too often or have too many
monitored resources, you risk affecting the performance of your core systems. If you
monitor too few resources or monitor the resources too infrequently, you reduce the
effectiveness of OpenEdge Management.

This section provides guidelines for making effective decisions during the OpenEdge
Management installation process. These are two portions of the OpenEdge
Management installation:

• Installing the OpenEdge Management software

• Configuring the OpenEdge Management resource monitors

Before you install
Before you install OpenEdge Management, you must do the following:

• Apply necessary service packs — Before you install OpenEdge Management,
you must install the service pack from the CDs provided with the software.

• Decide on which machine you want to store the OpenEdge Management
Trend Database — First, install OpenEdge Management on the machine where
you are going to store your OpenEdge Management Trend Database. Then install
OpenEdge Management on other network nodes. Your application and network
layout will determine the number and location of OpenEdge Management Trend
Databases, as described in the "Determining the location and the number of
OpenEdge Management Trend Databases" section on page 224.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

209

• Decide where you want to install the OpenEdge Management Trend
Database — While the default location for the OpenEdge Management Trend
Database is under the OpenEdge Management installation, it is advisable to
specify a directory outside of OpenEdge Management and OpenEdge (that is,
outside of $DLC). This makes it more accessible for standard maintenance. Also,
if you uninstall OpenEdge Management, the database will also be deleted if it
resides within the OpenEdge Management installation.

• Know the SMTP host name and port number — Prior to installing OpenEdge
Management, you must know the Simple Mail Transfer Protocol (SMTP) host
and port number. The SMTP host is your mail server, and the port is the port
number that the mail service is using to provide service to your network. The port
is 25 by default, but some administrators modify this for security reasons. Your
mail administrator can provide this information to you in most cases, or if you
can log into the mail server machine, you can look at the services file to
determine the port that SMTP uses. The services file is located in the /etc
directory on UNIX and Linux systems. In Windows systems, this file is located in
the \winnt\system32\drivers\etc directory, by default.

In the services file you will see a line similar to the following:

smtp 25/tcp # mail

Where:

– smtp is the service name.

– 25 is the port number used by the service.

– tcp is the network transfer protocol used by the service.

– # mail is a comment, which is used to help the administrator identify the
service.

The only item that might change in this line is the port number. This is the value that
you need when you install OpenEdge Management.

Guidelines for Applying OpenEdge Management

210

Initial installation settings
Allow OpenEdge Management to auto-discover all of the resources on the Getting
Started page. Default trending for resources will be enabled automatically. This will
give you a good basic installation to work from and allow you to choose which
resources you want to trend. If you have experience with OpenEdge Management, you
might know which resources to trend, and the installation will provide a convenient
method to disable trending on just those resources you specify. For the first-time user,
it is best to use the defaults until you know what resources you want to trend. You will
still be able to get snapshot information of resources even if you decide to disable
trending at a later time.

Post installation configuration tasks
Once your installation is complete, you must perform some additional tasks to
complete the configuration. Later, you might make modifications to these items as you
analyze the data.

The following are the major steps to complete your OpenEdge Management
installation:

1. Create one or more monitoring plans.

2. Create jobs.

3. Create actions.

4. Create rules.

5. Export your settings.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

211

Create monitoring plans

All OpenEdge Management resources must have a monitoring plan. Each monitoring
plan includes a schedule.

The first order of business is to change OpenEdge Management’s default schedule, as
this is the basis for trending on your system. The default schedule is initially set to
monitor 24 hours a day, every day. You can modify this schedule, but you cannot
delete it or rename it.

To provide additional flexibility in scheduling, you can build additional schedules
during the OpenEdge Management installation. These schedules are used only if
requested by the user. Additional schedules can be modified to better suit your needs.
The most likely modification is to have your default schedule cover your prime
business hours (for example, Monday through Friday, 8AM to 6PM), with a second
schedule for after hours and perhaps a third schedule for weekends. This approach
allows you to have more aggressive monitoring during peak periods and less
monitoring during times of inactivity. If no one is on the system and there is little or no
batch activity on the system between 7PM and 8AM, you could postpone monitoring
until 8:30AM. This would allow users to fill the buffer pool during their normal ramp-
up time, which is not indicative of normal running operation of the system.

There are many systems that do significant amounts of work during nightly processing.
If this is the case at your site, it is wise to leave monitoring and trending enabled
during this period. The point is to have OpenEdge Management poll and trend only
when necessary.

Create jobs

After schedules and actions have been created, you can create jobs for your system.
Each job is individually scheduled on the Job page in OpenEdge Management. A job
can be run once, repeated on a schedule, or used as an action. You can use this process
to start your end-of-day processing at the same time each night, start your weekly
processing on the same day and time each week, or to repeat a process on a monthly
basis.

When you define a job, you can also use the job as an action. Any jobs defined as
actions can be used within compound actions, as described in the following section.

Guidelines for Applying OpenEdge Management

212

Create actions

After you complete your schedules, you should create new actions or modify the
default action. The actions provide a mechanism for doing something in response to an
alert. Alerts are discussed in the "Rules

 OpenEdge Management provides the following actions:

• E-mail action — Used to send an e-mail message in response to an alert. Many
pager companies allow an e-mail message to be sent directly to a pager, so you
can use this action to notify a person of an urgent issue. You might want to set up
several e-mail actions, depending on the severity of the problem. One action
could be used to notify administrators only, while another could inform the help
desk, and a third could notify a distribution list about very urgent issues.
Information e-mails can be sent to a location that is checked only periodically to
minimize the interruptions for low-level messages.

• Log action — Allows users to place a message in the file of their choice. This is
another way of handling informational messages. Instead of sending an e-mail to
a user or an account that is looked at infrequently, you can place the message in a
file that is viewed on an ongoing basis. This way, the volume of e-mail messages
is minimized.

• SNMP trap action — Generates an SNMP trap or message. Simple Network
Management Protocol (SNMP) is the Internet standard protocol for managing
nodes on an IP network. For example, if you are running an operating system tool
that supports SNMP to manage your system, such as HP OpenView, you can
configure OpenEdge Management to send traps to your tool to inform you of
issues in your OpenEdge environment. This SNMP trap action allows you to
extend the capabilities of your existing infrastructure without having to train your
operators to use OpenEdge Management.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

213

• Compound action — Allows you to combine actions in response to an alert. The
best example of this might be a situation where you wanted to send an e-mail (e-
mail action) and log the issue to a log file (log action) in response to an alert.

Figure 25 shows the Job Create view.

Figure 25: Job Create view

Note: You must insure the Action checkbox has been selected in order to use
the defined job action.

QuickTime™ and a
decompressor

are needed to see this picture.

Guidelines for Applying OpenEdge Management

214

• Command action —Used to take corrective steps through the use of jobs as
actions, to generate informational messages, or a combination of the two. You are
only limited by your imagination and the amount of time you have to spend on
development of the background application code. In most cases you want
OpenEdge Management to deliver notification prior to a problem occurring. This
is important because it provides an opportunity to correct problems prior to an
outage. In a best-case scenario, users will keep and analyze trending information
and take corrective action so alerts will never be fired in the first place. Alerts
should be treated like the warning lights in your car. If the light turns on there is
already a problem, which might have been taken care of with routine
maintenance.

Defining environment-specific rules

Once your installation is complete, you can focus on the nuts and bolts of resource
monitoring and trending. This includes determining which resources to trend, which
rules to define, and how to determine the actions that those rules will take when a rule
is broken.

Scheduling and polling

The default schedule for OpenEdge Management is 24 hours a day, 7 days a week.
However, each resource can have its own schedule. Once you select a schedule, you
can choose a polling interval. The polling interval tells OpenEdge Management how
often to poll or query the resource for information. A poll without trending will support
the alert system within OpenEdge Management. The more frequent the poll the greater
the impact to the system. You might want to poll some resources frequently, but only
trend the resources a few times a day.

Trending

Trending is important because it allows you to gain insight into how and why your
system demands are growing. However, it is equally important to know what resources
not to trend. If you are trending every resource, you gain insight into all facets of your
application, but the additional load on the system to support all this trending can cause
a noticeable decrease in performance. The goal is to trend what you need because only
a limited number of samples are stored in memory, and it is difficult, or impossible, to
get information about resources that you are not trending. At the same time you do not
want to trend too many resources that would incur significant additional hardware
expense to support the monitoring and trending tool.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

215

If you are frequently monitoring and storing trending information, you might want to
compress data older than 180 days with the OpenEdge Management Trend Database.
This approach will take your individual samples and compress these records into
hourly, daily, and weekly records to conserve space in the OpenEdge Management
Trend Database. It is also important to have an archiving strategy for your OpenEdge
Management Trend Database data just like any other database. You should not discard
the data just because it is over one year old. Spend the time and resources to gather the
data. This historical data will allow you to provide the business with year-over-year
statistics from which to plan.

You can enable trending for the default schedule associated with this database resource
by selecting the Trend Performance Data check box, as shown in Figure 26.

Figure 26: Enabling trending

Guidelines for Applying OpenEdge Management

216

Click the Advanced Settings button to display the page shown in Figure 27.

Figure 27: Advanced trending settings

On this page, you can specify how often you want OpenEdge Management to capture
trending information. This is a product of the frequency of polls and the number of
polls between trending. If you trend data on every poll, a trending data record is stored
for this resource for every polling interval.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

217

If you set the Trend Performance Data Every field to 1 and the polling interval is set
to every 5 minutes, you will store 288 trend records for this resource per day. For
example:

24 hours * 60 minutes per hour / 5 minutes per sample = 288 samples
per day

If you want two trending samples per day, change the Trend Performance Data
Every field to 144, as shown:

144 samples * 5 minutes per sample / 60 minutes per hour =
 12 hours per trended sample

If you want greater control over when samples are taken, you can create a separate
trending schedule. You can set this schedule to execute at specific times of the day to
capture the data you require. This allows you to do your polling at peak periods after
your end-of-day cycle or at other specific periods of the day. You can have a single
poll, or a short defined period to capture a specific period, task, or series of tasks. You
should begin using the default values, and then, over time, modify these default values
to suit your needs.

Rules

OpenEdge Management rules provide boundaries for the system. If a rule is broken, an
alert or action can be taken based on the rule. Turn on rules only as you need them, as
this will limit the number of alerts and make the alerts that you do get more
meaningful.

Guidelines for Applying OpenEdge Management

218

It is important to keep your rules simple and focused on your most critical areas. Use
the following guidelines when setting up rules:

1. Focus on failures that you have already experienced, such as:

– Abnormal shutdown of a database

– Process terminations

– Disk full conditions

2. Work on common problem sources, such as:

– Variable area extent growth

– High area space utilization

– High paging and swapping

– High disk space utilization

– Log file monitor for the database

3. Work on housekeeping, such as:

– Removing any unnecessary rules

– Adding additional rules as needed

Job and report templates

OpenEdge Management lets you create job templates and use them as a basis for
creating additional jobs. The templates allow you to create business rules for how you
want specific tasks to be completed. You can duplicate the process quickly while
maintaining your business rules. Templates provide a quick mechanism to go from
configuration to implementation when you are dealing with multiple resources in your
environment.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

219

Using job templates makes sense when you have multiple resources that are similar,
but if you are going to create only one job, it does not make sense to create a template.
Also, if you are going to export your resource settings, the template you create might
be more useful on other systems.

All reports use templates, so regardless of whether you are going to use the report once
or several times, you must create a template for the report.

My Dashboard

The operational model of the business determines the ideal configuration of one or
more simple screens that are uncluttered and meaningful. The most common
configuration is to include vital system resources and your databases on the My
Dashboard page. Other models might include:

• Profiles based on applications

• Profiles based on servers

• One server for your real-time application, another for personnel and payroll, and
a third for accounting and finance

• Profiles based on OpenEdge Management users (database administrator versus
system administrator)

Guidelines for Applying OpenEdge Management

220

Figure 28 shows the default My Dashboard page.

Figure 28: Sample default My Dashboard page

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

221

Export resource settings

OpenEdge Management lets you export your resource settings to provide a basis for
building your next OpenEdge Management environment. This feature is especially
helpful for VARs and other users who must support the same application for a variety
of systems. You can export the following items: job templates, actions, database rule
sets, report templates, log file search criteria, log file rule sets, and shared views. These
exported items can then be imported into an OpenEdge Management Trend Database
on a different system.

When you are importing resources from a resource settings file, you can choose how to
handle resources that already exist in the current OpenEdge Management installation.
The choices are: to display an error, keep the existing resource, or replace the existing
resource.

Default database monitoring

By default, OpenEdge Management polls database resources every five minutes. If
trending is enabled, OpenEdge Management also maintains trending information for
each poll, with the exception of index and table statistics, which are trended once every
288 polls (once a day).

The default rule plan for a database resource contains a small number of commonly
used rules. Any additional rules will need to be either defined or imported.

Alert setup

OpenEdge Management alerts are effectively defined only after your OpenEdge
Management actions have been defined and saved into the OpenEdge Management
console. You should first define the default action. The initial setting of the default
action is to send an e-mail to the address specified during the installation process. You
must first determine what the default action for an alert will be, and then modify the
default action. In most cases, you can leave the default action as is and then start
creating additional OpenEdge Management actions, as needed.

Guidelines for Applying OpenEdge Management

222

In most cases, it makes sense to set up your alert categories based on your business
needs. For example, you might want alerts for system resources to trigger an action
that sends an e-mail to the system administrator, while database alerts might trigger
actions that send e-mail to the database administrator. Severe errors in either area could
be directed to both system administrators and database administrators.

It is important to start with a few important alerts and then add others as needed. First
take the default rule and add two additional rules, one for Variable Extent Grow for all
of your database areas and one for Stopped Trending. These rules will ensure that
OpenEdge Management is operational on your resources. Once these rules have been
defined, you can add additional rules as needed. Make sure that the defined rules
trigger an alert only when you want them to, or you will devalue the alert and risk a
valid alert being ignored.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

223

Configuring OpenEdge Management for your
environment

There are many different ways to configure OpenEdge-based applications, but most of
these configurations fall into one of the following three types: single machine, multiple
machine, or distributed multiple machine.

The simplest and most widely utilized configuration is a single-machine configuration,
in which one machine acts as the database engine. The term database engine refers to
the machine that contains the OpenEdge databases, and potentially the application
code. However, this configuration also refers to the server in the classic client/server
environment where there are many PCs connected to a central machine that serves
data. In this configuration, the OpenEdge Management Trend Database stores your
performance trending information on the same machine as the application databases.

A multiple-machine environment is more complicated due to the increase in the
number of machines and the amount of trending data that will be stored. To
successfully configure a multiple-machine environment, you must know how you will
use the information. If each machine has a separate purpose and separate
administrative staff, it is wise to separate the trending information as well, but for most
businesses, this is not the case. The machines work together and have only one or two
administrators to manage them. In this case, a central machine would act as the
OpenEdge Management Machine (OMM), and the other machines would report the
trending data to the central machine. If one of the production machines has spare
capacity (disk, CPU, memory, and network), you can use that machine as the OMM,
but you can also have a dedicated machine to handle this function.

Note: Remember that the OMM machine must have an AdminServer license in
addition to the OpenEdge Management license.

Having machines share the same OpenEdge Management Trend Database reduces the
number of places you must look for performance information, and allows the
administrators to be more efficient in avoiding system issues. The downside is that
there is an increase in network traffic to accommodate trending data being passed from
OpenEdge Management client machines to the OMM. For performance reasons, you
should avoid having more than ten OpenEdge Management client machines per OMM.

Guidelines for Applying OpenEdge Management

224

Determining the location and the number of
OpenEdge Management Trend Databases
Determining the number of OpenEdge Management Trend Databases is
straightforward in most cases. A small percentage of installations will fall outside these
guidelines, but most users should follow these general rules.

If you are in a single machine environment you should:

• Have one trending database

• Trend only those databases essential to business functions

Because the OpenEdge Management Trend Database is sharing resources with your
production application, make sure you reduce the impact of monitoring on your other
applications. By having only one OpenEdge Management Trend Database and limiting
the number of resources to only those essential to your core business, you can
implement OpenEdge Management and gain insight into your system’s inner
workings, while limiting the use of shared system resources.

If you have multiple machines in a local area network (LAN), you should:

• Have one trending database

• Store the trending database on your most reliable machine, where possible

• Store the trending database where you have spare capacity

• Trend only those resources needed

You can introduce additional network traffic by trending remotely, but the ability to
trend and report from one database provides significant benefits over time. If you place
the database on a machine that has excess capacity, you can use that capacity to
provide a service to your users.

If you have multiple database machines distributed across a wide area network
(WAN), you should:

• Have one trending database per site

• Follow the rules for LAN machines, as described above

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

225

For performance reasons, it is important to keep OpenEdge Management monitoring
and trending traffic from your WAN. There is no problem with accessing your trending
information across the WAN through the OpenEdge Management console or through
custom programs, however, you should treat each site in your organization as a
separate local area network.

Isolating the OpenEdge Management Trend
Database
By isolating the OpenEdge Management Trend Database you can limit the impact
trending has on other resources. As stated before, the very act of monitoring and
trending has an impact on performance.

This section discusses possible ways to isolate the OpenEdge Management Trend
Database along with the costs and the benefits associated with each option.

Using a separate machine

If you isolate the OpenEdge Management Trend Database on a separate machine, you
can monitor this machine so you understand the impact of resource trending on the
machine and the network. The major issue with this configuration is the increased
network traffic required to support monitoring. This might not be a problem in many
cases, but if it becomes a problem, you can overcome it by either increasing the
bandwidth of your network or implementing a private network. Given that the network
is generally the slowest hardware resource, you must understand that the additional
load on this resource will not cause problems for your applications.

Using a private network

One way to eliminate problems in trending across the network is to set up a private
network that will support trending. This is fairly inexpensive if the machines are in
close proximity to each other, but if they are not, then the cost can increase
significantly. Each monitored machine requires an additional network card, and one
additional router or switch to attach the machines. Once these machines are physically
connected, you provide a separate subnet for the machines in the private network. The
machines can then communicate over that network for OpenEdge Management without
disturbing your production network.

Guidelines for Applying OpenEdge Management

226

Use a separate machine and a private network

By combining both of the previously described methods, you can collect data from a
number of machines simultaneously and feed that data back to a central repository. The
production machines incur only the performance cost of collecting the data, while the
reporting and storage costs would be on the OpenEdge Management Trend Database
server side. There is additional setup and maintenance costs associated with this
environment, but you must weigh the value of the collected information with the cost
of collecting it to determine if this solution makes good business sense for your
operation.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

227

Remote monitoring
Fathom Management Version 2.1 introduced remote monitoring capabilities. Prior to
that version, you were able to install OpenEdge Management on several machines and
redirect trending information back to a single machine. This capability is still
available; however, when OpenEdge Management is not installed on a secondary
machine, it is still possible to use OpenEdge Management to manage resources on
remote machines. The second machine requires only an OpenEdge license to have the
functionality described in this section. The Resource Monitoring Guide has a complete
description of this functionality. The goal of this section is to explain the capabilities
and limitations of OpenEdge Management’s remote monitoring features.

It is important to think about these remote machines the same as you think of any other
machine: the same rules apply to remote machines as to the machine where the console
resides. The only other consideration is the amount of data that you transfer between
the machines for monitoring and trending, since all of the data transfers across the
network to the OpenEdge Management Trend Database. You might want to have
remote machines on a less aggressive schedule if you think network bandwidth might
be an issue.

Resources that can be managed
How resources are managed depends on whether or not OpenEdge Management is
installed on the remote machine. When OpenEdge Management is installed on a
machine, it is possible to utilize all of the OpenEdge Management functionality on that
machine, and retain the trending data locally, or send the data to a central system. In
this case OpenEdge Management is not considered to be remote; rather, it is installed
in two or more locations while being managed from a single console. If OpenEdge
Management is not installed on a remote system, you must have an OpenEdge license
on every machine on which you want to support remote monitoring.

Limitations of remote monitoring
There are currently three limitations of remote monitoring: remote log file monitoring
cannot be performed, jobs cannot be run remotely, and scripted databases cannot be
started or stopped. Otherwise, all other OpenEdge Management tasks can be managed
from the central console.

Guidelines for Applying OpenEdge Management

228

Remote database monitoring
Databases can be monitored on remote machines, and trending and alerts for remote
machines can be generated through OpenEdge Management. Remote databases can be
started or stopped through the management console.

OpenEdge server support
The real benefit of remote monitoring is for OpenEdge servers. AppServers,
WebSpeed agents, and the NameServer can all be remotely monitored through
OpenEdge Management. All OpenEdge server administration functions (add, trim,
start, and stop) are supported through the remote monitoring capabilities of OpenEdge
Management.

System management support
All system monitoring and trending capabilities are available through the remote
monitoring in OpenEdge Management.

Setup for remote monitoring
The OpenEdge Management Remote Configuration utility (fmconfig) is used on each
machine to enable remote monitoring. This utility must first be run on the machine
where the console resides and then it can be run on the remote hosts.

See the OpenEdge Management: Installation and Configuration Guide for a further
explanation of the initial setup of the remote machines.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

229

Performance considerations
Progress has taken every step to reduce the impact of OpenEdge Management on your
system. However, you need to consider OpenEdge Management as another application
in your operation. All applications require system resources (disk, memory, CPU, and
so on), and OpenEdge Management is no different. There are cases where improper
monitoring has had an adverse affect on performance. Here again, you need to look at
the information you require and the information you desire. The information you
require is the information that is critical to your operation. If you must choose between
OpenEdge Management monitoring and production performance, production
performance wins, but in most cases, you can monitor critical functions without any
noticeable performance degradation. To determine how much additional monitoring
you can perform without impacting your production performance, review these points:

• Consider the number of resources that you are monitoring on the machine and the
frequency of the monitoring. If you are doing frequent samples and you have
trending enabled for the resource, CPU and memory will be affected when
gathering the data, and disk space will be affected when storing the data. It might
be important to know the status of the database (if it is running or not) every two
minutes, but you might only want to gather and trend storage information several
times a day.

• Consider how you plan to use the trending information for a resource. If you do
not know how you will use the data, assume that hourly information is more than
sufficient for most volatile resources, and once a day is sufficient for more static
resources. The reason you want to decrease the frequency of information
gathering and analysis is that each time one of these polls takes place, there is a
"burst of activity." The more information you request, the greater the length of
the activity burst. For information that is gathered daily, you can create a
schedule that executes during a quiet period. This will reduce the impact on other
applications.

Guidelines for Applying OpenEdge Management

230

Configuration Advisor
The Configuration Advisor is defined in the following sections.

What is the Configuration Advisor?
The Configuration Advisor is a tool to help determine the correct alert thresholds
within OpenEdge Management by examining captured database and system statistics
within the OpenEdge Management Trend Database and providing suggested values for
these alert thresholds. By looking at past data, the Configuration Advisor can
determine how your system acts under normal conditions and then provide you with
suggestions on the proper settings for each monitored area of your application.

Who is it for?
If you have a good understanding of how your system operates, what areas you want to
monitor, and how you want your alerts set, you might not want to use the
Configuration Advisor. If you are unfamiliar with OpenEdge Management's
capabilities, or you purchased new software, or are making significant changes to your
system and are unsure as to the effect of these changes, you might want to use the
Configuration Advisor to guide you.

How does it work?
After installing OpenEdge Management you must monitor and trend each resource in
which you believe the Configuration Advisor might be useful. Initially, it is advisable
to monitor and trend all resources, and later you can scale back the amount of collected
data. Generally, you gather trending data for a minimum of a week, and even up to a
month if your activity varies greatly throughout the month. This might seem like a
contradiction of the suggestion made in the "Performance considerations" section on
page 229, which said to monitor only the things that are necessary and then add others
as necessary. However, with the Configuration Advisor you must have accumulated
the trend data for a resource in order to use the tool. Once you have used the
Configuration Advisor to determine your alerts, you can disable monitoring and
trending for resources where data is not necessary.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

231

Once the trending data is gathered, you must define rules for each resource. Again, you
can choose to define a rule for every resource, or only the rules you think you will
need. The Configuration Advisor will provide advice only on resources with rules
defined. When you define each rule you should make the rule inactive until you have a
setting that will work for you.

Figure 29 is an example of the Configuration Advisor used for an AppServer. It is
possible to set up multiple monitoring plans (such as weekdays and weekends).
Figure 29 has multiple monitoring plans set up.

Figure 29: The Configuration Advisor

The recommended values are based on the time periods used for analysis (in this case,
weekdays). These values might not be appropriate for a weekend monitoring plan,
since activity levels can differ significantly from weekend to weekday. You can rerun
the analysis for the weekend plan separately and then provide a threshold for that rule.

Guidelines for Applying OpenEdge Management

232

Let’s take an example in the Recommend Values column. The Process CPU High
shows a value of 0.8 percent. This is the value that the Configuration Advisor
recommends you set as a threshold. Note the number in the parentheses to the right of
the recommended value. This is the number of times an alert is raised during the
sample period if the recommended value is set as a threshold. When you see a high
number for this, you should either choose a different threshold or make a system
modification and then re-establish the threshold value with new trending data prior to
enabling the rule.

You might enable the Process CPU High alert. This alert notifies you if the CPU
process uses more CPU than normal. This speeds detection of runaway processes
because either you will be notified right away of the cause of the problem, or you have
eliminated one cause from your troubleshooting.

This initial monitoring causes a small additional load on the system during the
monitoring period. The value of information gathered by OpenEdge Management for
use by the Configuration Advisor, and the convenience of setting up proper thresholds
warrants the trade-off. Remember to disable unnecessary monitoring after the
Configuration Advisor has done its work.

If you modified the default trending for any resources, it is possible that the
Configuration Advisor will not provide an accurate threshold estimate. This happens
because OpenEdge Management trends every poll by default for most resources and if
you modify trending to trend every nth poll, instead you might have a situation where
the polls that are not trended raise an alert, but the trended poll does not. An example
of this is a situation in which you are polling every five minutes and you are trending
every three polls. If two polls come in at 1000 reads per second and the third comes in
at 100 you risk only capturing the 100 reads per second poll in your trending. If you set
an alert threshold at 200, which is twice your trend data, you see two alerts when the
situation happens again. This is not generally a problem for the vast majority of users,
but be aware that the Configuration Advisor is only as good as the data it uses for
analysis.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

233

The File Monitor
The File Monitor replaces the file size option in earlier versions of Fathom. It provides
numerous options for monitoring various statistics on files of all types. The file
monitor now supports file aging, whether or not a file exists, growth rate, when a file
was last modified, and the current file size. The usefulness of these features extends far
beyond monitoring your OpenEdge databases; they can also be used for EDI functions,
connectivity checking, application monitoring and debugging, and many other day-to-
day IS functions.

To use the File monitor, from the Resources screen select New Resource Monitor,
then File. Figure 30 shows the Create File Monitor screen.

Figure 30: Create File Monitor screen

Enter the Name of the OpenEdge Management resource and the File Name that you
want to monitor. It is always a good idea to put a note in the Description area so that
others using the OpenEdge Management console will know why you are monitoring
this file.

Guidelines for Applying OpenEdge Management

234

Once this information is entered and you have saved the settings, you are prompted to
enter the monitoring schedule for this resource. You can now enter the rules for this
particular file by clicking Add Rule. The Audible File Monitor Rules windows shown
in Figure 31 appears.

Figure 31: Available File Monitor Rules screen

The following sections present a brief description of each rule and how you can choose
to apply it in different situations.

File Age
The File Age alert is raised if a file is unmodified or is older than a specified date-time.
There are two ways to take advantage of this feature. One way is to make sure that a
file or files have been updated more recently than a certain date-time. The other is to
detect files that have not been updated for a given period of time.

Using the most-recently-updated approach is extremely useful if you expect periodic
refreshes (such as daily updates) of certain application files. For example, you might
get an XML feed from a vendor with current pricing and stock information every day.
You can avoid problems such as a dropped feed, and ensure a new file is in place every
day, by raising an alert when the file has not been updated.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

235

The least-recently-updated feature is useful when aged files must be removed or
archived. This is a powerful tool to help keep systems clean. Users are notorious for
leaving output files around for long periods of time, often not knowing they are there
or forgetting about them. The File Age rule lets you enforce the 30-day-rule and
automatically remove output files that are over 30 days old with no user interaction.

File Exists
The File Exists alert is raised if a given file or file type exists or comes into existence.
OpenEdge Management looks for the file and takes action only if the file exists. This
alert is excellent for dealing with applications that use operating system flag files to
signify a problem. For example, OpenEdge core files can be automatically removed.
You can define an action to remove the file simply when it comes into existence, or
you can create a complex action to remove the file and send an e-mail to the
administrator. For example, if your system is shut down every night, you can check file
aging for two-day old LBI, SRT, and other temporary files and remove them. Or, if you
discover a protrace file, you can move it to a backup directory and send an e-mail to
the administrator.

File Growth Rate
The File Growth Rate alert is equally good for monitoring database growth, as well as
non-DB files. For example, OpenEdge log files and other system and application files
can be monitored with this option. If a file grows at a rate greater than some criterion
you specify, an alert can be sent using standard OpenEdge Management methods. If
you know the cause of the problem—for example, a runaway process—you can have
the alert take corrective action at the first sign of the problem and send alerts on
subsequent passes if the corrective action is ineffective.

File Modified
The File Modified alert fires if a file is modified in any way. If you have static files
that should only be modified by certain people, this is an excellent way to keep track of
when a file is modified. (This is a way to keep those meddling developers in check!)
Many applications have files that should only be modified by the system administrator,
such as the database parameter file. If anyone modifies the file, an alert fires. This alert
can also take corrective action by retrieving an original copy of the file from an online
archive, in addition to sending a message.

Guidelines for Applying OpenEdge Management

236

File Size
Determining if a file has grown beyond a given size is a constant concern for most
administrators. The File Size alert allows you to define a maximum size threshold for a
file and take action if that size is exceeded. This action can be a simple notification, or
a complex action that archives the file and then truncates it to allow for future growth.

Prior to Fathom Management Version 2.1, the administrator had to either manually
check on critical files every day, or write custom code to perform the checks. All of
these checks can now be executed though a single, standard interface for any kind of
file: OpenEdge, or non-OpenEdge. Alerts can be configured within OpenEdge
Management, so that as the number of files being monitored changes, there is minimal
additional maintenance required. For example you can define one action that notifies
multiple people when a file was modified. If the list of people notified changes, you
only need to modify one action instead of each individual file resource. This saves time
and provides better consistency.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

237

Creating custom reports using ABL
The data stored within the OpenEdge Management Trend Database is partially
normalized. One thing that will help you to create effective reports with SQL is the
creation of views to help with queries. Example 6 shows an example of a typical view.

Example 6: Typical view

CREATE VIEW my_view AS

 SELECT

 Pub.cf_Sample.sample_id,

 Pub.cf_Sample.sample_Len,

 Pub.cf_Sample.sample_date,

 Pub.db_areastatus_areaname areaname,

 Pub.db_areastatus_areanum areanum,

 Pub.db_areastatus_totblocks totblocks,

 Pub.db_areastatus_hiwater hiwater,

 Pub.db_areastatus_extents extents,

 Pub.db_areastatus_freenum freenum,

 Pub.db_areastatus_rmnum rmnum

 FROM pub.cf_sample

 LEFT OUTER JOIN pub.db_areastatus

 ON pub.db_areastatus.sample.id=pub.cf_sample.sample_id;

OpenEdge Management data is also accessible through ABL. You can define how you
want to view the information. If you require all of the information for a resource, you
can start with a simple query of the Cf_Resrc table, and then expand on the search
criteria to narrow down the information that you really need. If you want to see what
occurred on a specific day, start with the Cf_Sample table then move to the table that
contains the information you require. There is more information regarding what data is
stored in the tables within OpenEdge Management in the OpenEdge Management
Trend Database Guide and Reference.

Guidelines for Applying OpenEdge Management

238

Example 7 shows an ABL program created to display database activity summary
information based on a particular date.

Example 7: ABL program to display database activity summary

FOR EACH Cf_Sample WHERE

 Cf_Sample.Sample_Date = 4/15/2002:

 FIND FIRST Cf_Resrc WHERE

 Cf_Resrc.Resrc.ID = Cf_Sample.Sample_ID NO-ERROR.

 IF AVAILABLE Cf_Resrc THEN

 DO:

 FIND FIRST Db_ActSum WHERE

 Db_ActSum.Sample_ID = Cf_Sample.Sample_ID NO-ERROR.

 IF AVAILABLE Db_ActSum THEN

 DO:

 DISPLAY

 Cf_Resrc.Resrc_Name FORMAT "x(15)"

 Cf_Resrc.Resrc_Loc FORMAT "x(15)"

 STRING(Cf_Sample.Sample_Time,"HH:MM:SS") LABEL "Time"

 Db_ActSum.ActSum_Commits

 Db_ActSum.ActSum_DbAccesses

 Db_ActSum.ActSum_DbExtend

 Db_ActSum.ActSum_DbReads

 Db_ActSum.ActSum_DbWrites

 WITH FRAME frame_x 1 DOWN 1 COLUMN.

 END.

 END.

END.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

239

Example 8 shows an example of ABL code required to display information about a
specific resource.

Example 8: ABL program to display resource information

FIND FIRST Cf_Resrc

 WHERE Cf_Resrc.Resrc_Name = "TrendDatabase" NO-ERROR.

IF AVAILABLE Cf_Resrc THEN

DO:

 FOR EACH Cf_Sample WHERE

 Cf_Sample.Resrc_ID = Cf_Resrc.Resrc_ID:

 FIND FIRST Db_ActSum WHERE

 Db_ActSum.Sample_ID = Cf_Sample.Sample_ID NO-ERROR.

 IF AVAILABLE Db_ActSum THEN

 DO:

 DISPLAY

 Cf_Sample.Sample_Date

 STRING (Cf_Sample.Sample_Time,"HH:MM:SS") LABEL "Time"

 Db_ActSum.ActSum_Commits FORMAT ">,>>9"

 Db_ActSum.ActSum_DbAccesses FORMAT ">,>>9"
 LABEL "Accesses"

 Db_ActSum.ActSum_DbReads FORMAT ">,>>9"

 Db_ActSum.ActSum_DbWrites FORMAT ">,>>9"

 WITH DOWN FRAME frame_x.

 END.

 END.

END.

Guidelines for Applying OpenEdge Management

240

Viewing archived data
Archived data is treated differently than actual trend data. You always deal directly
with the table that contains the data, regardless of whether you are looking at a specific
resource or specifying a date range. Example 9 shows an example of how to display
archived database summary information.

Example 9: Code to display archived database summary information

FIND FIRST Cf_Resrc WHERE Cf_Resrc.Resrc_Name = "TrendDatabase" NO-ERROR.

IF AVAILABLE Cf_Resrc THEN

DO:

 FOR EACH ar_actsum WHERE

 ar_actsum.Resrc_ID = Cf_Resrc.Resrc_ID:

 DISPLAY

 Ar_ActSum.ActSum_EndDate

 STRING (Ar_ActSum.ActSum_EndTime, "HH:MM:SS") LABEL "Time"

 Ar_ActSum.ActSum_Commits FORMAT ">,>>9"

 Ar_ActSum.ActSum_DbAccesses FORMAT ">,>>9"

 Ar_ActSum.ActSum_DbReads FORMAT ">,>>9"

 Ar_ActSum.ActSum_DbWrites FORMAT ">,>>9"

 WITH DOWN FRAME X.

 END.

END.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

241

Creating custom jobs
Progress has bundled Perl with OpenEdge Management. Perl is a programming
language similar to the Korn shell in UNIX or Linux and the command procedures in
Windows. The main benefit of Perl is that it is supported on all of the platforms that
OpenEdge supports. Any Perl programs you create in one environment should work in
a different environment with little or no modification. This is not the case if you used
command procedures in Windows and decided to migrate your application to UNIX. In
this case, you must completely rewrite all of your supporting programs. OpenEdge
Management can integrate with Perl or any other programs you have on the system, so
if you are already comfortable with the Korn shell, use that language to create your
jobs.

OpenEdge Management allows you to perform different actions, depending on the
return code of the program. The default success code for the korn shell is 0. You can
have OpenEdge Management generate an alert for any return code that is generated by
the program. For example, on a return of zero you can put a message in the log that
your program completed successfully. On a non-zero return code, you can generate an
alert to send an e-mail or page to the administration staff. Any alert that is available
within OpenEdge Management is available to you at the command line.

To fire an OpenEdge Management alert from the operating system, use the following
command:

OpenEdge Management -firealert [name_of_alert]

For more information about this command, see the Alerts Guide and Reference.

Guidelines for Applying OpenEdge Management

242

Each job defined within OpenEdge Management has its own set of return codes.
Because of this, you must define the actions for each program individually, and this
can be cumbersome if you run many programs from within OpenEdge Management. A
solution to this problem is to have your own return code analyzer. This is an external
program that reads the return code and generates the proper OpenEdge Management
action from the command line. The benefit to this mechanism over defining the alerts
from within OpenEdge Management is maintenance. If you want to globally modify
what action is performed on a particular return code, you only need to modify one
program rather than modifying each job individually.

The following examples show how to set up the logic for this type of processing. The
bulk of this code can be set up as a subroutine that was called for each job. If a change
is needed, you only have to modify the subroutine.

Example 10 shows a Korn shell example.

Example 10: Korn shell example

#!/bin/ksh

OE_MGT_BIN=${OE_MGT_BIN-/usr/oemanage/bin}

Program_to_run

return_code=$?

case $return_code in

0)

 $OE_MGT_BIN/ –firealert all_is_ok

;;

1)

 $OE_MGT_BIN/fathom –firealert program_error

;;

*)

 $OE_MGT_BIN/fathom –firealert warning_unknown_error

;;

esac

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

243

Example 11 shows a Perl example.

Example 11: Perl example

#!perl

$OE_MGT_BIN = "/usr/oemanage/bin";

$EXITCODE = system("program_name");

CASE: {

(($EXITCODE < 0) || ($EXITCODE > 1)) && do{

 system("$OE_MGT_BIN/fathom firealert program_error");

 last CASE;

 };

($EXITCODE == 0) && do{

 system("$OE_MGT_BIN/fathom firealert all_is_ok");

 last CASE;

 };

($EXITCODE == 1) && do{

 system("$OE_MGT_BIN/fathom firealert program_error");

 last CASE;

 };

}

OpenEdge Management gives you the flexibility to choose the method that is right for
your business. Some users prefer individual return codes per job, while other users
prefer the return code mechanism, and still others use a combination of the two. You
have the ability to customize your environment to meet your business needs.

Guidelines for Applying OpenEdge Management

244

Extending usefulness of existing OpenEdge
Management functions

Although OpenEdge Management is rich with functionality, there are times when you
might need to extend existing OpenEdge Management functions to meet your exact
needs. The example that follows illustrates how to take an existing feature (the Log
Monitor), and add some custom code to create a warm standby environment by
applying after-image logs to a secondary server. This operation is rather difficult to
automate and is an example of a task where OpenEdge Management can take a major
burden off the hands of the administrator

After-image administration
The process of archiving an AI extent is fairly straightforward. The basic steps are:

1. Create an action that takes a "full" after-image file, archive it to a separate
directory, and then mark the file as empty and available for reuse.

2. Create a rule on the log monitor to look for the string "After-image extent
switch."

3. Set the action you created in Step 1 to the rule you created in Step 2.

There is a job template of this procedure that you can apply to your environment. You
can find it in the Downloads section of the Progress Software Developers Network
(PSDN) Web Site (http://www.psdn.com). You can use the example on PSDN as is,
or you can extend it to apply the after-image extent to a second database to create a
warm standby environment. The general process is the same as the previous steps;
however, the action defined in the first step would be more complex.

The general steps you need to consider when doing asynchronous replication are:

1. Check to make sure that the remote host or the replication database, or both, are
available.

2. Archive the oldest "full" after-image file.

3. Copy the after-image file to the remote host (if necessary).

4. Apply the after-image file to the replication database.

http://www.psdn.com/�

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

245

5. Mark the after-image file as empty.

6. Repeat if additional "full" after-image files are present.

Each of these steps must be completed successfully for the next step to begin. Thus,
you must create a return code that can be sent to OpenEdge Management to indicate
failure of any given step. Every command returns a status code upon completion. A
status of 0 means success, in most cases, and a non-zero number indicates a possible
problem. In UNIX, you can generate these return codes yourself by using the exit
command in your scripts. The syntax of the exit command is: exit #, where # is the
status that you want to return to the calling program. As the author of the job to run
your shell program, you have the ability to modify what action is taken, based on the
completion code. You might want to use the After-image Archiver instead of
OpenEdge Management but the process of creating management functions is similar
for each new function.

Figure 32 shows an example of job completion actions and alerts.

Figure 32: Job Completion Actions and Alerts screen

Guidelines for Applying OpenEdge Management

246

The UNIX shell script that follows tests for the existence of a file (actually, any one of
a group of files). If any file is found, the script exits with a return code of 0, indicating
success. Otherwise, it returns 1, which signals "no files are found." The ls command in
this script will actually give its own return code. In this case, the output of the
command is not used, as both standard output and standard error are being sent to the
bit bucket (/dev/null). The $? is the value of that return code. This code allows you to
take all of the non-zero return codes and return a 1, which makes it easier to handle
inside of OpenEdge Management or within other shell scripts:

#!/bin/ksh

ls *filename* 2>/dev/null >/dev/null

if [$? = 0]

then

 exit 0

else

 exit 1

fi

This script is used to look for an input file in a directory. If the file is found, an action
is defined to process the file.

If you need more robust replication than previously described, or if you would like to
set up a report server, OpenEdge Replication can provide real-time replication of data
to a secondary database. In the case of a reporting DB, you can run extensive reports
against the copy, freeing up resources on the primary (production) database. For more
information, see the OpenEdge Replication User Guide.

Uses beyond monitoring
You can and you should use OpenEdge Management to do other daily tasks beyond
monitoring and manipulating OpenEdge-related files on your system. If you have an
EDI system that has a staging area, you can check to make sure that area is emptied on
a regular basis by using file system thresholds, or by viewing a log file related to the
EDI process.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

247

Any task you do on a daily basis is a good candidate for being automated with
OpenEdge Management. The trouble with manual processes is that they are only as
good as the people running them. If the administrator forgets to do a task, or misses
any step in the process, the task might not succeed. A well-managed system will
eliminate human intervention wherever possible. OpenEdge Management is a way to
automate complicated tasks using a common interface and well-established
mechanisms for alerting an administrator if there is a problem. A busy administrator
can forget to check an application log file or simply ignore the task for a few days.
With OpenEdge Management, no task is ever forgotten, overlooked, or done
improperly, and alerts can be delivered to several people at the same time to give
greater visibility to an issue before it becomes critical.

If you have existing scripts that are well tested you might want to integrate them into
OpenEdge Management to allow for consistent reporting on issues of importance.
OpenEdge Management provides a standard interface to all tasks, and global changes
can be made to tasks from within the OpenEdge Management console should the need
arise.

OpenEdge Management for system sizing
OpenEdge Management can also be extremely useful when it is time to upgrade a
system. In the past, the logic for upgrading a system went something like this: "The
system is slow; we need to get another one." Now, you can view historical OpenEdge
Management data to determine what portion of the system is slow. In some cases, you
can simply modify an OpenEdge parameter, such as -B, to increase the efficiency of
the database and avoid spending money on hardware. In other cases where the system
is well-tuned and you still have performance issues, you can use OpenEdge
Management to determine where the problem occurs, rather than guessing at the source
of the problem.

The key is knowing what is growing and why. Perhaps management informs you that
you must add 100 users in order to meet demand next month. What does this mean in
terms of system utilization? Beyond the basic additional resources for 100 users,
increasing -n and making sure you have enough memory to accommodate their
sessions, what do you need? What will these sessions be doing? How are they
distributed among job functions? What is the reason for growth? For example, is there
going to be an increase in orders, and if so, how much of an increase? Management
will be able to provide you with the answers to some of these questions but you will
need to use the trending data from OpenEdge Management to determine the effect on
the system from these business growth decisions.

Guidelines for Applying OpenEdge Management

248

Do you need to plan for peaks in activity? If you have a "regular" processing cycle but
month-end has a much greater effect on the system, then you must examine your
peaks. On a regular day you might do 5000 orders and 1,000,000 record reads, which
result in 5,000 operating system reads, so your buffer hit percentage is 99.5%. But
during month-end you do 5,000,000 records and 1,000,000 operating system reads
with a buffer hit ration of 80%. The effect of this is heavy reliance on your disks. If
your disk subsystem can perform 200 I/O operations per second, you are within the
margin of safety. However, if you add the additional users and this doubles your record
reads, you need to increase disk throughput capacity to handle 400 I/O operations per
second, or your system will not be able to handle the additional load.

If you have historical data, similar to that shown in Figure 33, showing how month-end
has changed over time, you can determine what will happen as you increase the load
on your system.

Figure 33: Historical data

Without trending and historical information you are blind. Things might look fine
today and you might have a feeling for what it would take to add 100 users. But you
have no ability to predict reliably. Many companies spend a significant amount of
money on a system upgrade just to find out that it does not solve the problem. With
OpenEdge Management, you can pinpoint where the problems are and configure the
system to solve those problems. For example, if you are using 50% of your CPU on
wait I/O time and your disks are working as hard as they can, you do not want to
upgrade the CPU and memory capacity of the system until AFTER you increase the
disk throughput capacity. By making the individual areas of the system more visible
and trending each resource’s data over time, you can make intelligent suggestions for
improvements and save money by investing in the correct areas.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

249

For Application Resellers, OpenEdge Management can provide valuable information
to use for new clients. If you are monitoring your existing clients and trending their
resource data, you can use that data to provide projections for new clients when they
inquire about how much system they will need to support their business. If a
prospective client asks how much hardware is needed for 100 users, you can look at
your historical data for other 100-user systems and provide estimates based on similar
use configurations. Along the same line, if an existing 100-user customer is consuming
80 percent of the system capacity, and a new 100-user client is coming on line who
might be adding new users in the mid-term time frame, you should specify greater
capacity at the outset for the new client.

Another use for Application Resellers is in development or initial deployment. In
development, it is difficult to predict how things will work in the production
environment. If application resellers can access the trending data, particularly with an
eye for nonlinear trends, then they can identify and resolve problems in the application
long before the customer determines that there is a problem.

The rich, data-gathering capabilities of OpenEdge Management can provide
information for the small or the large individual shop, or the application partner with
one or more customers.

Guidelines for Applying OpenEdge Management

250

Troubleshooting your OpenEdge Management
installation

Use the following tips to troubleshoot your OpenEdge Management installation:

• Check the admserv.log file for error messages. OpenEdge Management places
all information regarding problems in this file.

• If pages within OpenEdge Management are displaying errors such as #503,
complaining about problems with compiling JSP pages, try cleaning out the
jspwork directory. This will remove all cached files and force the Java Virtual
Machine (JVM) to rebuild the files as screens are encountered. The jspwork
directory is a subdirectory under your OpenEdge Management installation
directory, by default, C:\Progress\OpenEdge Management\jspwork in Windows
and /usr/OpenEdge Management/jspwork on UNIX and Linux. You can delete
all of the files and directories under this directory, but be careful not to delete the
directory itself or any other files under the OpenEdge Management directory.

• The logs directory in your OpenEdge Management installation directory should
be periodically cleaned up. This directory contains, among other things, request
logs for the Web server. This allows you to see what has been requested from
your system and when the request was made. There is a new log for each day.
You could write a simple job to periodically clean out these files.

• To help in debugging reporting and job issues, check the Debug Log file. By
checking this box, you will get additional debugging information regarding the
report or the job.

Frequently asked questions and answers
This section provides solutions to the most common problems encountered during the
setup and installation of OpenEdge Management.

Question 1

Why do I see an admSQL.log file in my OpenEdge Management home directory?

Answer

This log is created when tracing is turned to the verbose (high) setting.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

251

Question 2

How do I debug strange behavior and page hangs when running the OpenEdge
Management console?

Answer

You might need to disable the generation of charts. The default state of chart
generation is "enabled." To disable all charting within OpenEdge Management, include
the following line in fathom.init.params:

pscChartingDisabled=true

If you run Java utilities and OpenEdge Management at the same time, generating
graphics within Java sometimes causes problems. By turning off chart generation from
within OpenEdge Management you eliminate this variable and perhaps resolve the
issue. Additionally, it is also a good practice to verify that there are no errors being
reported in the admserv.log file.

Question 3

How can I modify the amount of information that is written to the log files from
OpenEdge Management?

Answer

To allow customers to reduce the amount of information written to the log files,
specifically admserv.log, a switch called LogLevelOpenEdge Management has been
added that can be set to an integer value to control the amount of information that is
written to the log file.

The valid values range is from 0 to 4. A lower number indicates you want only severe
errors and a higher number indicates you want verbose output. The logging levels are
as follows:

0 = Severe errors only

1 = Error

2 = Warning

3 = Informational

4 = Verbose

Guidelines for Applying OpenEdge Management

252

Question 4

How do I resolve the Error initializing OpenEdge Management osmetrics
library error when starting OpenEdge Management or the One or more properties
changes are invalid error when moving from page to page within OpenEdge
Management?

Answer

Disabling the Remote Registry Service in Windows prevents osmetrics.dll from
loading. To resolve the problem you must start this service. You can access the service
properties by selecting Start> Settings> Control Panel> Administrative Tools>
Services> Remote Registry Service.

Question 5

I have a license and I installed OpenEdge Management. However, OpenEdge
Management will not run and I receive a message that I am not licensed to run
OpenEdge Management. How do I resolve this issue?

Answer

You might be looking at an incorrect configuration file. In the OpenEdge
Management.init.params file there is an entry called OpenEdge
ManagementLicenseFile that allows you to specify the location of your configuration
file (progress.cfg). The default entry looks like this:

SET fathomLicenseFile=/usr1/fathom/fathom.cfg

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

253

Question 6

I am having trouble using environment variables in Windows. Some variable
references work, while others do not. What is the problem?

Answer

You can use variables in Windows that use UNIX syntax with the use of the $VAR
syntax rather than the "%VAR%" syntax, as is required throughout Windows.
However, the variable must be specified in the ${ENVVAR} format if the embedded
variable is in a path of longer string. For example:

Value Outcome

$TESTVAR Works

${TESTVAR} Works

$TESTVAR/dir1/foo Fails

${TESTVAR}/dir1/foo Works

/dir2/dir3/$TESTVAR/foo Fails

/dir2/dir3/${TESTVAR}/foo Works

Guidelines for Applying OpenEdge Management

254

Question 7

How do I resolve the following error?

FATAL ERROR in native method: JDWP "threadControl.c" (Apr 27 2000),
line 878: Unable to create thread table entry.

Answer

Increasing the Java limits might resolve the problem. The -Xmm64m -Xss16 parameters
in the java_env file control the Java limits.

For UNIX systems, you must modify the correct JVMARGS entry. To determine which
entry to modify, you must know the type of operating system you are using. This can
be done with a uname command with no options. This command will return the
operating system type. Once that has been determined, you must edit the java_env file
and search for your operating system type. You must edit the JVMARGS entry just below
your operating system with the values that you want.

For Windows, use regedit to modify the values.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

255

Question 8

I am getting a Java out of memory error on my system. How do I fix this?

Answer

On UNIX systems, change the values -ms and -mx in the java_env file.

In Windows systems, add the arguments to the registry key JVMARGS in:
HKey_Local_Machine\Software\PSC\Progress\OpenEdge_Release_Number\JAVA.

For UNIX systems, you must modify the correct JVMARGS entry. To determine which
entry to modify, you must know the type of operating system you are on. This can be
done with a uname command with no options. This command will return the operating
system type. Once that has been determined, you must edit the java_env file and
search for your operating system type. You must edit the JVMARGS entry just below
your operating system with the values that you want.

For Windows, use regedit to modify the values. Values of 32 and 64 are acceptable.

Guidelines for Applying OpenEdge Management

256

Conclusion
Users view the application, database, and operating system as a single entity.
Ultimately, user satisfaction is determined by the reliability, speed, and maintenance of
the entire system. Generally, system and database administrators tend to focus on the
details of individual resources, just as most tools tend to focus on a single aspect of the
system. OpenEdge Management is the best tool to collect and organize all vital
resource information. Also, OpenEdge Management compares interactions of each
resource with the other resources to help you make decisions regarding resource
utilization and system architecture.

We have looked at the advantages of OpenEdge Management as a way to look into
both your system and your OpenEdge resources through a common interface. The
hardware portion of all systems requires you to look at the network, disk, memory, and
CPU resources in an effort to move any potential bottlenecks from the slowest resource
to the fastest resource.

With this said, we have seen that the best performance is important only if the system
is available to the users. Availability can be improved by increasing system resiliency
to eliminate outages or, in the worst case scenario, reducing the length of an outage
through advanced recovery planning. Regular maintenance can also improve both
reliability and performance.

We have seen examples of how OpenEdge Management can provide a snapshot of
how the system is operating at the present time. We have also seen how OpenEdge
Management can be used to trend operating systems, as well as OpenEdge resources
over time to provide data points for capacity planning. Beyond that, OpenEdge
Management can be used to notify you of resource usage issues prior to the issues
affecting users.

A well managed system will increase user productivity and confidence, and allows the
system manager to sleep well at night.

Glossary

A

Action

A user-defined process set to automatically occur in response to the status, availability,
or performance information of a monitored resource.

Administrator

A user who has access to all OpenEdge Management functionality without restrictions.

AI Archiver

After-image Archiver; also known as the AI File Management Utility.

Alert

An indication of a real or potential problem in a monitored resource.

Glossary

258

B

Bottlenecks

Processing conflicts.

Busy extent

An AI extent that is currently active.

C

Checkpoint

A synchronization point between memory and disk.

Chunk

See Stripe.

Closed extent

An AI extent that contains notes and cannot be written to until the extent is marked as
empty and readied for reuse by the database administrator. Also known as a Full
extent.

Console

See OpenEdge Management console.

CPU queue depth

The number of processes waiting to use the CPU.

Custom job

A user-defined task that is executed according to a user-defined schedule.

See also Job and Database maintenance job.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

259

D

Database aware

The ability to scan each block to ensure it is the proper format during the backup
process.

Database engine

The machine that contains the OpenEdge databases and potentially the application
code.

Database maintenance job

An OpenEdge Management-supplied, specialized job template from which job
instances can be created. The predefined database jobs address fundamental OpenEdge
database maintenance activities.

See also Job and Database maintenance job.

Database object

A table or index.

Database rule sets

A set of rules that you can define and then associate with one or more database
resources.

Default rules

OpenEdge Management -provided default settings that define rules for resource
monitors that you can use to quickly set up and/or update resource monitoring rules.
Default rules are set at the resource type level. You can override these rules at the
individual resource level.

Glossary

260

Demand-page executables

Reserve text or static portions of an executable that is placed in memory and shared by
every user of that executable. Also known as Shared executables.

Detail frame

The largest frame of the OpenEdge Management console that displays information and
tools related to the selection made in the list frame.

E

Empty extent

An extent that is empty and ready for use.

Export

To place a copy of an OpenEdge Management component’s definition into a file that
you can then import to another machine, and use.

Extents

Physical files that are stored at the operating system level.

F

Fragmenting the record

A record that has been divided between two or more blocks on disk.

Full extent

An extent that has been filled with data. In the case of an AI extent, it cannot be written
to until the extent has been backed up and marked empty. If a data extent is full, it is
still updatable. Also known as a Closed extent.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

261

H

High-water Mark

A pointer to the last formatted block within the database storage area.

I

Idle time

A time period that means that the CPUs have capacity to support growth.

Import

To add a component definition from an import file to your project.

Index block split

The process of making additional space for an inserted index entry.

Indirection

The inability of a single inode table to address all of the physical addresses in a file.

Inode

A mapping of logical to physical addresses in a file.

Inode table

A table of contents on disk used to translate logical addresses to physical addresses.

Interleaved memory

Striped memory chunks. This is similar to striped disk blocks.

Glossary

262

J

Job

General term used to identify a task executed on regularly scheduled intervals.
OpenEdge Management supports two types of jobs: custom and database maintenance.

See also Custom job and Database maintenance job.

Job instance

An individual job derived from a job template. A job instance has schedules that define
when OpenEdge Management runs these jobs.

See also Job template.

Job template

A template of predefined, common values from which individual jobs, called job
instances, can be created and separately maintained.

See also Job instance.

L

Latch

One or more locks to ensure two updates cannot happen simultaneously.

List Frame

The vertical frame that displays the full length of the left side of the OpenEdge
Management console and displays items related to the selection made in the menu bar.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

263

M

Management console

See OpenEdge Management console.

Menu bar

A horizontal bar at the top of the OpenEdge Management console that lists the
following options: My Dashboard, Alerts, Resources, Library, Reports, Jobs, Options,
and Help. The menu bar also displays the name of the machine and the username
entered on the logon screen.

Metaschema

A set of definitions for the internal structure of the data.

Monitor

The combination of a resource, a schedule, and an alert that appears in the interface in
response to rules being met.

Monitoring an object

To set up criteria by which you can keep track of an object’s performance. You can
adjust the criteria for performance output according to your expectations.

Monitoring plan

Defines a block of time that a resource is to be monitored and the processing rules that
are to be checked during the defined time frame. The basic elements used by all
resource monitoring plans are schedules, rules, alerts, and actions.

My OpenEdge Management Home Page

A default, private custom view that OpenEdge Management creates for each
OpenEdge Management user.

Glossary

264

O

OpenEdge Management console

A Web-based interface used to access all of OpenEdge Management’s functionality.

OpenEdge System Architecture

OpenEdge Management is comprised of three components:

• A Web-based management console, which provides a central location for viewing
and configuring resources that are monitored by OpenEdge Management.

• A database agent, which monitors and manages databases and gathers data from
Virtual System Tables (VSTs) for reporting.

• A database, which stores all data collected by agents for use in reporting.

OpenEdge Management Trend Database

A database that stores all data collected by OpenEdge Management agents.

Optimistic read

A data-retrieval technique where the disk that has its read/write heads positioned closer
to the data will retrieve information.

Optimizing memory

Taking advantage of the memory that is available to you.

 OpenEdge Revealed: Mastering the OpenEdge Database with OpenEdge Management

265

R

Report instance

The entity you schedule to run in order to produce report results. The report instance
identifies the details to be reported on.

Report template

One of over 20 report templates provided by, or created by, you that you use to create a
custom report of your own design.

Resiliency

The ability to recover in the case of a disaster.

Resource

A specific component of your system that is monitored by OpenEdge Management,
such as database, files, database and log files, CPU, memory, disk, file system, TCP,
UDP, and HTTP ports, and Ping (ICMP).

Rule definitions

The specific attributes of a resource to be monitored.

Rule set

Two or more individual rule definitions. Rule sets are defined and stored in the
OpenEdge Management Component library and can be shared among resources that
belong to the same resource type. Rule sets can be defined for log file monitors,
database resources, and OpenEdge server resources.

OpenEdge Management provides default rule sets and also supports user-defined rule
sets.

Rules

Criteria by which a resource’s performance is measured.

Glossary

266

S

Shared executables

See Demand-page executables.

SNMP trap action

A specific type of action that allows OpenEdge Management resource-related event
notifications to be sent to your SNMP management console.

Social blocks

Blocks that contain records from different tables.

Stripe

Part of a disk included in a bigger file system structure. Also known as a chunk.

Swapping

The process of taking an entire process out of memory, placing it on a disk in the
“swap area,” and replacing it with another process from disk.

T

Tainted flags

A flag that tells OpenEdge there is a problem or abnormality with the database.

Total blocks

The total number of allocated blocks for the storage area.

Trend, Trending

The process of identifying and storing data in the OpenEdge Management Trend Database.

	Preface
	Overview
	Purpose
	OpenEdge Management
	Audience
	How to use this manual
	Organization
	Typographical conventions

	Managing System Resources
	Managing disk capacity
	Ensuring adequate disk storage
	Understanding data storage
	Determining data storage requirements
	Determining current storage using operating system commands
	Determining current storage using OpenEdge Management

	Examining your growth pattern
	Comparing expensive and inexpensive disks
	Determining the location of data on disks
	Understanding cache utilization
	Increasing disk reliability with RAID
	RAID 0: Striping
	RAID 1: Mirroring
	RAID 10 Or 1 + 0
	RAID 5

	OpenEdge in a network storage environment
	Summary

	Managing memory usage
	How memory works
	How much paging is too much?
	Estimating memory requirements
	Operating system memory estimates

	OpenEdge-specific memory estimates
	Broker parameters
	Client or user parameters
	Creating a budget for memory
	Trending analysis

	Managing CPU activity
	Understanding CPU activity
	Tuning your system
	Understanding idle time
	Monitoring your system
	Monitoring CPU performance in OpenEdge Management

	Fast CPUs versus many CPUs

	Summary

	Managing OpenEdge Database Resources
	OpenEdge database internals
	Understanding database blocks
	Data blocks
	Index blocks
	Other block types
	The master block
	Storage object blocks
	Free blocks
	Empty blocks

	Type I versus Type II storage area internals
	Understanding memory internals
	Viewing locks and latches activity in OpenEdge Management

	Understanding shared memory resources
	Adding remote clients

	Understanding how blocks are manipulated
	Record block manipulation
	Adding new records to a database
	Updating existing records
	Deleting records

	Index block manipulation

	Optimizing data layout
	Sizing your database areas
	Block sizes
	Method for determining the number of records per block

	Distributing tables across storage areas
	Example
	Consider wasted slots
	Determining space to allocate per area
	Using extents
	Index storage
	Primary recovery area

	Optimizing database areas
	Data area optimization
	Storage Areas
	Splitting off the schema
	Eliminate Data Scatter
	How to split data
	What to do with indexes

	Choosing an appropriate block size
	Determining records per block
	Determining blocks per cluster
	Keeping extents small to eliminate I/O indirection
	Keeping areas small for offline utilities
	Always have an overflow extent for each area
	Enabling large files
	Partitioning data
	Migrating to Type II areas
	Overview of full dump and reload migration
	Data Dumping and loading
	The Bulk Loader
	Binary dump and load

	Primary recovery (before-image) information
	General structure rules
	Sequential access
	Before-image grow option

	After-image information
	After-imaging with the OpenEdge AI Archiver
	Isolating after-image files for disaster recovery
	Determining the number of extents
	Variable versus fixed extents
	Extent states
	Multiple extents
	Sequential access
	Sizing after-image extents
	Enabling after-imaging
	Enabling the AI Archiver
	Starting the database with the AI Archive options
	Adding AI extents
	Determining where to archive after-image files
	Determining how long you should keep archives
	Selected AI Archiver commands and startup options
	Roll Forward Utility (rfutil) options
	Startup options
	Cleaning up archived AI files
	Notes:

	Replicating with OpenEdge
	Reasons to replicate
	Types of Replication
	OpenEdge Replication
	Log-based Replication
	Hardware-based Replication

	Components of OpenEdge Replication
	Implementing OpenEdge Replication
	Using -pica on source database startup
	Transition

	Replication properties file examples
	Example of the source.repl.properties file
	Example: target.repl.properties
	Summary

	Optimizing memory usage
	Why the buffer hit percentage is important
	Increasing memory usage
	Decreasing memory
	Private buffers (-Bp)

	Optimizing CPU usage
	Understanding the -spin parameter
	How to set –spin
	Viewing latches in OpenEdge Management

	CPU bottleneck: Look at your disk drives

	Performing System Administration
	Understanding the database administrator’s role
	Ensuring system availability with trending
	Trending database areas
	Enabling trending for your database in OpenEdge Management
	Using VST code

	Trending application load
	Trending operating system information
	Trending system memory
	Trending system disks
	Setting alerts for variable extent growth
	Additional factors to consider in trending
	Process monitoring
	Testing to avoid problems
	Types of testing

	Modifications to verify the integrity of data
	Index block consistency checks
	Record block consistency checks
	Run-time and roll-forward memory overwrite verification

	Ensuring system resiliency
	Why backups are done
	Creating a complete backup-and-recovery strategy
	Who does the backup?
	What does the backup contain?
	Where does the backup go?
	How to label a backup
	When do you do a backup?

	Using PROBKUP versus operating system utilities
	Understanding the PROBKUP utility
	How PROBKUP works
	Adding operating system utilities to augment PROBKUP
	Using PROBKUP or operating system utilities

	After-imaging implementation and maintenance
	Testing your recovery strategy

	Maintaining your system
	Daily monitoring tasks
	Monitoring the database log file
	Using the PROLOG utility

	Monitoring area fill
	Monitoring buffer hit rate
	Monitoring buffers flushed at checkpoint
	Monitoring system resources (disks, memory, and CPU)
	Using sar
	Using Task Manager
	Using OpenEdge Management

	Periodic monitoring tasks
	Online database utilities
	Database analysis utility
	Index compact utility
	Index fix utility
	Structure addition utility
	Enable after-imaging online option
	Enable the AI Archiver online option
	Binary dump of only specified records option
	Enable and disable site replication option

	Offline database utilities
	Index rebuild utility
	Move schema utility
	Update schema utility
	Enable large database files command
	Update virtual system tables utility

	“Kind of” online utilities
	Table move utility
	Index move utility

	Running the utilities
	Defining an OpenEdge Management job
	Scheduling an OpenEdge Management job

	Truncate BI and BIGROW
	Understanding dump and load
	Data Dictionary dump and load
	Bulk loader
	Binary dump and load

	Profiling your system performance
	Establishing a performance baseline
	Collecting your baseline statistics
	Understanding your results

	Performance tuning methodology

	Advantages and disadvantages of monitoring tools
	Common performance problems
	Disk bottleneck causes and solutions
	Causes
	Disk variance
	Application issues
	Low database buffer hit rate
	Solutions
	Balancing I/O across available disks
	Using –Bp to reduce impact of reporting
	Increasing database buffers
	Increasing throughput capacity or redistributing I/O load

	Memory bottleneck causes and solutions
	Causes
	Improper allocation of memory resources
	The operating system uses more memory than necessary
	Other applications
	Solutions
	Use memory for the common good
	Limit operating system buffers
	Support for large shared memory segments
	Think outside the box

	CPU bottleneck causes and solutions
	Runaway processes
	Improper setting of the OpenEdge –spin parameter

	Other performance considerations
	BI cluster size
	Page writers
	Database block size
	Procedure libraries
	Conclusion

	Periodic event administration
	Annual backups
	Archiving
	Application modifications
	Making schema changes
	Making application code changes
	Migration of OpenEdge releases
	Summary

	Guidelines for Applying OpenEdge Management
	Introduction
	Making practical resource monitoring decisions
	Before you install
	Initial installation settings
	Post installation configuration tasks
	Create monitoring plans
	Create jobs
	Create actions
	Defining environment-specific rules
	Scheduling and polling
	Trending
	Rules
	Job and report templates
	My Dashboard
	Export resource settings
	Default database monitoring
	Alert setup

	Configuring OpenEdge Management for your environment
	Determining the location and the number of OpenEdge Management Trend Databases
	Isolating the OpenEdge Management Trend Database
	Using a separate machine
	Using a private network
	Use a separate machine and a private network

	Remote monitoring
	Resources that can be managed
	Limitations of remote monitoring
	Remote database monitoring
	OpenEdge server support
	System management support
	Setup for remote monitoring

	Performance considerations
	Configuration Advisor
	What is the Configuration Advisor?
	Who is it for?
	How does it work?

	The File Monitor
	File Age
	File Exists
	File Growth Rate
	File Modified
	File Size

	Creating custom reports using ABL
	Viewing archived data

	Creating custom jobs
	Extending usefulness of existing OpenEdge Management functions
	After-image administration
	Uses beyond monitoring
	OpenEdge Management for system sizing

	Troubleshooting your OpenEdge Management installation
	Frequently asked questions and answers
	Question 1
	Answer
	Question 2
	Answer
	Question 3
	Answer
	Question 4
	Answer
	Question 5
	Answer
	Question 6
	Answer
	Question 7
	Answer
	Question 8
	Answer

	Conclusion

	Glossary
	Action
	Administrator
	AI Archiver
	Alert
	Bottlenecks
	Busy extent
	Checkpoint
	Chunk
	Closed extent
	Console
	CPU queue depth
	Custom job
	Database aware
	Database engine
	Database maintenance job
	Database object
	Database rule sets
	Default rules
	Demand-page executables
	Detail frame
	Empty extent
	Export
	Extents
	Fragmenting the record
	Full extent
	High-water Mark
	Idle time
	Import
	Index block split
	Indirection
	Inode
	Inode table
	Interleaved memory
	Job
	Job instance
	Job template
	Latch
	List Frame
	Management console
	Menu bar
	Metaschema
	Monitor
	Monitoring plan
	My OpenEdge Management Home Page
	OpenEdge Management console
	OpenEdge System Architecture
	OpenEdge Management Trend Database
	Optimistic read
	Optimizing memory
	Report instance
	Report template
	Resiliency
	Resource
	Rule definitions
	Rule set
	Rules
	Shared executables
	SNMP trap action
	Social blocks
	Stripe
	Swapping
	Tainted flags
	Total blocks
	Trend, Trending

