
V 7.6 Tutorial

Remote Information Access

Progress Sonic Workbench Online Help Tutorial Instructions in PDF Format

 Progress® Sonic ESB® Product Family V7.6 Tutorial
Remote Information Access

© 2008 Progress Software Corporation. All rights reserved.

Progress® software products are copyrighted and all rights are reserved by Progress Software Corporation. This manual is also

copyrighted and all rights are reserved. This manual may not, in whole or in part, be copied, photocopied, translated, or reduced to

any electronic medium or machine-readable form without prior consent, in writing, from Progress Software Corporation.

The information in this manual is subject to change without notice, and Progress Software Corporation assumes no responsibility for

any errors that may appear in this document.

The references in this manual to specific platforms supported are subject to change.

A (and design), Actional, Actional (and design), Affinities Server, Allegrix, Allegrix (and design), Apama, Business Empowerment,

ClientBuilder, ClientSoft, ClientSoft (and Design), Clientsoft.com, DataDirect (and design), DataDirect Connect, DataDirect

Connect64, DataDirect Connect OLE DB, DataDirect Technologies, DataDirect XQuery, DataXtend, Dynamic Routing

Architecture, EasyAsk, EdgeXtend, Empowerment Center, Fathom, IntelliStream, Neon, Neon New Era of Networks, O (and

design), ObjectStore, OpenEdge, PeerDirect, Persistence, POSSENET, Powered by Progress, PowerTier, ProCare, Progress,

Progress DataXtend, Progress Dynamics, Progress Business Empowerment, Progress Empowerment Center, Progress Empowerment

Program, Progress Fast Track, Progress OpenEdge, Progress Profiles, Progress Results, Progress Software Developers Network,

ProVision, PS Select, SequeLink, Shadow, ShadowDirect, Shadow Interface, Shadow Web Interface, ShadowWeb Server, Shadow

TLS, SOAPStation, Sonic ESB, SonicMQ, Sonic Orchestration Server, Sonic Software (and design), SonicSynergy, SpeedScript,

Stylus Studio, Technical Empowerment, Voice of Experience, WebSpeed, and Your Software, Our Technology-Experience the

Connection are registered trademarks of Progress Software Corporation or one of its subsidiaries or affiliates in the U.S. and/or other

countries. AccelEvent, Apama Dashboard Studio, Apama Event Manager, Apama Event Modeler, Apama Event Store, AppsAlive,

AppServer, ASPen, ASP-in-a-Box, BusinessEdge, Cache-Forward, DataDirect Spy, DataDirect SupportLink, DataDirect XML

Converters, Future Proof, Ghost Agents, GVAC, Looking Glass, ObjectCache, ObjectStore Inspector, ObjectStore Performance

Expert, Pantero, POSSE, ProDataSet, Progress ESP Event Manager, Progress ESP Event Modeler, Progress Event Engine, Progress

RFID, PSE Pro, SectorAlliance, SmartBrowser, SmartComponent, SmartDataBrowser, SmartDataObjects, SmartDataView,

SmartDialog, SmartFolder, SmartFrame, SmartObjects, SmartPanel, SmartQuery, SmartViewer, SmartWindow, Sonic, Sonic

Business Integration Suite, Sonic Process Manager, Sonic Collaboration Server, Sonic Continuous Availability Architecture, Sonic

Database Service, Sonic Workbench, Sonic XML Server, The Brains Behind BAM, WebClient, and Who Makes Progress are

trademarks or service marks of Progress Software Corporation or one of its subsidiaries or affiliates in the U.S. and other countries.

Vermont Views is a registered trademark of Vermont Creative Software in the U.S. and other countries. IBM is a registered trademark

of IBM Corporation. JMX and JMX-based marks and Java and all Java-based marks are trademarks or registered trademarks of Sun

Microsystems, Inc. in the U.S. and other countries. Any other trademarks or service marks contained herein are the property of their

respective owners.

Third Party Acknowledgements:

SonicMQ and Sonic ESB Product Families include code licensed from RSA Security, Inc. Some portions licensed from IBM are

available at http://oss.software.ibm.com/icu4j/.

SonicMQ and Sonic ESB Product Families include the JMX Technology from Sun Microsystems, Inc. Use and Distribution is subject

to the Sun Community Source License available at http://sun.com/software/communitysource.

SonicMQ and Sonic ESB Product Families include software developed by the ModelObjects Group (http://www.modelobjects.com).

Copyright 2000-2001 ModelObjects Group. All rights reserved. The name "ModelObjects" must not be used to endorse or promote

products derived from this software without prior written permission. Products derived from this software may not be called

"ModelObjects", nor may "ModelObjects" appear in their name, without prior written permission. For written permission, please

contact djacobs@modelobjects.com.

SonicMQ and Sonic ESB Product Families include files that are subject to the Netscape Public License Version 1.1 (the "License");

you may not use this file except in compliance with the License. You may obtain a copy of the License at

http://www.mozilla.org/NPL/. Software distributed under the License is distributed on an "AS IS" basis, WITHOUT WARRANTY

OF ANY KIND, either express or implied. See the License for the specific language governing rights and limitations under the

License. The Original Code is Mozilla Communicator client code, released March 31, 1998. The Initial Developer of the Original

Code is Netscape Communications Corporation. Portions created by Netscape are Copyright 1998-1999 Netscape Communications

Corporation. All Rights Reserved.

SonicMQ and Sonic ESB Product Families include versions 8.3 and 8.9 of the Saxon XSLT and XQuery Processor from Saxonica

Limited (http://www.saxonica.com/) which is available from SourceForge (http://sourceforge.net/projects/saxon/). The Original

Code of Saxon comprises all those components which are not explicitly attributed to other parties. The Initial Developer of the

Original Code is Michael Kay. Until February 2001 Michael Kay was an employee of International Computers Limited (now part of

Fujitsu Limited), and original code developed during that time was released under this license by permission from International

Computers Limited. From February 2001 until February 2004 Michael Kay was an employee of Software AG, and code developed

during that time was released under this license by permission from Software AG, acting as a "Contributor". Subsequent code has been

developed by Saxonica Limited, of which Michael Kay is a Director, again acting as a "Contributor". A small number of modules, or

enhancements to modules, have been developed by other individuals (either written specially for Saxon, or incorporated into Saxon

having initially been released as part of another open source product). Such contributions are acknowledged individually in comments

attached to the relevant code modules. All Rights Reserved. The contents of the Saxon files are subject to the Mozilla Public License

Version 1.0 (the "License"); you may not use these files except in compliance with the License. You may obtain a copy of the License

at http://www.mozilla.org/MPL/. Software distributed under the License is distributed on an "AS IS" basis, WITHOUT WARRANTY

OF ANY KIND, either express or implied. See the License for the specific language governing rights and limitations under the

License.

SonicMQ and Sonic ESB Product Families include software developed by IBM. Copyright 1995-2002 and 1995-2003 International

Business Machines Corporation and others. All rights reserved. Permission is hereby granted, free of charge, to any person obtaining

a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including

without limitation the rights to use, copy, modify, merge, publish, distribute, and/or sell copies of the Software, and to permit persons

to whom the Software is furnished to do so, provided that the above copyright notice(s) and this permission notice appear in all copies

of the Software and that both the above copyright notice(s) and this permission notice appear in supporting documentation.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING

BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS

INCLUDED IN THIS NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL

DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN

AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION

WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. Except as contained in this notice, the name of a copyright holder

shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written

authorization of the copyright holder.

SonicMQ and Sonic ESB Product Families include software Copyright © 1999 CERN - European Organization for Nuclear Research.

Permission to use, copy, modify, distribute and sell this software and its documentation for any purpose is hereby granted without fee,

provided that the above copyright notice appear in all copies and that both that copyright notice and this permission notice appear in

supporting documentation. CERN makes no representations about the suitability of this software for any purpose. It is provided "as

is" without expressed or implied warranty.

SonicMQ and Sonic ESB Product Families includes software developed by the University Corporation for Advanced Internet

Development <http://www.ucaid.edu>Internet2 Project. Copyright © 2002 University Corporation for Advanced Internet

Development, Inc. All rights reserved. Neither the name of OpenSAML nor the names of its contributors, nor Internet2, nor the

University Corporation for Advanced Internet Development, Inc., nor UCAID may be used to endorse or promote products derived

from this software and products derived from this software may not be called OpenSAML, Internet2, UCAID, or the University

Corporation for Advanced Internet Development, nor may OpenSAML appear in their name without prior written permission of the

University Corporation for Advanced Internet Development. For written permission, please contact opensaml@opensaml.org.

Portions of SonicMQ and Sonic ESB Product Families were created using JThreads/C++ by Object Oriented Concepts, Inc.

SonicMQ and Sonic ESB Product Families were developed using ANTLR

SonicMQ and Sonic ESB Product Families include software Copyright © 1991-2007 DataDirect Technologies Corp. All rights

reserved. This product includes DataDirect products for the Microsoft SQL Server database which contain a licensed implementation

of the Microsoft TDS Protocol.

SonicMQ and Sonic ESB Product Families include software developed by the OpenSSL Project for use in the OpenSSL Toolkit

(http://www.openssl.org/). Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved. This product includes cryptographic

software written by Eric Young (eay@cryptsoft.com). This product includes software written by Tim Hudson (tjh@cryptsoft.com).

Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com). All rights reserved. The names "OpenSSL Toolkit" and "OpenSSL

Project" must not be used to endorse or promote products derived from this software without prior written permission. For written

permission, please contact openssl-core@openssl.org. Products derived from this software may not be called "OpenSSL" nor may

"OpenSSL" appear in their names without prior written permission of the OpenSSL Project. Software distributed on an "AS IS" basis,

WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License for the specific language governing rights and

limitations under the License agreement that accompanies the product.

February 2008

Remote Information Access tutorial

As applications grow in complexity and become widely distributed, it becomes increasingly
important to develop business processes that reliably retrieve data from remote data sources.
Progress Sonic ESB enables you to develop ESB processes to retrieve and aggregate data from
multiple back-end data sources, and provides additional functionality such as content-based routing
and data transformation. With Progress Sonic ESB, you can develop processes to:

● Handle multiple requests from a single initiating point, such as a portal.

● Send the same event to multiple back end sources, taking into account issues such as data
format changes.

● Cache results near the portal to minimize back-end traffic by reusing data already collected,
but without placing a burden on the portal to store data in memory.

The Remote Information Access tutorial demonstrates how ESB processes can be developed and
implemented to address these issues. You can go through the entire tutorial step by step, or, if you
prefer, you can work through some of the phases of the tutorial yourself, then go directly to running
and testing the fully implemented ESB process using the completed sample processes and
resources included with the tutorial.

It might take you up to three hours to work through the entire Remote Information Access tutorial.
The following times for each part of the tutorial are only estimates; you might complete them in less
time:

● Preparing to develop the Remote Information Access sample application — 20 minutes

● Phase 1: Creating the prototype ESB process, processRequest — 15 minutes

● Phase 2: Implementing multiple operations using a content-based router — 30 minutes

● Phase 3: Implementing getAccounts using a Split and Join Parallel service — 25 minutes

● Phase 4: Using stylesheets to format responses — 15 minutes

● Phase 5: Implementing getAccountActivity using content-based routing — 30 minutes

● Testing the fully implemented ESB process, processRequest — 15 minutes

The Remote Information Access tutorial is available in the following formats:

● Online help — Click the Tutorials link on the Sonic Workbench Welcome page or find the
tutorial in the Progress Sonic ESB Product Family: Developer's Guide (Sonic Workbench
online help) under "Progress Sonic ESB Samples and Tutorials."

● PDF — Click the link to the PDF from the Documentation page.

● Demonstration — Click the link to the video from the Documentation page.

Next, look at the Remote Information Access scenario used in this tutorial.

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 5 of 125

Remote Information Access scenario

The following figure shows a typical Remote Information Access scenario. This scenario demonstrates
using distributed queries to aggregate information across multiple back-end data sources:

In the Remote Information Access tutorial, a customer service representative of a simulated
telecommunications company is required to get information about customer accounts and activity on
those accounts. Customers can have multiple types of accounts, including TV, Wireless Cell, and
Phone. Each account application is deployed on a separate server. These accounts can be different
applications or databases. The tutorial demonstrates how Progress Sonic ESB is used to create a
unified view of the data stored in each database. The tutorial addresses two use cases:

● Use Case 1: Get Accounts — A request is made to retrieve a list of all the accounts for a
specified customer. To retrieve all the account information, the request is sent simultaneously
to all TV, Wireless Cell, and Phone account databases. When all the information has been
retrieved, the data is returned in a single message.

● Use Case 2: Get Account Activity — A request is made to get the account activity for a
specified account. In this case, data is retrieved from one of the databases, based on the
account type specified in the request.

The tutorial implements an ESB process that handles these use cases by routing messages through
different branches of the process based on the type of request sent to the process.

Next, look at the Remote Information Access process you will develop and implement in this tutorial.

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 6 of 125

Remote Information Access process

In this tutorial, you take the role of an architect who has to design the ESB component of the
Remote Information Access application. As the architect, you will first prototype the interface you
want to expose to your customers. You will do this by testing the interface with sample documents
you have created with your customer. Next, you will determine how to move these requests to the
applications that supply the data, then you will define the interfaces you want these applications to
provide. Ultimately, you will use these interfaces to define the actual services you want the
applications to provide over the ESB.

In working through the tutorial, you will do the following:

1. Implement the interface you expect to provide over the ESB

2. Design an ESB process to route the specific requests to the remote information data stores

In this tutorial, you develop an ESB process, processRequest, to handle both use cases of the
Remote Information Access scenario. The processRequest process includes two branches, one for
each use case. A content-based router sends incoming requests to the appropriate branch based
on the request type in the incoming message. Each branch includes a subprocess that returns the
requested information.

By using subprocesses, you allow each subprocess to perform one logical step of the solution.
Subprocesses can be used in one or more service invocations, and in the ESB there is no
overhead for going from one process to another. In the Remote Information Access application,
each subprocess handles a different use case. By placing the steps to handle each use case within
a subprocess for that use case, it is possible to a reuse each subprocess in another context. This
technique also increases the readability of the main process. In subsequent iterations of the project,
the subprocesses can be changed without having to redo the main process.

In the fully implemented processRequest process, shown below, the following routing takes place:

1. Incoming requests to processRequest are sent to the content-based router, routeRequest,
which applies XPath routing rules to evaluate the request type, either Get Accounts (use
case 1), or Get Account Activity (use case 2).

2. Requests to Get Accounts are sent to the branch that includes the getAccounts
subprocess, which returns a list of accounts for the customer specified in the request.

3. Requests to Get Account Activity are sent to the branch that includes the
getAccountActivity subprocess, which returns a summary of account activity for the
specified account type.

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 7 of 125

Next, look at the getAccounts subprocess.

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 8 of 125

getAccounts subprocess

The branch of processRequest that handles requests for customer accounts (use case 1) contains
the getAccounts subprocess. Requests routed to this branch of processRequest are handled as
follows:

1. The request is sent to a Split and Join Parallel service, CombineAllAccounts, that
simultaneously calls the databases for each account type to return data from each account.
The service aggregates that data into a single response.

2. The response is formatted by an XML Transformation service, Format Response, that uses
an XSLT stylesheet to reformat the XML into the desired response document.

The fully implemented getAccounts subprocess looks like this:

Next, look at the getAccountActivity subprocess.

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 9 of 125

getAccountActivity subprocess

The branch of processRequest that handles requests for account activity (use case 2) contains the getAccountActivity subprocess.
Requests routed to this branch of processRequest are sent to another content-based router, routeGetActivityRequest. This router
applies Xpath routing rules to evaluate the account type specified in the incoming request, then sends the request to a branch configured
to return information for that account type.

The fully implemented getAccountActivity subprocess looks like this:

Next, see how the Remote Information Access tutorial uses a top-down, phased implementation to create the ESB process,
processRequest, and its subprocesses.

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 10 of 125

Phased implementation of the Remote Information Access sample application

The Remote Information Access tutorial demonstrates top-down design, using phased implementation through prototype steps. This
approach enables you to develop and execute the itinerary for your business process using prototype steps, then gradually replace those
prototypes with services or subprocesses that implement the steps. This top-down, phased approach is used to create an ESB process to
handle the two use cases in the Remote Information Access scenario.

This tutorial develops the ESB process named processRequest, and its subprocesses, in five phases of implementation:

Phase 1. Create the prototype ESB process:

● Create the ESB process, processRequest, containing the Prototype service, GetAccounts.

● Test the interface with the ESB by sending a request and receiving a response.

Phase 2. Implementing multiple operations using a content-based router:

● Create an content-based router, routeRequest, to route messages based on the operation (either GetAccounts or
GetAccountActivity).

● Create a prototype branch for each use case.

● Test the routing with scenarios for each use case.

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 11 of 125

Phase 3. Implement the getAccounts subprocess:

● Create the getAccounts subprocess to handle the Get Accounts use case.

● Add a Split and Join Parallel service, CombineAllAccounts, to simultaneously retrieve data from different accounts and aggregate
the data into a single response.

● Test the subprocess with a scenario.

Phase 4. Transform the response in getAccounts:

● Add an XML Transformation service, Format Response, to format the response from the Split and Join Parallel service.

● Test the transformation stylesheet with a scenario.

● Test the fully implemented subprocess with a scenario.

Phase 5. Implement the getAccountActivity subprocess:

● Create the getAccountActivity subprocess to handle the Get Account Activity use case.

● Add a content-based router, routeGetActivityRequest, to route requests based on the specified account type.

● Configure three branches of the content-based router, one for each account type.

● Test the routing with scenarios for each account type.

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 12 of 125

When you have completed all five implementation phases, you will be ready to test the fully implemented processRequest process.

To get started, prepare to develop the Remote Information Access sample application.

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 13 of 125

Preparing to develop the Remote Information Access
sample application

Before running the Remote Information Access sample application, you must:

1. Start Sonic Workbench.

2. Import the Remote Information Access sample project.

3. Examine the Remote Information Access sample project

Begin by starting Sonic Workbench.

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 14 of 125

RIA tutorial, preparation

Starting Sonic Workbench

To start Sonic Workbench:

1. Select Start > Programs > Progress > Sonic 7.6 > Start Domain Manager:

A console window opens showing that Sonic Workbench is starting the domain manager, configuration repository, and development
containers.

2. Select Start > Programs > Progress > Sonic 7.6 > Workbench:

The Sonic Workbench Welcome screen opens:

3. Click the icons on the Welcome screen to see how you can access the following information:

 View an overview of the features of Sonic Workbench, Eclipse, and Java development.

 Find out what is new in this release of Sonic Workbench.

 Link to the documentation on the sample applications for Sonic ESB, Sonic BPEL Server, Sonic Database Server, and Sonic XML
Server.

 Link to the documentation on the tutorials for Sonic ESB and Sonic BPEL Server.

 Access web resources, including the home pages for the Progress Sonic products, tech support, Eclipse updates, and PSDN
(Progress Software Developers Network).

4. Click to close the Welcome screen and start using Sonic Workbench.

Note: You can reopen the Welcome screen by selecting Help > Welcome.

Next, import the Remote Information Access sample project.

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 15 of 125

RIA tutorial, preparation

Importing the Remote Information Access sample project

To import the sample project for the Remote Information Access tutorial:

1. After closing the Welcome screen, you are ready to use Sonic Workbench in the Sonic
Design perspective:

2. Select File > Import. The Select page of the Import wizard opens.

3. Select General > Existing Projects into Workspace:

4. Click Next. The Import Projects page of the Import wizard opens. Choose Select root

directory and click Browse. The Browse for Folder dialog box opens.

5. Select the Sample.RIA folder under Sonic > ESB7.6 > samples:

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 16 of 125

6. Click OK. The Import Projects page of the Import wizard opens.

7. The Sample.RIA project is automatically checked.
Be sure to check Copy projects into workspace (this option prevents you from changing
the original project if you modify the imported project):

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 17 of 125

8. Click Finish. Sonic Workbench loads the Remote Information Access sample project.

Next, examine the Remote Information Access sample project.

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 18 of 125

RIA tutorial, preparation

Examining the Remote Information Access sample
project

After you import the Sample.RIA project, you upload the project and examine its files:

1. Go to the Navigator view. Select the Sample.RIA project and select Project > Upload all
from the menu bar to upload the project.

2. Click OK to confirm the uploading.

3. Expand the Sample.RIA folder and the \operations and \Sample Data subfolders to view the
files in the Sample.RIA project:

4. You can double-click a file to view it in the appropriate Sonic Workbench editor.

You can learn more about the files in the Remote Information Access sample project now, or wait
until you work with them in the tutorial.

Now you are ready to develop the Remote Information Access sample application.
Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 19 of 125

Developing the Remote Information Access sample
application

The Remote Information Access tutorial is divided into five phases of implementation and a testing
and debugging section. In each phase, you start by creating a Prototype service and configuring it
to return a simulated response. This enables you to test your design as you develop it. After
confirming basic functionality, you replace the prototypes with services or subprocesses that
implement the required functionality.

You can stop the tutorial at any time and come back to it. Just be sure to save the files you are
working on.

The parts of the tutorial, and the estimated times to complete each part, are:

● Phase 1. Create a prototype interface ESB process that the client application will call, then
test the interface with the ESB by sending a request and receiving a response. (15 minutes)

● Phase 2. Implement multiple operations using a content-based router to route messages
based on the operation (either GetAccounts or GetAccountActivity). Create a prototype
branch for each use case. Then test the routing with scenarios for each use case. (30
minutes)

● Phase 3. Create a subprocess to handle the Get Accounts use case. Add a Split and Join
Parallel service to simultaneously retrieve data from different accounts and aggregate the
data into a single response. Then test the subprocess with a scenario. (25 minutes)

● Phase 4. Add an XML Transformation service to format the response from the Split and Join
Parallel service. Then test the transformation stylesheet and the fully implemented
subprocess. (15 minutes)

● Phase 5. Create a subprocess to handle the Get Account Activity use case. Add a content-
based router to route requests based on the specified account type. Configure three
branches of the content-based router, one for each account type. Then test the routing with
scenarios for each account type. (30 minutes)

● Test and debug the fully implemented ESB process, processRequest. (15 minutes)

Start by creating the prototype ESB process, processRequest.

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 20 of 125

Note: If you do not want to develop and implement all the phases of processRequest yourself, you
can run and test the sample files included in Sample.RIA. The sample ESB processes are similar to
the processes created and implemented in this tutorial, and include scenarios to run the processes.
Simply open the sample ESB process you want to test and proceed directly to the instructions to
run and test the process:

● Running and testing the getAccounts subprocess — The sample ESB process Sample.
RIA.getAccounts.esbp is similar to the subprocess completed in Phases 3 and 4.

● Running and testing the getAccountActivity subprocess — The sample ESB process
Sample.RIA.getAccountActivity.esbp is similar to the subprocess completed in
Phase 5.

● Testing the fully implemented ESB process, processRequest — The sample ESB process
Sample.RIA.processRequest.esbp is similar to the process completed in this tutorial.

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 21 of 125

RIA tutorial, development

Phase 1: Creating the prototype ESB process,
processRequest

To begin the RIA tutorial you create your own project, then create and test the prototype ESB
process, processRequest. In later phases of the tutorial you will implement additional functionality
in the ESB process, but for now you simply create the prototype and test its interface to the ESB:

1. Create a new project — Create your own Sonic development project.

2. Copy the sample data — Copy the sample data into your newly created project.

3. Create the prototype ESB process — Create the processRequest ESB process.

4. View processRequest — View processRequest in the ESB Process editor and look at the
palette options.

5. Create a scenario — Create a scenario to run processRequest.

6. Run and test processRequest — Use the scenario you created to run processRequest and
verify that it returns a response.

7. Modify processRequest to return a response — Configure a default response for
processRequest to simulate a response based on an incoming request.

8. Test the modified ESB process — Use the scenario to verify that processRequest returns a
response based on the incoming request.

Start by creating a project.

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 22 of 125

RIA tutorial, phase 1

Creating a new project

To create your own Sonic development project for the RIA tutorial:

1. In Sonic Workbench, select File > New > Sonic Development Project. The New Sonic
Development Project wizard opens.

2. Enter MyRIA as the name of your project:

3. Accept the default location and click Finish. Sonic Workbench creates the new project.

4. Go to the Navigator view to see the new project:

5. The Remote Information Access tutorial requires you to create an ESB process with

subprocesses and additional ESB processes. To keep the ESB processes and associated
resources separate and organized, it is a good idea to keep them in separate directories.
You can create these directories as you go, or you can create them now. To create a new

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 23 of 125

directory, select File > New > Folder. In the New Folder dialog box that opens, select a
parent directory and enter a folder name. Repeat these steps to create the following folders:

a. Under the parent folder MyRIA, create the folder operations.

b. Under the parent folder MyRIA/operations, create the folder processRequest. This
folder will hold resources associated with the main ESB process, processRequest.

c. Under the parent folder MyRIA/operations, create the folder getAccounts. This
folder will hold resources associated with the ESB subprocess, getAccounts.

d. Under the parent folder MyRIA/operations, create the new folder
getAccountActivity. This folder will hold resources associated with the ESB
subprocess, getAccountActivity.

6. Go to the Navigator view to see the new folders:

Next, copy the sample data.

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 24 of 125

RIA tutorial, phase 1

Copying the RIA sample data

Now that you have created the project, you can copy the sample data folder containing the XML
documents you will use as example request and response messages for the ESB processes:

1. Select the Sample Data folder under the Sample.RIA folder, right-click, and select Copy.

2. Select your MyRIA folder, right-click, and select Paste. Sonic Workbench adds the Sample
Data folder to your project:

Next, create the prototype ESB process, processRequest.

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 25 of 125

RIA tutorial, phase 1

Creating the prototype ESB process

After creating the project and copying the sample data, you are ready to create an ESB process.

Creating this prototype ESB process enables you to establish and test an interface between the
customer portal and Sonic ESB.

To create the prototype ESB process, processRequest:

1. Select File > New > ESB Process. The New ESB Process wizard opens.

2. Select MyRIA/operations/processRequest as the parent folder. (In this sample, putting all
your processes in the separate directories you created earlier helps organize the files.)

3. Enter RIA.processRequest as the name of the ESB process. (You use a different name to
avoid over-writing the process in the sample project you imported if they are both uploaded.)

4. Click Finish. Sonic Workbench creates the new ESB process.

Next, view the prototype ESB process in the ESB Process editor.

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 26 of 125

RIA tutorial, phase 1

Viewing the prototype ESB process

After creating the prototype ESB process, processRequest, you can view it in the ESB Process
editor:

1. The new ESB process opens in the Process page in the ESB Process editor. By default, the
ESB process contains the Prototype service, Service 1 (shown expanded):

2. Open the Palette (on the right side of the Process page) and view the sections of the Palette:

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 27 of 125

Later, you will drag process templates and services from the Palette onto the ESB process
as you implement new functionality in the ESB process.

Next, create a scenario to test the interface between processRequest and the ESB.

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 28 of 125

RIA tutorial, phase 1

Creating a scenario

You can create scenarios to test ESB processes and other artifacts in Sonic Workbench. Now that you have
created the prototype ESB process, processRequest, you can create a scenario to test the interface between the
ESB process and Sonic ESB.

This initial test of the interface simply sends a request to RIA.processRequest.esbp and returns data passed
through in the request. Create this scenario using the sample XML file, GetAccountsRequest.xml, which
provides the prototype service with a request for account information. Because you have not yet configured the
ESB process to do anything with the request, when run, the scenario will simply return the contents of the request.

To create the scenario:

1. With RIA.processRequest.esbp open in the ESB Process editor, click the Scenarios tab to open the
Scenarios page.

2. In the Scenarios section, click Add Scenario to create a new scenario. By default, the new scenario is
named RIA.processRequest_default.

3. In the Scenario Details section, enter or select the following:

❍ Scenario Name: getAccounts.

❍ In the Input section, select the Input Type Interface.
This selection specifies that the input will be supplied in interface parameters, rather than in an ESB
message.

❍ If the File/Literal selection in the Input table is not already set to File, click the entry in the field and
select File from the pull-down list.

❍ To enter a scenario Test Value, drag the sample XML file, GetAccountsRequest.xml, from the
folder MyRIA/Sample Data/getAccounts in the Navigator view.
Notice that you can position your cursor over the scenario test value URL to view the contents of the
file:

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 29 of 125

The Scenario Details section now looks like this:

Next, run processRequest using this scenario.

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 30 of 125

RIA tutorial, phase 1

Running and testing the prototype ESB process

Now that you have created the getAccounts scenario, you can run the scenario to test the interface between the
prototype ESB process, processRequest, and Sonic ESB. Because you have not yet configured the ESB process to
do anything with the request, when run, the scenario will simply return the contents of the request:

1. With RIA.processRequest.esbp open in the Scenarios page of the ESB Process editor, select the
getAccounts scenario.

2. Click Run to run the process using this scenario.

3. View the Reply Message in the Output view. At this initial stage of development, the ESB process simply
returns the request sent by the scenario:

4. Observe that the content of the reply message is the same as the content of the XML file

GetAccountsRequest.xml, sent in the scenario.

This tutorial uses iterative development techniques to build on each phase of implementation. The next step,
therefore, is to modify the prototype process to implement more functionality.

Next, instead of simply passing through the request, modify the ESB process to return a response based on an
incoming request.

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 31 of 125

RIA tutorial, phase 1

Modifying processRequest to return a response

After creating and testing the prototype ESB process, the next step is to modify processRequest to
return a more meaningful response, based on an incoming request. You do this by dragging a
sample response XML file from the Navigator view onto the service step. When the incoming
request is received, the service will return the information in this response file.

In the following procedure you also rename the initial step, Service 1, to a more meaningful name.
Renaming steps to something meaningful helps you keep track of the different parts of an ESB
process.

Later, you will implement a subprocess to return information from different accounts, but for now
you are just establishing that the prototype service will return a response based on an incoming
request:

1. Return to the Process page. Select the prototype service, Service 1, that was created
automatically when you created processRequest. Click the name on the step, Service 1, so
you can rename it:

2. Change the name to GetAccounts.

3. Drag the sample XML response file, GetAccountsDefaultResponse.xml, from the
folder MyRIA/Sample Data/getAccounts in the Navigator view, onto the GetAccounts service
step in the Process page of the ESB editor. This XML file supplies a response containing
account information. When you run the ESB process using the getAccounts scenario, the
GetAccounts service will now return the data contained in
GetAccountsDefaultResponse.xml.

Note: You can view the contents of this XML file by right-clicking GetAccounts and
selecting Go to Artifact:

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 32 of 125

4. Save the modified ESB process.

5. The Save ESB Process dialog box prompts you to upload the process after saving
(modified ESB processes must be uploaded before you can run and test them). Check the
checkbox next to Remember my decision to automatically upload when saving any
modified ESB processes or resources:

Click Yes to continue.

Next, run the scenario to test the modified ESB process.

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 33 of 125

RIA tutorial, phase 1

Testing the modified ESB process

Now that you have modified processRequest to return a response based on an incoming request,
you can run the ESB process using the getAccounts scenario to confirm that the process now
returns a response based on the incoming request:

1. Select the Scenarios tab to open the Scenarios page, then select the getAccounts
scenario and click Run. The GetAccounts step in RIA.processRequest.esbp has now
been implemented, and returns the accounts data based on the incoming request.

2. View the Reply Message in the Output view. The response includes the request
information, which specifies the customer for whom accounts are returned, along with an
entry for each of the customer´s accounts:

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 34 of 125

3. Compare this response with the initial response you got before modifying the
processRequest. Instead of simply returning the request message, processRequest now
returns account information based on the customer specified in the incoming request. As
you can see in the request information included in the response, the data in this response is
for customer number 123456.

For now, processRequest simulates the account information returned, but later you will implement
the GetAccounts step as a subprocess to return actual account data.

You have now successfully created and tested the prototype ESB process, processRequest, and
you are ready to continue on with Phase 2. The use cases in this tutorial require the ESB process
to handle two different types of requests. In Phase 2 you create a content-based router to route
requests to different branches based on the type of incoming request.

Note: If you do not want to develop and implement all the phases of processRequest yourself, you
can stop here, and run and test the sample files included in Sample.RIA. The sample ESB
processes are similar to the processes created and implemented in this tutorial, and include
scenarios to run the processes. Simply open the sample ESB process you want to test and proceed
directly to the instructions to run and test the process:

● Sample.RIA.GetAccounts.esbp — Follow the instructions in Running and testing the
getAccounts subprocess

● Sample.RIA.getAccountActivity.esbp — Follow the instructions in Running and
testing the getAccountActivity subprocess

● Sample.RIA.processRequest.esbp — Follow the instructions in Testing the fully
implemented ESB process, processRequest

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 35 of 125

RIA tutorial, development

Phase 2: Implementing multiple operations using a
content-based router

The processRequest process includes two use cases, GetAccounts and Get AccountActivity.
These use cases require the process to handle requests for both a list of a customer´s accounts
(GetAccounts) and account activity on a specified account (GetAccountActivity). In this phase, you
create a content-based router with two branches (one for GetAccounts and one for
GetAccountActivity) and configure XPath routing rules to route the different request types to
different branches. In later phases you will implement each branch of processRequest to handle the
request type routed to it. For now, you create a prototype operation router and establish the two
branches:

1. Create a content-based router — Create an operation router with two branches.

2. Create branch 1 — Create a branch for the GetAccounts use case that will compile an
account list for a given customer. Later, you will implement a subprocess in this branch.

3. Create branch 2 — Create a branch for the GetAccountActivity use case that will retrieve
data from different sources. For now you create a prototype step on this branch; later you
will implement a subprocess in this branch.

4. Modify the routing rules — Create XPath routing rules that will route messages based on the
request type in the message content. Configure two rules:

❍ Rule 1 — Send requests for a list of a customer´s accounts to branch 1.

❍ Rule 2 — Send requests for all activity on a specified account to branch 2.

5. Create scenarios to test the content-based router — Create two scenarios for the
processRequest process. The scenarios test the routing to each branch of the content-
based router.

6. Run and test the content-based router — Run the scenarios to confirm that messages are
routed correctly based on the request type in the message content.

Start by creating a content-based router.

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 36 of 125

RIA tutorial, phase 2

Creating an operation router

In this tutorial, requests sent to processRequest specify the request type, either getAccounts or
getAccountActivity. To handle these requests, you create a content-based router to send requests
for accounts and account activity to different branches of the process. One branch of the router
handles requests for account information (using the GetAccounts service you previously
implemented), and the other branch handles requests for account activity.

The following procedure makes use of the operation router template available on the ESB Process
editor Palette. This process template contains a prototype operation router to help get you started:

1. Go to the Process page. Select OperationRouter from the Process Templates section of
the Palette:

2. Drag the operation router template onto the process, dropping it above or below the existing
GetAccounts step. The prototype operation router includes a routing step and two
branches by default.

3. Delete the GetAccounts step, since you are replacing this step with the operation router.

4. Select the new Operation Router step and click the step name so you can rename it.
Change the step name to routeRequest. The ESB process now has an operation router and
two branches:

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 37 of 125

5. When you create the operation router, an XPath routing rules file is created with the default

name OperationRouter.xcbr and saved in the same location as the ESB process in which
it is created. It is a good idea to rename this file to help you keep track of it. Select the file in
the Navigator view, right-click, and select Rename:

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 38 of 125

6. Change the name to routeRequest.xcbr, and confirm the name refactoring when prompted.

Click Yes in the Save All Modified Resources dialog box, then click OK in the Sonic
Rename Processor dialog box. Finally, select MyRIA in the Navigator view and choose
Project > Upload All from the menu bar to upload the renaming changes.

The name of the XPath routing rules file is now descriptive of its functionality, which is
helpful in managing your resources when you have multiple ESB process and routing rules
files.

Next, implement one branch of the operation router to compile a list of accounts for a given
customer.

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 39 of 125

RIA tutorial, phase 2

Branch 1: Compiling an account list for a customer

Now that you have created the prototype operation router, you can implement one branch of the
operation router to handle requests for accounts for a given customer. Requests directed to this
branch of processRequest will contain the request type getAccounts, and will specify a particular
customer. In a later phase, you will implement a subprocesss on this branch to aggregate all the
accounts held by the customer and return a response containing a list of the customer´s accounts.
For now, the prototype GetAccounts step will return a simulated response:

1. Right-click Operation 1 and select Refactor > Rename Step:

2. In the Rename Step dialog box that opens, enter the step name GetAccounts:

Accept the default scope, Workspace, then click OK.

3. Drag the sample XML response file, GetAccountsDefaultResponse.xml, from the

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 40 of 125

folder MyRIA/Sample Data/getAccounts in the Navigator view, onto the GetAccounts
service step.

4. Observe that the process now has a branch configured with the prototype GetAccounts
service (steps shown expanded):

5. Save the modified ESB process.

Next, implement the other branch to handle requests for account activity.

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 41 of 125

RIA tutorial, phase 2

Branch 2: Retrieving data from different sources

Now that you have configured the first branch of the operation router with the prototype
GetAccounts step, you can configure the other branch to handle requests for account activity.
Requests directed to this branch of processRequest will contain the request type
getAccountActivity, and will specify a particular customer. In this initial phase, this branch will
return a simulated response. Later, when fully implemented, this branch will return a response
containing all the activity for the customer and account type specified in the request.

For now, create a prototype service for this branch, which will enable you to test the content-based
routing based on different incoming request types:

1. Right-click Operation 2 and select Refactor > Rename Step. In the Rename Step dialog
box that opens, enter the step name GetAccountActivity, then click OK.

2. Drag the sample XML response file, GetAccountActivityDefaultResponse.xml,
from the folder MyRIA/Sample Data/getAccountActivity in the Navigator view, onto the
GetAccountActivity service step.

3. Right-click the GetAccountActivity service step and select Go to Artifact to view the
contents of the default response file GetAccountActivityDefaultResponse.xml. This
XML file supplies a response containing account activity to simulate the actual data that will
be returned later when you fully implement this step.

4. Observe that the process now has two branches containing prototype services:

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 42 of 125

5. Save the modified ESB process.

Next, modify the routing rules for the content-based router.

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 43 of 125

RIA tutorial, phase 2

Modifying the routing rules

Having created the GetAccounts and GetAccountActivity branches of the operation router, you are ready to modify the routing rules to route requests
based on the request type in the request.

In the following procedure, you configure an XPath expression for each request type. Using the XPath Helper in Sonic Workbench, you select the sample
request documents provided for each use case. These documents help you create an XPath expression that checks the request type of the incoming
message.

To modify the routing rules:

1. In RIA.processRequest.esbp, right-click the routeRequest step and select Go to Artifact to open routeRequest.xcbr. The file opens in
the XPath Routing Rules editor, and has two routing rules, one for each account branch.

2. Modify a rule to route to the GetAccounts branch:

a. In the Rules Condition Section of the XPath Routing Rules editor, select the rule for the GetAccounts step:

b. In the XPath Expression section, click ... next to the default XPath expression:

Browse to the sample input document sonicfs:///workspace/MyRia/Sample Data/getAccounts/GetAccountsRequest.xml.

c. In the XPath Helper that opens, double-click the node Request/RequestInformation/RequestType. Notice that the XPath field in the
Input section now contains the expression /Request/RequestInformation/RequestType/text().

d. In the XPath field, next to the expression you just added, enter: =´getAccounts´. Click Evaluate to confirm that this XPath expression
evaluates to true, as shown:

e. Click OK to close the XPath Helper.

f. In the Rules Address section of the XPath Routing Rules editor, confirm that the destination is STEP:GetAccounts:

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 44 of 125

The first XPath routing rule will now route requests having request type getAccounts through the GetAccounts branch of the process.

3. To modify a rule to route requests having request type getAccountActivity through the GetAccountActivity branch, you can copy and modify the
XPath expression from the getAccounts rule:

a. In the Rules Condition Section, select the rule for the GetAccounts step and copy the XPath Expression.

b. Select the rule for the GetAccountActivity step and paste the copied expression into the XPath Expression section.

c. Modify the XPath expression as follows: /Request/RequestInformation/RequestType/text()=´getAccountActivity´.

d. In the Rules Address section of the XPath Routing Rules editor, confirm that the destination is STEP:GetAccountActivity.

4. Save the modified routing rules file.

Next, create scenarios to test the content-based router.

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 45 of 125

RIA tutorial, phase 2

Creating scenarios to test the content-based router

Now that you have created the content-based router and routing rules, you can use scenarios to
test how processRequest handles different requests. You can use the scenario you created
previously to test the routing through the GetAccounts branch. In the following procedure, you
create an additional scenario to test the GetAccountActivity branch:

1. With RIA.processRequest.esbp open in the ESB Process editor, select the Scenarios
tab to open the Scenarios page.

2. Click Add Scenario to add a new scenario. In the Scenario Details section of the
Scenarios page, enter or select the following:

❍ Scenario name: getAccountActivity.

❍ In the Input section, select the Input Type Interface.

❍ If the File/Literal selection in the Input table is not already set to File, click the entry
in the field and select File from the pull-down list.

❍ To enter a scenario Test Value, drag the sample XML file,
GetAccountActivityRequest.xml, from the folder MyRIA/Sample Data/
getAccountActivity in the Navigator view.

3. The ESB process, processRequest, now has a scenario to test each branch of the content-
based router:

Next, run the prototype content-based router to test how it handles different requests.

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 46 of 125

RIA tutorial, phase 2

Running and testing the prototype content-based router

Now that you have created routing rules and scenarios for each use case, you can run them to test
how the content-based router handles different requests. In the following procedure, you test
processRequest using the getAccounts scenario to test the GetAccounts branch, and the
getAccountActivity scenario to test the GetAccountActivity branch:

1. Select the getAccounts scenario.

2. Click Run to run the process using the getAccounts scenario, which supplies a request for
accounts.

3. View the Reply Message in the Output view:

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 47 of 125

Notice that the RequestType is getAccounts, and the Data element contains data about
multiple accounts for the specified customer. This output demonstrates that the request was
routed through the GetAccounts branch of the content-based router.

4. Select the getAccountActivity scenario and click Run. This scenario supplies a request for
account activity.

5. View the Reply Message in the Output view:

Notice that the result contains activity for a particular account, the TV account. This output
demonstrates that the request was correctly routed through the GetAccountActivity branch
of the content-based router.

In this prototype phase of the tutorial, the results returned from running these scenarios are based
on the default response XML files you configured for each service, GetAccounts and
GetAccountActivity. Using iterative development techniques, the remaining phases of the tutorial
build on the work you have already done, expanding the functionality of the ESB process and
services you have created. In the next phases of this tutorial, you will implement subprocesses on
each branch to return the account or account activity data.

You have now successfully created and tested the prototype content-based router for
processRequest, and you are ready to continue on with Phase 3. In Phase 3 you implement the
GetAccounts branch of processRequest by refactoring GetAccounts as a subprocess that will
retrieve and combine data from multiple sources into a single response.

Note: If you do not want to develop and implement all the phases of processRequest yourself, you
can stop here, and run and test the sample files included in Sample.RIA. The sample ESB
processes are similar to the processes created and implemented in this tutorial, and include
scenarios to run the processes. Simply open the sample ESB process you want to test and proceed
directly to the instructions to run and test the process:

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 48 of 125

● Sample.RIA.GetAccounts.esbp — Follow the instructions in Running and testing the
getAccounts subprocess

● Sample.RIA.getAccountActivity.esbp — Follow the instructions in Running and
testing the getAccountActivity subprocess

● Sample.RIA.processRequest.esbp — Follow the instructions in Testing the fully
implemented ESB process, processRequest

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 49 of 125

RIA tutorial, development

Phase 3: Implementing getAccounts using a Split and
Join Parallel service

In Phase 2, you implemented and tested a prototype content-based router with two branches in
processRequest. Now you are ready to refactor the GetAccounts step in processRequest as a Split
and Join Parallel service, enabling your process to combine data from multiple sources into a single
response:

1. Refactor GetAccounts — Refactor the GetAccounts step in processRequest as a
subprocess containing a Split and Join Parallel service, CombineAllAccounts. This service
simultaneously calls out to different data sources and combines the data returned from the
data sources.

2. Create ESB processes for each account type — Create an ESB process to return data for
each account type (Phone, TV, and Wireless Cell). In a later phase, you can implement
each of these ESB processes to connect to the data source for a particular account and
return the actual account data. For now, you configure each ESB process with a simulated
response.

3. Configure a list of called addresses — Configure a called address for each of the three ESB
processes you just created. These ESB processes will return simulated data for each
account type (Phone, TV, and Wireless Cell)

4. Configure the service runtime parameters — Configure service parameters for the Split and
Join Parallel service.

5. Run and test the Split and Join Parallel service — Create and run a scenario to retrieve
account information for a specified customer, and verify the response.

Start by refactoring GetAccounts as a subprocess.

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 50 of 125

RIA tutorial, phase 3

Refactoring GetAccounts as a subprocess

In Phase 2, you created a content-based router having two branches. Now you can refactor the
service on one of those branches, GetAccounts, as a subprocess to aggregate data for separate
accounts. In the subprocess, you create a Split and Join Parallel service, which you later configure
to combine data from the three account types used in this tutorial.

To refactor GetAccounts as a subprocess:

1. Go to the Process page. Right-click the GetAccounts step, and select Refactor > Create
Subprocess:

2. In the New ESB Process dialog box, select the parent folder MyRIA/operations/

getAccounts and enter the file name RIA.getAccounts. Click Finish, then observe that the
icon and information on the GetAccounts step has changed, indicating that the service has
been refactored as the subprocess RIA.getAccounts:

3. To open the subprocess, right-click the GetAccounts step and select Go to Subprocess:

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 51 of 125

The subprocess opens in the ESB Process editor (the step is shown expanded):

4. Drag the Split and Join Parallel Service from the All
Service Types section of the Palette onto the GetAccounts step. The icon and information
on the GetAccounts step changes, indicating the step is now a Split and Join Parallel
service:

5. Select the step and click the step name, GetAccounts so you can rename it. Change the

step name to CombineAllAccounts.

Note: If you have not yet saved the subprocess, the Save All Modified Resources dialog
box opens, prompting you to save the resources before continuing with renaming the step.
Select OK, then select Yes to upload the process, if prompted.

The refactored subprocess now looks like this:

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 52 of 125

Next, create an ESB process for each account type (Phone, TV, and Wireless Cell).

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 53 of 125

RIA tutorial, phase 3

Creating ESB processes for each account type

Now that you have refactored GetAccounts as a subprocess, you can create ESB processes to use
as called addresses for the Split and Join Parallel service, CombineAllAcounts. Requests for
customer accounts are routed to the GetAccounts branch of processRequest by the content-based
router you created in Phase 2. The CombineAllAccounts service will call out to each address
simultaneously to retrieve account data, and will add the data from each account to the request
message.

Create an ESB process for each account type (Phone, TV, and Wireless Cell), and configure each
ESB process with account information by dragging a sample XML file containing this information
onto each service. This information simulates information returned from data sources for each
account:

1. Select File > New ESB Process.
In the New ESB Process dialog box that opens, enter or select the following:

❍ Parent folder: MyRIA/operations/getAccounts

❍ File name: Enter one of the following:

RIA.GetPhoneAccount
RIA.GetTVAccount
RIA.GetWirelessCellAccount

Click Finishto create each process. (Repeat this step to create all 3 processes.)
Each process opens in the ESB Process editor.

2. Repeat the following steps for each new ESB Process:

a. Select and rename each service step in each ESB process:

GetPhoneInfo (in RIA.GetPhoneAccount.esbp)
GetTVInfo (in RIA.GetTVAccount.esbp)
GetWirelessCellInfo (in RIA.GetWirelessCellAccount.esbp)

b. Drag the corresponding information XML file from the folder, MyRIA/Sample Data/
getAccounts, in the Navigator view onto each ESB process:

PhoneAccountInfo.xml (onto RIA.GetPhoneAccount.esbp)
TVAccountInfo.xml (onto RIA.GetTVAccount.esbp)
WirelessCellAccountInfo.xml (onto RIA.GetWirelessCellAccount.
esbp)

3. Save RIA.GetPhoneAccount.esbp, RIA.GetTVAccount.esbp, and RIA.
GetWirelessCellAccount.esbp.

4. Select your project folder, MyRIA, in the Navigator view, then select Project > Upload All to
upload the new ESB processes.

Next, configure a list of called addresses for the Split and Join Parallel service.

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 54 of 125

RIA tutorial, phase 3

Configuring a list of called addresses

Now that you have created ESB processes to return data for each account type, you can configure
a list of called addresses for the Split and Join Parallel service, CombineAllAccounts. This list will
contain the addresses of the ESB processes (GetPhoneAccount, GetTVAccount, and
GetWirelessCellAccount) you created for each account type:

1. Open RIA.getAccounts.esbp and double-click the CombineAllAccounts step to open
the service.

2. In the Runtime Parameters section, click ... next to Called addresses:

3. In the Select ESB Address dialog box that opens, select the three ESB processes you

made for the account types: RIA.GetPhoneAccount, RIA.GetTVAccount, and RIA.
GetWirelessCellAccount:

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 55 of 125

Click OK to add the ESB processes to the service as called addresses.

4. Save the ESB process.

5. Return to the Process page and expand the CombineAllAccounts step to see that the three
ESB processes have been added as called addresses:

Next, configure additional service runtime parameters to specify the timeout behavior and result
format.

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 56 of 125

RIA tutorial, phase 3

Configuring the service runtime parameters

Now that you have configured a list of called addresses for the Split and Join Parallel service, CombineAllAccounts, you can
configure additional runtime parameters to specify the timeout behavior and how the results format:

1. On the service page for CombineAllAccounts, set the following parameters in the Runtime Parameters section:

Runtime
Parameter Setting

Keep Original
Part True — Include the original message part(s) in the response.

Merge Branch
Results

Append Child Nodes — The results returned from the three ESB processes are to be
merged and appended as child nodes in the response.

Merge Part 0 — The index of the part to merge the results into.

Timeout 500 — The global timeout for all branches, in milliseconds.

Timeout Policy Continue — The service continues even if there are no replies from timed out branches.

XPath Expression /*[1] — The response will be appended to the first child node.

2. Save the ESB process.

3. Confirm that your runtime parameters are now configured like this:

The service has three called addresses, one for each account type subprocess, and is configured to merge the
results from the three subprocesses.

Next, run a scenario to test the Split and Join Parallel service.

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 57 of 125

RIA tutorial, phase 3

Running and testing the CombineAllAccounts service

Now that you have finished configuring the Split and Join Parallel service, CombineAllAccounts,
you can test the getAccounts subprocess to see the response this service returns. You can create
and run a scenario to send a request for accounts for a specified customer to getAccounts. When it
receives the request, the service will call in parallel to each of the three ESB processes
representing the account types, returning data from all three accounts in a single message. You
can view the returned data in the Output view after running the scenario.

In the next phase of the tutorial, you will create a stylesheet to map this output to a different format.
You can use the result you obtain in the procedure as input to your stylesheet mapping, so the last
step in the following procedure is to save the output for later use:

1. Open RIA.GetAccounts.esbp and click the Scenarios tab to open the Scenarios page.

2. In the Scenarios section, click Add Scenario , then enter or select the following:

❍ Scenario Name: getAccounts

❍ In the Input section, select the Input Type. Interface

❍ If the File/Literal selection in the Input table is not already set to File, click the entry
in the field and select File from the pull-down list.

❍ Test Value: GetAccountsRequest.xml (drag the sample XML file from the folder
MyRIA/Sample Data/getAccounts in the Navigator view)

3. Click Run. The process runs, calling the three account subprocesses and returning data
from each account.

4. Observe the Reply Message in the Output view, which contains the original request
information and returns data for each account (Phone, TV, and Wireless Cell):

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 58 of 125

5. To save this output for use when you create a stylesheet to map the response formats,

select the message Part(name), right-click, and select Save As:

6. In the Save As dialog box that opens, save the file in your folder MyRIA/operations/

getAccounts. Name the file getAccountsIntermediateResponse:

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 59 of 125

Click OK to save the file. The file is saved as XML, and the extension .xml is added to the
file name.

You have now successfully implemented and tested CombineAllAccounts in the getAccounts
subprocess, and you are ready to continue on to Phase 4, where you map from the intermediate
response format you just saved into the required output format.

Note: If you do not want to develop and implement all the phases of processRequest yourself, you
can stop here, and run and test the sample files included in Sample.RIA. The sample ESB
processes are similar to the processes created and implemented in this tutorial, and include
scenarios to run the processes. Simply open the sample ESB process you want to test and proceed
directly to the instructions to run and test the process:

● Sample.RIA.GetAccounts.esbp — Follow the instructions in Running and testing the
getAccounts subprocess

● Sample.RIA.getAccountActivity.esbp — Follow the instructions in Running and
testing the getAccountActivity subprocess

● Sample.RIA.processRequest.esbp — Follow the instructions in Testing the fully
implemented ESB process, processRequest

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 60 of 125

RIA tutorial, development

Phase 4: Using stylesheets to format responses

In your applications, it is sometimes necessary to transform the output of an ESB process step into
a different response format. In the RIA tutorial, the output returned from the Split and Join Parallel
service, CombineAllAccounts, is not in the desired format, so you will add a step to the getAccounts
subprocess to transform the output. In this phase of the tutorial, you add an XML Transformation
service to the ESB subprocess, getAccounts, to transform the output of CombineAllAccounts. You
use the output you saved when running CombineAllAccounts as input to the stylesheet, and map
these formats to the response format:

1. Add an XML Transformation service to format responses — Add the XML Transformation
service Format Response to the getAccounts subprocess.

2. Create a stylesheet — Create a stylesheet for the XML Transformation service you just
added to the subprocess.

3. Select interface parameters — Use the intermediate response you saved previously as the
default input to the stylesheet, and use a sample XML provided with the sample as the
default output for the stylesheet.

4. Map response parameters — Map the output from the CombineAllAccounts step to the
response format provided in the sample XML default response file.

5. Test the stylesheet — Create a scenario and test the XML Transformation service.

6. Test the subprocess, GetAccounts — Use a scenario to test the getAccounts subprocess,
which now includes the Split and Join service, CombineAllAccounts, and the XMl
Transformation service, Format Response.

Start by adding an XML Transformation service.

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 61 of 125

RIA tutorial, phase 4

Adding an XML Transformation service to format
responses

You can add an XML Transformation service to transform output into a preferred format. In this
step, you add an XML Transformation service to the subprocess, getAccounts, to transform the
response from the Split and Join Parallel service. Later, you create a stylesheet for the XML
Transformation service and map the response formats.

To add an XML Transformation service to the subprocess, getAccounts:

1. Open RIA.getAccounts.esbp, which you modified in Phase 3 to contain a Split and Join
Parallel service.

2. Under All Service Types in the Palette, select the XML Transformation service

 and drag it onto the ESB process, dropping it below the service
CombineAllAccounts.

3. Selece the XML Transformation service step and click the step name so you can rename it.
Change the step name to Format Response.

4. Save the ESB process.

The getAccounts subprocess now looks like this (shown with steps expanded):

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 62 of 125

Next, create a stylesheet to map the response formats.

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 63 of 125

RIA tutorial, phase 4

Creating a stylesheet to map response formats

Now that you have added an XML Transformation service, Format Response, to the getAccounts
subprocess, you can create a stylesheet to map response formats. The sample XML document,
GetAccountsDefaultResponse.xml, contains the formats required in the response from
getAccounts. In the following procedure, you map the output of the Split and Join Parallel service,
CombineAllAccounts, to these formats. You use the output that you saved previously when running
CombineAllAccounts as input to the stylesheet in the XML Transformation service. First, create the
stylesheet:

1. Double-click the Format Response step (this step is the XML Transformation service you
added previously).

2. In the Runtime Parameters section of the Service page that opens, click in the Stylesheet
URL field and select New > XSLT to create a new stylesheet for the XML Transformation
service:

3. In the New XSLT dialog box, select the location MyRIA/operations/getAccounts, and enter

the file name formatGetAccountsResponse:

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 64 of 125

Click Finish to create the stylesheet. The stylesheet opens in the XSLT editor:

Next, select interface parameters that provide request and response formats in example documents
for the XSL stylesheet.

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 65 of 125

RIA tutorial, phase 4

Selecting interface parameters

Now that you have created a stylesheet for the XML Transformation service, Format Response, you can select example XML documents to use as
request and response interface parameters for your stylesheet. For this tutorial, use the output that you saved previously when running the Split and Join
Parallel service as input to the stylesheet transformation. For the output, use the sample XML document, GetAccountsDefaultResponse.xml, which
contains the formats required in the response from the subprocess, getAccounts:

1. With the stylesheet formatGetAccountsResponse.xsl open, select the Interface tab to open the Interface page.

2. Enter the Request and Response interface parameters by dragging the following documents from the Navigator view into the Example
Document fields:

❍ Default Input: getAccountsIntermediateResponse.xml (located in MyRIA/operations/getAccounts)

❍ Default Output: GetAccountsDefaultResponse.xml (located in MyRIA/Sample Data/getAccounts)

The Interface page now looks like this:

Next, map the response parameters in the stylesheet.

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 66 of 125

RIA tutorial, phase 4

Mapping response parameters

Now that you have selected interface parameters for the stylesheet, you can map the request formats to the response formats using the Mapper tool in
Sonic Workbench. The stylesheet is generated as you map from request to response parameters:

1. With the stylesheet formatGetAccountsResponse.xsl open, select the Mapper tab to open the Mapper page. Initially, the Mapper
displays the input and output formats and a default stylesheet:

2. Create the mapping by clicking on an input node and dragging your cursor to an output node. Release the cursor and select the type of

mapping. In this stylesheet, you map the values from input to output parameters, so you choose value-of mappings for most of the parameters.
In the case of the Account node, you choose a for-each mapping because this is a repeating block, and you want to map the values of the
parameters in this repeating block for each account for which data is returned.

For example, map RequestID to RequestID, and select a value-of mapping:

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 67 of 125

Map the following parameters:

Input Node Output Node Mapping

RequestID RequestID value-of

RequestRole RequestRole value-of

RequestName RequestName value-of

RequestType RequestType value-of

CustomerNumber CustomerNumber value-of

Account* *Account for-each

AccountNumber AccountNumber value-of

AccountType AccountType value-of

IsOpen IsOpen value-of

Note that nodes having an asterisk, such as the Account node, are repeating blocks. In this case, you select the mapping for-each to repeat
the mapping for each account.

3. View the completed stylesheet in the Source page:

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 68 of 125

4. Save the completed stylesheet.

Next, test the stylesheet by running a scenario and confirming that the output has the correct formats.

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 69 of 125

RIA tutorial, phase 4

Testing the stylesheet

Now that you have mapped the response parameters, you can test the stylesheet using a scenario
to confirm that the response formats are correct. By default, the stylesheet transforms the example
document you selected as the interface parameter, DefaultInput. In this case, that document is the
XML file, getAccountsIntermediateResponse.xml, which supplies the output of the Split and
Join Parallel service, CombineAllAccounts.

To test the stylesheet using a scenario:

1. Open the stylesheet, formatGetAccountsResponse.xsl, and click the Scenarios tab to
open the Scenarios page.

2. Click Add Scenario . Observe that the new scenario has the Test Value from the
example document, getAccountsIntermediateResponse.xml.

3. Click Run. The stylesheet transforms the default input document, which provides the output
from CombineAllAccounts and contains data for each account (Phone, TV, and Wireless
Cell). The stylesheet maps the account data to the required response format.

4. View the Reply Message in the Output view:

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 70 of 125

Observe that the output is now in a Response element, and all account data is included in a
single message part.

Next, run the subprocess, getAccounts, to confirm that the subprocess response is in the required
format.

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 71 of 125

RIA tutorial, phase 4

Running and testing the getAccounts subprocess

Now that you have implemented the CombineAllAccounts and Format Response services in the
subprocess, getAccounts, you can run getAccounts using a scenario to confirm that a properly
formatted response is returned containing data for all three accounts (Phone, TV, and Wireless
Cell):

1. Open RIA.getAccounts.esbp and click the Scenarios tab to open the Scenarios page.

2. Select the GetAccounts scenario and click Run. The process runs, with the Split and Join
Parallel service, CombineAllAccounts, calling the three ESB processes for the Phone, TV,
and Wireless Cell account, and returning data for each. The XML Transformation service,
Format Response, maps the account data to the required response format.

3. View the Reply Message in the Output view:

Observe that the output is now in a Response element, and all account data is included in a
single message part.

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 72 of 125

Now that you have successfully implemented and tested the GetAccounts branch of
processRequest, you are ready to continue on with Phase 5. In Phase 5 you implement the
GetAccountActivity branch of processRequest by refactoring GetAccountActivity as a subprocess
using content-based routing to retrieve data from specified account types.

Note: If you do not want to develop and implement all the phases of processRequest yourself, you
can stop here, and run and test the sample files included in Sample.RIA. The sample ESB
processes are similar to the processes created and implemented in this tutorial, and include
scenarios to run the processes. Simply open the sample ESB process you want to test and proceed
directly to the instructions to run and test the process:

● Sample.RIA.GetAccounts.esbp — Follow the instructions in Running and testing the
getAccounts subprocess

● Sample.RIA.getAccountActivity.esbp — Follow the instructions in Running and
testing the getAccountActivity subprocess

● Sample.RIA.processRequest.esbp — Follow the instructions in Testing the fully
implemented ESB process, processRequest

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 73 of 125

RIA tutorial, development

Phase 5: Implementing getAccountActivity using content-
based routing

In this phase of the RIA tutorial, you refactor the GetAccountActivity step in processRequest as a
subprocess to retrieve account data for each account type used in this tutorial, and to aggregate
that data into a single response:

1. Refactor GetAccountActivity — Refactor this step as a subprocesss and add an operation
router that will aggregate data for separate accounts.

2. Configure three branches of the operation router — Configure three branches, one to get
account activity for each of the three account types (Phone, TV, and Wireless Cell
accounts).

3. Modify the subprocess routing rules — Create XPath routing rules that will route messages
based on the account type in the message content. Configure three rules:

❍ Rule 1 — Send requests for Phone account activity to the Phone account branch.

❍ Rule 2 — Send requests for TV account activity to the TV account branch.

❍ Rule 3 — Send requests for Wireless Cell account activity to the Wireless Cell
account branch.

4. Create scenarios to test the subprocess routing — Create three scenarios for the
subprocess. The scenarios test each branch of the content-based router.

5. Run and test the subprocess with request routing — Run the scenarios to confirm that
messages are routed correctly based on the account type in the message content.

Start by refactoring GetAccountActivity as a subprocess.

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 74 of 125

RIA tutorial, phase 5

Refactoring GetAccountActivity as a subprocess

In Phase 2, you created a content-based router having two branches. Now you can refactor the
service on one of those branches, GetAccountActivity, as a subprocess to retrieve data from
specified a account type. In the subprocess, you create a content-based router that routes requests
for account activity based on the account type specified in the request. To begin, refactor
GetAccountActivity as a subprocess and add an operation router:

1. Open RIA.processRequest.esbp, right-click the GetAccountActivity step, and select
Refactor >Create Subprocess:

2. In the New ESB Process dialog box that opens, select the parent folder MyRIA/operations/

getAccountActivity and enter the file name RIA.getAccountActivity:

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 75 of 125

Click Finish to create the subprocess. Notice that the icon on the GetAccountActivity step
changes to indicate that the step is now a subprocess.

3. Right-click the GetAccountActivity step and select Go to Subprocess:

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 76 of 125

The new subprocess opens, containing a single step, GetAccountActivity:

4. From the Process Templates section of the Palette, drag an operation router

 onto the process, and delete the existing GetAccountActivity step
(you are replacing this prototype step with the operation router).

5. Save the subprocess.

Next, configure three branches of the operation router to return data for each account type.

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 77 of 125

RIA tutorial, phase 5

Configuring three branches of the operation router

Now that you have refactored GetAccountActivity as a subprocess with an operation router, you can rename the operation
router and create three branches to provide data from the different account types (Phone, TV, and Wireless Cell accounts):

1. Open RIA.getAccountActivity.esbp and select the new operation router step. Click the step so you can
rename it. Change the step name to routeGetActivityRequest.

2. When you create the operation router, an XPath routing rules file is created with the default name OperationRouter.
xcbr and saved in the same location as the ESB process in which it is created. To rename this file (to avoid confusing
it with other routing rules files), select the file in the Navigator view, right-click, and select Rename.

3. Change the name to routeGetActivityRequest.xcbr, and confirm the name refactoring when prompted. Click Yes in the
Save All Modified Resources dialog box, then click OK in the Sonic Rename Processor dialog box. Finally, select
MyRIA in the Navigator view and choose Project > Upload All from the menu bar to upload the renaming changes.

4. The prototype operation router contains two branches. To create a third branch, right-click the decision step and select
Add Branch:

The process now looks like this:

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 78 of 125

5. For each branch of the subprocess (one for each type of account), select the operation or service step, right-click, and

select Refactor > Rename Step. In the Rename Step dialog box that opens, enter the new step name. Rename the
step Operation 1 getPhoneAccountActivity:

Click OK to rename the step. The step name is automatically refactored.

Repeat this step to rename remaining branches:

❍ getTVAccountActivity

❍ getWirelessCellAccountActivity

Note: If you do not save the process after renaming each step, you will be prompted to save all modified resources
before refactoring.

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 79 of 125

6. Next, add XML files containing a default response for each step by dragging an XML file from the folder MyRIA/
Sample Data/GetAccountActivity in the Navigator view:

❍ Drag GetPhoneAccountActivityResponse.xml onto the getPhoneAccountActivity step.

❍ Drag GetTVAccountActivityResponse.xml onto the getTVAccountActivity step.

❍ Drag GetWirelessCellAccountActivityResponse.xml onto the getWirelessCellAccountActivity
step.

Remember that you can right-click any of the service steps and select Go to Artifact to view the response XML file
that you have configured the step with.

Next, configure the routing rules to route to the three branches.

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 80 of 125

RIA tutorial, phase 5

Modifying the subprocess routing rules

Now that you have configured three branches for the operation router, you can modify the routing
rules to configure the getAccountActivity subprocess to route requests based on the account type
specified in the incoming request. In this case, there are 3 different types of accounts (Phone, TV,
and Wireless Cell), so you must configure a routing rule for each account type:

1. In RIA.getAccountActivity.esbp, right-click the routeGetActivityRequest step and
select Go to Artifact to open routeGetActivityRequest.xcbr. The file opens in the
XPath Routing Rules editor, and has two routing rules, one for the Phone account branch
and one for the TV account branch:

2. In the Rules Condition Section, select the rule for the getPhoneAccountActivity branch.

3. In the XPath Expression section, click ... next to the default XPath expression.

4. In the XPath Helper, select a sample Input Document by browsing to sonicfs:///workspace/
MyRIA/Sample Data/getAccountActivity/GetPhoneAccountActivityRequest.xml.

5. To create a rule that routes to the Phone account branch, double-click the node Request/
Arguments/Account/AccountType. Notice that the XPath field in the Input section now
contains the expression Request/Arguments/Account/AccountType/text().

6. In the XPath field, next to the expression you just added, enter: =´PhoneAccount´. Click
Evaluate to confirm that this XPath expression evaluates to true.

7. In the Rules Address section of the XPath Routing Rules editor, confirm that the address
for this rule is the step getPhoneAccountActivity.

8. You can modify the rules for the remaining branches by copying the XPath expression you
just created. Select the routing rule for the TV account branch and paste the copied XPath
expression into the XPath Expression field for the selected rule. Edit the XPath expression
as follows: Request/Arguments/Account/AccountType/text()=´TVAccount´

9. To create a rule for the getWirelessCellAccountActivity branch, click Add in the Rules
Condition Section. A new rule is added to the table.

10. Paste the copied XPath expression into the XPath Expression field for the new rule. Edit
the XPath expression as follows:

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 81 of 125

Request/Arguments/Account/AccountType/text()=´WirelessCellAccount´

11. In the Rules Address section, click Add. In the Add Destination dialog box, enter the
name getWirelessCellAccountActivity.

There are now three routing rules, one for each branch of the routeGetActivityRequest
operation router:

12. Save the modified routing rules file.

Next, create scenarios to test the routing in the getAccountActivity subprocess.

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 82 of 125

RIA tutorial, phase 5

Creating scenarios to test the routing in
getAccountActivity

Now that you have refactored GetAccountActivity as a subprocess and added a content-based
router configured with XPath routing rules to route requests for account activity for specified
accounts, you can create three scenarios to test the routing to each branch:

1. Open RIA.getAccountActivity.esbp and click the Scenarios tab to open the
Scenarios page.

2. In the Scenario section, click Add Scenario to create a new scenario. By default, the
new scenario is named RIA.getAccountActivity_default.

3. In the Scenario Details section, enter or select the following:

❍ Scenario name: getPhoneAccountActivity.

❍ In the Input section, select Interface.

❍ If the File/Literal selection in the Input table is not already set to File, click the entry
in the field and select File from the pull-down list.

❍ Enter a Scenario Test Value by dragging the sample XML file,
GetPhoneAccountActivityRequest.xml, from the folder Sample Data
\getAccountActivity in the Navigator window.

4. In the Scenario section, select the scenario you created and click Duplicate Scenario
twice. Modify the two duplicated scenarios with the values required to test the TV and
Wireless Cell account branches:

Scenario name Scenario Test Value

getTVAccountActivity GetTVAccountActivityRequest.xml

getWirelessCellAccountActivity GetWirelessCellAccountActivityRequest.
xml

Next, run the process using these scenarios.

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 83 of 125

RIA tutorial, phase 5

Running and testing the getAccountActivity subprocess

Now that you have refactored GetAccountActivity as a subprocess and added a content-based
router configured with XPath routing rules to route requests for account activity for specified
accounts, you can run the getAccountActivity subprocess to test each branch of the routing. Run
getAccountActivity using the three scenarios you created previously:

1. Open RIA.getAccountActivity.esbp and click the Scenarios tab to open the
Scenarios page.

2. Run the GetPhoneAccountActivity scenario to see that the subprocess returns Phone
account information, demonstrating that the request was routed through the
GetPhoneAccountActivity branch:

3. Select the GetTVAccountActivity scenario and click Run. The Reply Message in the

Output view shows the result returned by the subprocess, which in this case contains TV
account information:

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 84 of 125

4. Run the GetWirelessCellAccountActivity scenario to see that the subprocess returns

Wireless Cell account information, demonstrating that the request was routed through the
correct branch:

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 85 of 125

You have now successfully implemented and tested the GetAccountActivity branch of
processRequest. In Phase 3 and Phase 4 you implemented and tested the GetAccounts branch of
processRequest. You are now ready to test the fully implemented ESB process, processRequest.

Note: If you do not want to develop and implement all the phases of processRequest yourself, you
can run and test the sample files included in Sample.RIA. The sample ESB processes are similar to
the processes created and implemented in this tutorial, and include scenarios to run the processes.
Simply open the sample ESB process you want to test and proceed directly to the instructions to
run and test the process:

● Sample.RIA.GetAccounts.esbp — Follow the instructions in Running and testing the
getAccounts subprocess

● Sample.RIA.getAccountActivity.esbp — Follow the instructions in Running and
testing the getAccountActivity subprocess

● Sample.RIA.processRequest.esbp — Follow the instructions in Testing the fully
implemented ESB process, processRequest

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 86 of 125

RIA tutorial, development

Testing the fully implemented ESB process,
processRequest

Now that you have completed all five phases of implementation, you are ready to test and debug
processRequest. The ESB process has branches to handle the two use cases in the tutorial:
getting account information for a specified customer, and getting account activity on a specified
account. Using different scenarios, you can test both branches of processRequest. You can also
debug the process to examine both branches, stepping into subprocesses and examining the
output of each step:

1. Test processRequest — Test the fully implemented ESB process, processRequest, using
scenarios to test each branch of the process.

2. Debug processRequest — Step through the different branches of processRequest using
scenarios to examine each branch.

Start by testing processRequest.

Note: If you do not want to develop and implement all the phases of processRequest yourself, you
can run and test the sample files included in Sample.RIA. The sample ESB processes are similar to
the processes created and implemented in this tutorial, and include scenarios to run the processes.
Open the sample ESB processes by double-clicking the files in the Navigator view, in the folder
Sample.RIA/operations:

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 87 of 125

Simply open the sample ESB process you want to run and proceed directly to the instructions to
run and test that ESB process:

● Sample.RIA.GetAccounts.esbp — Follow the instructions in Running and testing the
getAccounts subprocess

● Sample.RIA.getAccountActivity.esbp — Follow the instructions in Running and
testing the getAccountActivity subprocess

● Sample.RIA.processRequest.esbp — Follow the instructions in Testing the fully
implemented ESB process, processRequest

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 88 of 125

Testing processRequest

Testing processRequest

You can run the ESB process, processRequest, using different scenarios to examine different
paths through the process. You can reuse the getAccounts and getAccountActivity scenarios you
used when testing the routing of the prototype content-based router:

1. Open RIA.processRequest.esbp and click the Scenarios tab to open the Scenarios
page.

2. Select the getAccounts scenario and click Run. This scenario supplies a request having
request type getAccounts. The process runs:

a. The content-based router, routeRequest, evaluates the request type and routes the
request to the GetAccounts branch.

b. The Split and Join Parallel service, CombineAllAccounts, calls the three ESB
processes for the Phone, TV, and Wireless Cell account, which return data for each
account.

c. The XML Transformation service, Format Response, maps the account data to the
required response format.

3. View the Reply Message in the Output view:

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 89 of 125

Compare this output with the response you got when running the fully implemented
subprocess, getAccounts. The outputs are identical.

4. Select the GetAccountActivity scenario and click Run. This scenario supplies a request
having request type getAccountActivity and account type TVAccount. The process runs:

a. The content-based router, routeRequest, evaluates the request type and routes the
request to the GetAccountActivity branch.

b. The content-based router, routeGetActivityRequest, evaluates the account type
and routes the request to the GetTVAccountActivity branch.

c. The GetTVAccountActivity step returns account activity data for the TV account.

5. View the Reply Message in the Output view:

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 90 of 125

Compare this output with the response you got when running the fully implemented
subprocess, GetAccountActivity using the getTVAccountActivity scenario. This scenario and
the getAccountActivity scenario both supply the account type TVAccount in the request,
and, as expected, the outputs are identical.

You have now completed and successfully tested the fully implemented ESB process,
processRequest.

You can create new scenarios to test other branches of the getAccountActivity subprocess. Try
using GetPhoneAccountActivityRequest.xml or GetWirelessCellAccountActivityRequest.xml as
inputs in new scenarios to test the Phone and Wireless Cell account branches.

Optionally, you can continue on to see how to debug processRequest using these two scenarios.

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 91 of 125

Testing processRequest

Debugging processRequest

You can run scenarios to debug every path through an ESB process. In this tutorial, you run
scenarios to debug one path through each of the branches of processRequest. Debugging an ESB
process involves setting breakpoints in the process and any subprocesses you want to examine,
then stepping through the breakpoints as the ESB process runs:

1. Set a breakpoint — Set a breakpoint on the the first step in processRequest so you can
visually step through and debug the process as it runs.

2. Debug processRequest and getAccounts — Using the getAccounts scenario, observe the
debugging information in the Breakpoints, Debug, and ESB Variables views at the first
breakpoint, where the request routing is determined.

3. Step through breakpoints using the getAccounts scenario — Observe the debugging
information in the ESB Variables view as you step through processRequest and
getAccounts.

4. Debug processRequest and getAccountActivity — Using the getAccountsActivity scenario,
observe the debugging information in the Breakpoints, Debug, and ESB Variables views at
the first breakpoint, where the request routing is determined.

5. Step through breakpoints using getAccountActivity — Observe the debugging information in
the ESB Variables view as you step through processRequest and one branch of
getAccountActivity.

Start by setting a breakpoint.

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 92 of 125

Testing processRequest

Setting a breakpoint

You can set breakpoints to visually step through and debug processes as they run. By setting a
breakpoint on the first step in processRequest, you can step through and debug the process and its
subprocesses:

1. Open RIA.processRequest.esbp. Select the routeRequest step, right-click, and select
Toggle Breakpoint:

2. Observe the small circle on the step denoting that there is a breakpoint on that step:

Next, start debugging processRequest using the getAccounts scenario.

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 93 of 125

Testing processRequest

Debugging processRequest using the getAccounts scenario

After setting a breakpoint, you can start debugging processRequest. Use the getAccounts scenario to debug the GetAccounts branch of
processRequest. This scenario sends a message containing the request type getAccounts, which the content-based router routeRequest
will send to the GetAccounts branch of processRequest:

1. Click the Scenarios tab to open the Scenarios page.

2. Select the getAccounts scenario.

3. Click Debug to start debugging the ESB process.

4. Observe that the perspective changes to the Sonic Debug perspective:

5. Observe that there is now an arrow to the left of the first step with a breakpoint, showing the current step in debugging:

6. Go to the Breakpoints view to see the breakpoint you set before the routeRequest step:

7. Go to the Debug view to view the stack frame location at the first breakpoint:

8. Select the stack frame and go to the ESB Variables view to view the message and variables:

9. Select the Input Message in the left pane and observe that the right pane shows the same data as in GetAccountsRequest.xml.

This is the content of the request sent in the getAccounts scenario, which contains the request type getAccounts.

Next, step through the GetAccounts branch of processRequest.

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 94 of 125

Testing processRequest

Stepping through processRequest and getAccounts

After starting the debugger, you can go to the next step in processRequest. Because the
getAccounts scenario provides a request having request type getAccounts, the content-based
router, routeRequest, sends the message to the GetAccounts branch:

1. In the Debug view, click Step Into to go to the next step. Observe that the arrow is now
on the GetAccounts step:

2. Click Step Into to go into the getAccounts subprocess. Observe that getAccounts opens

in the Process view, and the arrow is now on the CombineAllAccounts step:

3. Go to the ESB Variables view and observe that the runtime parameters for

CombineAllAccounts are listed under the Variables node:

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 95 of 125

file:///c|/tmp/com.sonicsw.doc/ESB/tutorials/b2rt_debug.htm

4. Click Step Into to go to the Format Response step. The ESB Variables view now lists

the Format Response service parameters, and the arrow moves to the Format Response
step in the Process view:

5. Select the Input Message in the ESB Variables view and observe that the message now

contains the information about each account type for the specified customer, which is the
same as the output you got from CombineAllAccounts in Phase 3. This message is the input
to the Format Response step. Observe that the response is not yet formatted by the Format
Response step.

6. Click Step Into to complete the process. The Output view opens, containing the Reply
Message, which is the output of the Format Response step, and of processRequest.

7. Select the Reply Message and observe the message in the right pane. Notice that the
message is now formatted by the Format Response step, and is the same as the response
you got when running the fully implemented subprocess getAccounts in Phase 4.

Next, debug processRequest using the getAccountActivity scenario.

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 96 of 125

Testing processRequest

Debugging processRequest using the getAccountActivity scenario

After setting a breakpoint in processRequest, you can use the getAccountActivity scenario to debug the GetAccountActivity branch of the
process. This scenario sends a message containing the request type getAccountActivity, which the content-based router routeRequest will
send to the GetAccountActivity branch of processRequest. The message also contains the account type TVAccount. When the message is
sent to the RIA.getAccountActivity subprocess, the content-based router routeGetActivityRequest will send the request to the
getTVAccountActivity branch of processRequest:

1. Select the getAccountActivity scenario.

2. Click Debug to start debugging the ESB process. The perspective changes to the Sonic Debug perspective and there is now an arrow
to the left of the first step with a breakpoint, showing the current step in debugging:

3. Go to the Debug view to view the stack frame location at the first breakpoint:

4. Select the stack frame and go to the ESB Variables view to view the message and variables:

5. Select the Input Message in the left pane and observe that the right pane shows the same data as in

GetAccountActivityRequest.xml. This is the content of the request sent in the getAccountActivity scenario, which contains the
request type getAccountActivity and the account type TVAccount.

Next, step to the next breakpoint.

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 97 of 125

Testing processRequest

Stepping through processRequest and
getAccountActivity

After starting the debugger, you can go to the next step in processRequest. Because the
getAccountActivity scenario provides a request having request type getAccountActivity, the
content-based router, routeRequest, sends the message to the GetAccountActivity branch:

1. In the Debug view, click Step Into to go to the next breakpoint. Observe that the arrow is
now on the GetAccountActivity step:

2. Click Step Into to go into the getAccountActivity subprocess. Observe that

getAccountActivity opens in the Process view, and the arrow is now on the
routeGetActivityRequest step:

3. Go to the ESB Variables view and observe that ruleInfo, which contains the name and

location of the XPath routing rules file for routeGetActivityRequest, is listed under the
Variables node:

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 98 of 125

file:///c|/tmp/com.sonicsw.doc/ESB/tutorials/b2rt_debug.htm

Select ruleInfo to view the XPath routing rules file name and location in the right pane.

4. Click Step Into to go to the next breakpoint. The routeGetActivityRequest router
evaluates the XPath routing rules to determine that the account type is TVAccount, then
sends the message to the getTVAccountActivity step:

5. In the ESB Variables view, select the Input Message and observe that the input to the

getTVAccountActivity step is the request used in the getAccountActivity scenario,
GetAccountActivityRequest.xml.

6. Click Step Into to complete the process. The Output view opens, containing the Reply
Message.

7. Select the Reply Message and observe the message in the right pane. Notice that the
message is the same as the response you got when running the fully implemented
subprocess getAccountActivity in Phase 5, using the getTVAccountActivity scenario. This
scenario and the getAccountActivity scenario both supply the account type TVAccount in the
request, and, as expected, the outputs are identical.

You can create new scenaros to debug other branches of the getAccountActivity subprocess. Try
using GetPhoneAccountActivityRequest.xml or GetWirelessCellAccountActivityRequest.xml as
inputs in new scenarios to debug the Phone and Wireless Cell account branches of the process.

You have now completed the Remote Information Access tutorial. See the next steps after running
the tutorial.

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 99 of 125

Next steps after developing the Remote Information
Access sample application

If you have not run the Batch to Real-time tutorial, you can do so now. Batch to real time and
remote information access are two of the most common enterprise integration scenarios that
benefit from a Sonic ESB SOA solution.

Two other scenarios that benefit from a Sonic ESB SOA solution include:

● Remote data distribution

● Respond to real-time business events

You can go to the Progress Software Developers Network (PSDN) at http://www.psdn.com to
learn more about these and other enterprise integration scenarios.

The Sonic Workbench online help contains information on other sample applications included in
your Sonic ESB installation. (Access the sample documentation from Help > Help Contents >
Progress Sonic ESB Product Family: Developer's Guide > Progress Sonic ESB Samples and
Tutorials). These sample applications illustrate different features of Sonic ESB and provide a
useful next step in getting acquainted with this product:

● Integration pattern samples

● Split and Join service samples

● File Handling samples

● Audit service sample

● File polling sample

● Resubmit sample

Sonic BPEL Server also provides:

● Sonic BPEL Server tutorial

● Sonic BPEL Server samples

You can also look on the online help to learn more about the concepts in the Remote Information
Access tutorial.

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 100 of 125

file:///c|/tmp/com.sonicsw.doc/ESB/tutorials/b2rt.htm
http://www.psdn.com/
file:///c|/tmp/com.sonicsw.doc/ESB/GettingStarted/Overview_of_the_patterns_samples.htm
file:///c|/tmp/com.sonicsw.doc/ESB/join_service/intro_samples.htm
file:///c|/tmp/com.sonicsw.doc/ESB/file_services/intro_samples.htm
file:///c|/tmp/com.sonicsw.doc/ESB/Services/Running_the_Audit_Service_Sample.htm
file:///c|/tmp/com.sonicsw.doc/ESB/EventDispatchAPI/Analyzing_and_Running_the_File_Polling_Service_Sample.htm
file:///c|/tmp/com.sonicsw.doc/ESB/RuntimeAPI/Running_Runtime_Process_API_Samples.htm
file:///c|/tmp/com.sonicsw.doc/bpel/tutorial/intro_tutorials.htm
file:///c|/tmp/com.sonicsw.doc/bpel/getting_started/get_start_sample.htm
file:///c|/tmp/com.sonicsw.doc/ESB/tutorials/ria_more_info.htm
file:///c|/tmp/com.sonicsw.doc/ESB/tutorials/ria_more_info.htm

Reference: Files in the Remote Information Access
sample project

When you double-click the files in the Sample.RIA project in the Navigator view, they open in the
appropriate editor in Sonic Workbench. You use the following files in this tutorial:

The Operations folder contains the following files:

● XPath routing rules — These files specify routing rules for the operation routers
implemented in the tutorial:

❍ routeGetActivityRequest.xcbr — Provides XPath routing rules for the ESB
subprocess, Sample.RIA.getAccountActivity.esbp.

❍ routeRequest.xcbr — Provides XPath routing rules for the ESB process, Sample.RIA.
processRequest.esbp.

● XSL stylesheet — The stylesheet, formatGetAccountsResponse.xsl, formats the response
in the ESB subprocess, Sample.RIA.GetAccounts.esbp.

● ESB processes — These ESB processes and subprocesses are implemented in phases as
you progress through the tutorial:

❍ Sample.RIA.processRequest.esbp

❍ Sample.RIA.GetAccounts.esbp

❍ Sample.RIA.getAccountActivity.esbp

❍ Sample.RIA.getPhoneAccount.esbp

❍ Sample.RIA.getTVAccount.esbp

❍ Sample.RIA.getWirelessCellAccount.esbp

The Sample Data folder contains XML files that supply example requests and responses used
when prototying and testing the ESB processes in the tutorial. The files are separated into folders
based on which ESB subprocess they relate to:

● getAccountActivity — Contains XML files used to prototype and test the ESB subprocess,
Sample.RIA.getAccountActivity.esbp:

❍ GetAccountActivityDefaultResponse.xml

❍ GetAccountActivityRequest.xml

❍ GetPhoneAccountActivityRequest.xml

❍ GetPhoneAccountActivityResponse.xml

❍ GetTVAccountActivityRequest.xml

❍ GetTVAccountActivityResponse.xml

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 101 of 125

❍ GetWirelessCellAccountActivityRequest.xml

❍ GetWirelessCellAccountActivityResponse.xml

● getAccountActivity — Contains XML files used to prototype and test the ESB subprocess,
Sample.RIA.GetAccounts.esbp:

❍ GetAccountsDefaultResponse.xml

❍ GetAccountsIntermediateResponse.xml

❍ GetAccountsRequest.xml

❍ PhoneAccountInfo.xml

❍ TVAccountInfo.xml

❍ WirelessCellAccountInfo.xml

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 102 of 125

RIA project components

routeGetActivityRequest.xcbr

The XPath routing rules file routeGetActivityRequest.xcbr defines rules that route requests to three branches of the content-based
router used in the ESB subprocess GetAccountActivity. The rules evaluate an XPath expression that checks the account type, and routes the
request through the appropriate branch for the account type.

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 103 of 125

RIA project components

routeRequest.xcbr

The XPath routing rules file routeRequest.xcbr defines rules for routing requests to two branches of the content-based router used in the
ESB process processRequest. The rules evaluate an XPath expression that checks the request type, and routes the request to the
appropriate branch for the request type.

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 104 of 125

RIA project components

formatGetAccountsResponse.xsl

The XSL stylesheet formatGetAccountsResponse.xsl is part of the XML Transformation step,
Format Response, in the ESB subprocess, GetAccounts. The stylesheet maps intermediate
response parameters to the final output format. The tutorial shows you how to generate this
stylesheet using the tools in Sonic Workbench.

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 105 of 125

RIA project components

Sample.RIA.getAccountActivity.esbp

Sample.RIA.getAccountActivity.esbp is an ESB process, which opens in the ESB Process editor. The getAccountActivity process
contains a content-based router that routes incoming requests through one of three branches, based on XPath routing rules that determine
the account type in the request. You can expand each step to show more detail:

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 106 of 125

RIA project components

Sample.RIA.GetAccounts.esbp

Sample.RIA.GetAccounts.esbp is an ESB process, which opens in the ESB Process editor.
The GetAccounts subprocess returns data from all accounts for a given customer. The data is
combined in a single message using the Split and Join Parallel service, CombineAllAccounts, then
transformed into a preferred response format in the XML Transformation step, Format Result.

Sample.RIA.GetAccounts.esbp is a subprocess of Sample.RIA.processRequest.esbp.

You can expand each step to show more detail:

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 107 of 125

RIA project components

Sample.RIA.getPhoneAccount.esbp

Sample.RIA.getPhoneAccount.esbp is an ESB process, which opens in the ESB Process
editor. The getPhoneAccount subprocess provides simulated account activity data from the Phone
account. In a real application, this process can be implemented to interface with a data source to
retrieve actual account activity. You can expand the step to show more detail:

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 108 of 125

RIA project components

Sample.RIA.getTVAccount.esbp

Sample.RIA.getTVAccount.esbp is an ESB process, which opens in the ESB Process editor.
The getTVAccount subprocess provides simulated account activity data from the TV account. In a
real application, this process can be implemented to interface with a data source to retrieve actual
account activity. You can expand the step to show more detail:

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 109 of 125

RIA project components

Sample.RIA.getWirelessCellAccount.esbp

Sample.RIA.getWirelessCellAccount.esbp is an ESB process, which opens in the ESB
Process editor. The getWirelessCellAccount subprocess provides simulated account activity data
from the Wireless Cell account. In a real application, this process can be implemented to interface
with a data source to retrieve actual account activity. You can expand the step to show more detail:

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 110 of 125

RIA project components

Sample.RIA.processRequest.esbp

Sample.RIA.processRequest.esbp is an ESB process, which opens in the ESB Process
editor. This is the main ESB process in the tutorial. Incoming requests are routed by the content-
based router based on the request type, as determined by XPath routing rules. The router has two
branches, one for each of the use cases in the tutorial. Requests for accounts are routed to the
getAccounts branch, which contains the GetAccounts subprocess to compile a list of accounts into
a single message and format the response. Requests for account activity are routed to the
getAccountActivity branch, which contains the getAccountActivity subprocess to route the request
to the appropriate request type and return activity for the specified account.

You can expand each step to show more detail:

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 111 of 125

RIA project components

GetAccountActivityDefaultResponse.xml

GetAccountActivityDefaultResponse.xml is an XML file, which opens in the XML editor.
This file provides a default response during the phased implementation of the tutorial project. The
response contains data about activity on a customer´s account, and simulates the actual data that
would be returned for the fully implemented getAccountActivity subprocess.

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 112 of 125

RIA project components

GetAccountActivityRequest.xml

GetAccountActivityRequest.xml is an XML file, which opens in the XML editor. This file
contains a request for the activity on a TV account belonging to customer number 123456. You can
use this request as input to the ESB processes in the tutorial project.

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 113 of 125

RIA project components

GetPhoneAccountActivityRequest.xml

GetPhoneAccountActivityRequest.xml is an XML file, which opens in the XML editor. This
file contains a request for the activity on a Phone account belonging to customer number 123456.
You can use this request as input to the ESB processes in the tutorial project.

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 114 of 125

RIA project components

GetPhoneAccountActivityResponse.xml

GetPhoneAccountActivityResponse.xml is an XML file, which opens in the XML editor. This
file provides a simulated response containing data about activity on a customer´s Phone account,
and simulates the actual data that would be returned for the fully implemented GetAccountActivity
process.

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 115 of 125

RIA project components

GetTVAccountActivityRequest.xml

GetTVAccountActivityRequest.xml is an XML file, which opens in the XML editor. This file
contains a request for the activity on a TV account belonging to customer number 123456. You can
use this request as input to the ESB processes in the tutorial project.

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 116 of 125

RIA project components

GetTVAccountActivityResponse.xml

GetTVAccountActivityResponse.xml is an XML file, which opens in the XML editor. This file
provides a simulated response containing data about activity on a customer´s TV account, and
simulates the actual data that would be returned for the fully implemented GetAccountActivity
process.

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 117 of 125

RIA project components

GetWirelessCellAccountActivityRequest.xml

GetWirelessCellAccountActivityRequest.xml is an XML file, which opens in the XML
editor. This file contains a request for the activity on a Wireless Cell account belonging to customer
number 123456. You can use this request as input to the ESB processes in the tutorial project.

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 118 of 125

RIA project components

GetWirelessCellAccountActivityResponse.xml

GetWirelessCellAccountActivityResponse.xml is an XML file, which opens in the XML
editor. This file provides a simulated response containing data about activity on a customer´s
wireless cell account, and simulates the actual data that would be returned for the fully
implemented GetAccountActivity process.

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 119 of 125

RIA project components

GetAccountsDefaultResponse.xml

GetAccountsDefaultResponse.xml is an XML file, which opens in the XML editor. This file
provides a default response during the phased implementation of the tutorial project. The response
contains a list of accounts for a customer, and simulates the actual data that would be returned for
the fully implemented getAccounts subprocess.

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 120 of 125

RIA project components

GetAccountsIntermediateResponse.xml

GetAccountsIntermediateResponse.xml is an XML file, which opens in the XML editor. This
file contains the response obtained when running the getAccounts subprocess before an XML
Transformation step is added to the process. You can use this response when creating a stylesheet
to transform the response format.

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 121 of 125

RIA project components

GetAccountsRequest.xml

GetAccountsRequest.xml is an XML file, which opens in the XML editor. This file contains a
request for a list of accounts belonging to customer number 123456. You can use this request as
input to the ESB processes in the tutorial project.

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 122 of 125

RIA project components

PhoneAccountInfo.xml

PhoneAccountInfo.xml is an XML file, which opens in the XML editor. This file provides
information about a Phone account, one of the account types used in the tutorial, and is used
during the tutorial to simulate data that would be returned from an actual data source.

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 123 of 125

RIA project components

TVAccountInfo.xml

TVAccountInfo.xml is an XML file, which opens in the XML editor. This file provides information
about a TV account, one of the account types used in the tutorial, and is used during the tutorial to
simulate data that would be returned from an actual data source.

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 124 of 125

RIA project components

WirelessCellAccountInfo.xml

WirelessCellAccountInfo.xml is an XML file, which opens in the XML editor. This file
provides information about a Wireless Cell account, one of the account types used in the tutorial,
and is used during the tutorial to simulate data that would be returned from an actual data source.

Progress Sonic ESB V7.6 Tutorial: Remote Information Access Page 125 of 125

	FrontTutorial_RIA.pdf
	ria.pdf
	Progress Sonic ESB V7.6 Tutorial: Remote Information Access
	Remote Information Access tutorial
	Remote Information Access scenario
	Remote Information Access process
	getAccounts subprocess
	getAccountActivity subprocess
	Phased implementation of the Remote Information Access sample application
	Preparing to develop the Remote Information Access sample application
	Starting Sonic Workbench
	Importing the Remote Information Access sample project
	Examining the Remote Information Access sample project
	Developing the Remote Information Access sample application
	Phase 1: Creating the prototype ESB process, processRequest
	Creating a new project
	Copying the sample data
	Creating the prototype ESB process
	Viewing the prototype ESB process
	Creating a scenario
	Running and testing the prototype ESB process
	Modifying processRequest to return a response
	Testing the modified ESB process
	Phase 2: Implementing multiple operations using a content-based router
	Creating an operation router
	Branch 1: Compiling an account list for a customer
	Branch 2: Retrieving data from different sources
	Modifying the routing rules
	Creating scenarios to test the content-based router
	Running and testing the prototype content-based router
	Phase 3: Implementing getAccounts using a Split and Join Parallel service
	Refactoring GetAccounts as a subprocess
	Creating ESB processes for each account type
	Configuring a list of called addresses
	Configuring the service runtime parameters
	Running and testing the CombineAllAccounts service
	Phase 4: Using stylesheets to format responses
	Adding an XML Transformation service to format responses
	Creating a stylesheet to map response formats
	Selecting interface parameters
	Mapping response parameters
	Testing the stylesheet
	Running and testing the getAccounts subprocess
	Phase 5: Implementing getAccountActivity using content-based routing
	Refactoring GetAccountActivity as a subprocess
	Configuring three branches of the operation router
	Modifying the subprocess routing rules
	Creating scenarios to test the routing in getAccountActivity
	Running and testing the getAccountActivity subprocess
	Testing the fully implemented ESB process, processRequest
	Testing processRequest
	Debugging processRequest
	Setting a breakpoint
	Debugging processRequest using the getAccounts scenario
	Stepping through processRequest and getAccounts
	Debugging processRequest using the getAccountActivity scenario
	Stepping through processRequest and getAccountActivity
	Next steps after developing the Remote Information Access sample application
	Reference: Files in the Remote Information Access sample project
	routeGetActivityRequest.xcbr
	routeRequest.xcbr
	formatGetAccountsResponse.xsl
	Sample.RIA.getAccountActivity.esbp
	Sample.RIA.GetAccounts.esbp
	Sample.RIA.getPhoneAccount.esbp
	Sample.RIA.getTVAccount.esbp
	Sample.RIA.getWirelessCellAccount.esbp
	Sample.RIA.processRequest.esbp
	GetAccountActivityDefaultResponse.xml
	GetAccountActivityRequest.xml
	GetPhoneAccountActivityRequest.xml
	GetPhoneAccountActivityResponse.xml
	GetTVAccountActivityRequest.xml
	GetTVAccountActivityResponse.xml
	GetWirelessCellAccountActivityRequest.xml
	GetWirelessCellAccountActivityResponse.xml
	GetAccountsDefaultResponse.xml
	GetAccountsIntermediateResponse.xml
	GetAccountsRequest.xml
	PhoneAccountInfo.xml
	TVAccountInfo.xml
	WirelessCellAccountInfo.xml

