
OpenEdge Single Point of Authentication 
Using OpenEdge SPA with OpenEdge Business Process Server  

Overview 
OpenEdge Single Point of Authentication is an authentication service for use in realm-based systems. The 

first OpenEdge product to support this service is the OpenEdge Business Process Server (BP Server). BP 

Server has built-in support for JDBC, LDAP, and an LDAPHybrid realm that combines LDAP and JDBC. BP 

Server also supports custom realms, which is how this feature is delivered. 

The OEHybrid realm is modeled after the LDAPHybrid realm. An OpenEdge AppServer based service 

provides support for user authentication and limited user attributes, while the JDBC realm is used for BP 

Server specific support such as groups, user attributes not supported in SPA, and permissions. 

An ABL reference implementation that utilizes the _User table is provided. OpenEdge developers can 

also create their own implementation by implementing the built-in interface 

Progress.Security.Realm.IHybridRealm. 

Configuring an Authentication Service 
Before configuring the Business Process Server to use the new authentication realm, you must create an 

authentication service running on an OpenEdge AppServer running in State-free mode. The reference 

implementation uses the _User table of the default database the AppServer is connected to. Here is how 

you get the reference implementation up and running. 

Step 1 – Populate _User  table of primary database 

Your authentication service needs access to user account information. The reference implementation 

uses the _User table of an OpenEdge database. The following fields in a _User record are applicable to 

the reference implementation: 

Field Name BPS Attribute Name Description 

_Userid userid The user id someone uses to log into 
the Business Process Portal. Must be 
unique. 

_Password password Password of the user stored in clear 
text. 

_User_number Used internally by realm The _User_number field contains a 
unique number assigned to the user. 
This number is used by realm APIs 
once a userid has been validated. 

_Given_name firstname First name of the user. 

_Surname lastname Last name of the user. 

_Telephone phone Telephone number of the user. 

_Email email Email address of the user. 

_Description description Descriptive text of the user. 



Step 2 – Deploy reference implementation to a state-free AppServer 

The reference implementation source code can be found in $DLC/src/samples/security. It consists of an 

implementation class – OpenEdge.Security.Realm.HybridRealm.cls and a utility class for property file 

support – OpenEdge.Security.Util.Properties.cls. Using the fully qualified package name, copy these 

classes to the proper subdirectory of your AppServer’s $WRKDIR.  

Step 3 – Configure reference implementation properties 

The reference implementation utilizes a property file that contains information used to lock down the 

authentication service. A SPA client will read a sealed client-principal file from disk and send it when 

communication with the authentication service. The authentication service will validate the seal by using 

the domain password, and then examine the role of the client-principal to see if it matches. A default 

property file is provided in $DLC/src/samples/security/spaservice.properties. It should be copied to 

$WRKDIR. The default property file contains these values: 

Password=oech1::20333c34252a2137 

Role=SpaClient 

DebugMsg=false 

 

Password is the encoded domain password of the sealed client-principal.  

Role is the role that the client-principal role is compared to. 

DebugMsg will enable log messages in the AppServer server log file for the service. 

The default client-principal  found in BPSHOME/conf/spadefault.cp uses a password of ‘password’, which 

corresponds to the encoded value above, and the role ‘SpaClient’.  See below for information on creating 

your own client-principal file using the genspacp utility. 

Configuring SPA in OpenEdge Business Process Server 
These instructions assume a fresh installation of BP Server and a newly provisioned repository. An 

existing system would require migration of existing user accounts and is beyond the scope of this 

document. These instructions also assume that you have installed the SPA reference implementation, or 

developed your own on an OpenEdge AppServer version 11.3 or later running in state-free mode. 

Step 1 – Create Admin BP Server User 

When you installed BP Server, you specified a default user and password, usually admin/admin. Since the 

SPA service only authenticates users while BP Server manages permission, not having this user will 

prohibit you from administering BP Server.  

Option 1 

Log into the portal with as admin and go to the user administration page. Create a new user that 

exists in your authentication server and give that user all permissions and options. 

Option 2 

Create the user ‘admin’ on your authentication server. When you switch over to use the custom 

authentication realm, the admin user will be authenticated and you can then manage 

permissions for the rest of your users that exist in your realm. 



Step 2 – Specify custom authentication realm in BP Server 

You specify the attributes of your custom authentication realm in BPSHOME/conf/umacl.conf as shown 

below. 

###### User Manager Properties ###### 

# <param name="usermgr.realm.type"> 

#    <visible>true</visible> 

#    <alias>User Management realm type</alias> 

#    <description>Specifies the realm type for user management</description> 

#    <legalvalues>jdbc|ldap|ldaphybrid|custom</legalvalues> 

# </param> 

usermgr.realm.type=custom 

 

# <param name="usermgr.realm.provider"> 

#    <alias>User manager realm provider</alias> 

#    <description>This property is read only if property 'usermgr.realm.type' 

#        has value 'custom'. Specify the fully-qualified class name of user  

#       management realm implementation class. More information can be found 

#       in "Customization Guide" under chapter "Customizing User Management  

#       Java interface". 

#    </description> 

#    <legalvalues>ANY</legalvalues> 

# </param> 

usermgr.realm.provider=com.savvion.usermanager.OERealm 

 

###### OpenEdge Single Point of Authentication Properties ########### 

# <param name="oeauth.server.location"> 

#    <alias>OpenEdge AppServer URL</alias> 

#    <description>URL to an AppServer providing the SPA service</description> 

#    <legalvalues>Any valid AppServer URL</legalvalues> 

#    <group>OESPA</group> 

# </param> 

oeauth.server.location=AppServer://localhost/sbmbroker1 

 

# <param name="oeauth.server.provider"> 

#    <alias>OpenEdge Class Name</alias> 

#    <description>Class name of implrementation providing SPA  

#        service</description> 

#    <legalvalues>Fully qualified class name that implements the  

#    Progress.Security.Realm.IHybridRealm interface </legalvalues> 

#    <group>OESPA</group> 

# </param> 

oeauth.server.provider=OpenEdge.Security.Realm.HybridRealm 

 

# <param name="oeauth.server.authmethod"> 

#    <alias>Method used to validate password</alias> 

#    <description>Basic authorization will send password over the wire.  

#        Digest authorization will send a cryptographic has of the  

#        password.</description> 

#    <legalvalues>basic|digest</legalvalues> 

#    <group>OESPA</group> 

# </param> 

oeauth.server.authmethod=digest 

 

# <param name="oeauth.server.clientprincipal"> 

#    <alias>Location of sealed clientprincipal file</alias> 



#    <description>File name of the client principal file used to authorize 

SPA clients</description> 

#    <legalvalues>filename</legalvalues> 

#    <group>OESPA</group> 

# </param> 

oeauth.server.clientprincipal=spadefault.cp 

 

Step 3 – Enable group administration in the portal 

Because this is a hybrid realm, users are authenticated externally but groups are managed in the BP 

Server repository. By default, group management is disabled when using a custom realm. Open 

BPSHOME/conf/bpmportal.conf and change the property bpmportal.customrealm.managegroup to true. 

Step 4 – Log in with default user and set user attributes and permissions 

Start your AppServer and BP Server and log in with the admin user. If everything is configured properly, 

you will be able to log in and set your users’ attributes and permissions for use with BP Server. Note that 

because the authentication realm is external to BP Server, there is no support for adding or deleting 

users from the portal.  

Generating a Sealed Client-Principal File 
A utility, genspacp, is provided to generate a sealed client-principal file for use with the SPA service. 

From a proenv window, type genspacp to see its usage. 

genspacp 1.0 

usage: genspacp -password <text> [-user <text> -domain <text> -role <text> -file <text>] 

-password: Required. The domain password used to seal the client-principal. 

-user: Optional. The user name set in the client-principal. The default is BPSServer. 

-domain: Optional. The domain name set in the client-principal. The default is OESPA. 

-role: Optional. The role set in the client-principal. The default is SPAClient. 

-file: Optional. The file name the client-principal is saved to. The default is oespaclient.cp. 

Running genspacp with –password value of foobar will generate the following output: 

proenv>genspacp -password foobar 
genspacp 1.0 
Generated sealed Client Principal... 
    User: BPSServer@OESPA 
    Id: Rpj2gs5WT2G+EqivLYaKzA 
    Role: SPAClient 
    Encoded Password: oech1::363d20253337 
    File: oespaclient.cp 
    State: SSO from external authentication system 
    Seal is valid 
 



You would copy the value oech1::363d20253337 to the Password property of your spaservice.properties 

file in order to use the client-principal. You would copy the client-principal file created, in this example 

oespaclient.cp, to the BPSHOME/conf directory and update the umacl.conf file with the filename. 

Implementing a SPA Service 
An SPA Service is created by implementing the built-in interface Progress.Security.Realm.IHybridRealm. 

This interface is implemented as a singleton class and should not save any state related to a particular 

client. The interface is specified below. 

 

INTERFACE Progress.Security.Realm.IOEHybridRealm:   

   

/*-------------------------------------------------------------------- 

 Purpose: Returns the specified user attribute for the user id provided 

 Notes: If an attribute is not found, return UNKNOWN 

--------------------------------------------------------------------*/ 

 METHOD PUBLIC CHARACTER GetAttribute(INPUT theUserId AS INTEGER, 

attrName AS CHARACTER). 

 

 

/*-------------------------------------------------------------------- 

 Purpose: Returns all attribute names associated with the user id 

 Notes:  

--------------------------------------------------------------------*/

 METHOD PUBLIC CHARACTER EXTENT GetAttributeNames(INPUT theUserId AS 

INTEGER). 

 

 

/*-------------------------------------------------------------------- 

 Purpose: Returns a list of all the users in the realm 

 Notes:  

--------------------------------------------------------------------*/

 METHOD PUBLIC CHARACTER EXTENT GetUserNames(  ). 

 

 

/*-------------------------------------------------------------------- 

 Purpose: Returns a list of users that match a query string 

 Notes:  

--------------------------------------------------------------------*/

 METHOD PUBLIC CHARACTER EXTENT GetUserNamesByQuery(INPUT queryString AS 

CHARACTER). 

 

 

/*-------------------------------------------------------------------- 

 Purpose: Removes the specified user attribute for the user id provided 

 Notes:  

--------------------------------------------------------------------*/

 METHOD PUBLIC LOGICAL RemoveAttribute(INPUT theUserId AS INTEGER, INPUT 

attrName AS CHARACTER). 

 

 

/*-------------------------------------------------------------------- 

 Purpose: Sets the specified user attribute for the user id provided 



 Notes: 

--------------------------------------------------------------------*/

 METHOD PUBLIC LOGICAL SetAttribute(INPUT theUserId AS INTEGER, INPUT 

attrName AS CHARACTER, INPUT attrValue AS CHARACTER). 

 

 

/*-------------------------------------------------------------------- 

 Purpose: Validates a user password using the basic authentication method 

 Notes: Password is sent over the wire in clear text 

--------------------------------------------------------------------*/

 METHOD PUBLIC LOGICAL ValidatePassword(INPUT theUserId AS INTEGER, 

INPUT password AS CHARACTER). 

 

/*-------------------------------------------------------------------- 

 Purpose: Validates a user password using the digest authentication method 

 Notes: Password value is a digest consisting of BASE64(SHA1(password + nonce 

+ timestamp)) 

--------------------------------------------------------------------*/ 

    METHOD PUBLIC LOGICAL ValidatePassword(INPUT theUserId AS INTEGER, INPUT 

password AS CHARACTER, INPUT nonce AS CHARACTER, INPUT timestamp AS 

CHARACTER). 

 

 

/*-------------------------------------------------------------------- 

 Purpose: Validates that the specified user name exists and returns its id 

 Notes: Most of the other APIs require the user id this method returns 

--------------------------------------------------------------------*/

 METHOD PUBLIC INTEGER ValidateUser(INPUT userName AS CHARACTER). 

 

END INTERFACE. 

 

 


