DEFINING AN ABL FORM AND BINDING SOURCE

John Sadd

Fellow and OpenEdge Evangelist
Document Version 1.0

November 2009

Using Visual Designer
and GUI for .NET

Defining an ABL Form and

Binding Source

John Sadd

T

OpenEdge. [\

SOFTWARE

December, 2009

PROGRESS

SOFTWARE
Page 1 of 8

Defining an ABL Form and Binding Source John Sadd

DISCLAIMER

Certain portions of this document contain information about Progress Software Corporation’s
plans for future product development and overall business strategies. Such information is
proprietary and confidential to Progress Software Corporation and may be used by you solely in
accordance with the terms and conditions specified in the PSDN Online (http://www.psdn.com)
Terms of Use (http://psdn.progress.com/terms/index.ssp). Progress Software Corporation
reserves the right, in its sole discretion, to modify or abandon without notice any of the plans
described herein pertaining to future development and/or business development strategies.
Any reference to third party software and/or features is intended for illustration purposes only.
Progress Software Corporation does not endorse or sponsor such third parties or software.

These notes accompany the first in a series of presentations to introduce you to the Visual Designer in
OpenEdge Architect, and to the principles of using the support for GUI for .NET in OpenEdge 10 to provide
a modern and compelling user interface for your ABL applications. This is the first of two sessions on
Creating a Form and a ProBindingSource. In this first session, | create a new ABL Form, add a
ProBindingSource control to it to provide data to the user interface, and take a look at the code that gets
generated to support the form and its binding source.

Starting out in the Editor Perspective in Architect, | select the File menu and select New ABL Form.
This creates a new ABL class file to support the creation of a form that | can then drop .NET controls onto,
along with my own supporting ABL code.

[0penEdge Editor - DpenEdge Architect - C:yGui4DotNet -0l x|
File Edit Mavigste Search Project OpenEdge Run Window Help

(2 OpenEdge Project =] =
Open File. .. 4 Project...
Close G 27 ML Class =5
Close Al (SRt [T AEL Interface
Save Chrits [Ff ABL Procedure
SAVE fi5,.. [ABL Include
Save Al el Shift+S [_* Folder
Revert “ File
P ET S = =4 ABL Dislag
%1 Refresh o %4 ABL MDI Form
Conwert Line Delimiters To » (7] ABL User Control
[*] ABL Inherited Contral
Brint. ., iR
1 Example...
Switch Workspace »
Restart T Other... Ctrl+N
g Impart. . g
£ Expart... j_
Praoperties Alt+Enter I
1 CustomerForm.cls [Samples]
Exit

El console &2 1 t thlams|] Tasks| '] m;l = B-r5~-70
ABL Console

Project 'Samwples' AVM needs to be started first. ;I
OpenEdge AVN started successfully for 'Samples' .

Project 'Semples' runtime connection to 'autoedge' : OK

o o

JEE :

December, 2009 Page 2 of 8

Defining an ABL Form and Binding Source

John Sadd

I call the class CustomerForm, so the file name will be CustomerForm.cls. | can enter a Description for
the form, which will appear in the comments section up at the top. And you can see there are other options
for the initial code generation for the class that are left set to their defaults for now. | just click Finish to

complete the wizard.

|

[OpenEdge Editor - OpenEdge Architect -

e Havicste search Proect - Ocentd: [
- - | L% |%-0

T | &5 openEdae Editor

B @ 00 -

Create a Form Class

—lolx

F L=
4 | E % package root: |\Samu\es
£l 12 samples
5@ Referenced Assemblies Package: |
AL procedure Libraries
(&= reode Form name: | CustomerForm
Il .dbconnectian Modifiers: I~ Final [~ abstract [~ widget pool
[¥] project
= propath Inherits: |Progress‘winduws‘Furm Browse...
(3> assemblies, zml e et

Selesct which code elements you would like to generate:

5= outline | BE DB Str... | = proper... 2|7

Y

I¥| Generate default constructor I Generate destructor
™ Generate super dlass constructars

I~ Add routinedevel error handing

5% Selexct generated return valus From method:
Propett: | Walue & Throw a Nat Implemented exception
£ Return default values
Description: =
=l ndlz8.ri-o0
Purpose; | |
| o° |

Because | created a new Form, Architect automatically opens that form in Visual Designer, which has a
visual design canvas for the form and any controls | drop onto it. In addition to manipulating controls
visually, | can see and set their properties in the Properties View. | can change the form’s Text property,
which controls its title, and see that the change is reflected in the form as it’s displayed. But | can also
switch back and forth between the design and the code that is being generated to create the form at
runtime, by pressing F9 or bringing up the context menu and selecting View Source.

December,

[openEdge Editor - Samples,/CustomerForm.cls - OpenEdge Architect - C:\Gui4DotNet =] |
Flle Edit Design Mavigate Seatch Froject OpenEdge Run Window Help
=
- | LB [H-0-Q - |#- |0 -Gl G-
[| €5° Opendge Editor
& Resources 33 = O] *custamerForm.cs (Desian) £ =
== Toolbox 1
i
& (5 samples x| +J Microsoft Controls
&2 Referenced Assemblies
L procedure Libraries ‘ﬂ SREEgel ontiol
= reode &5 S+ LF dge Ultra Contrals
| dbconnsction Close Wisual Designer Ctrl+F4
i [H] project
21 propath
3 assembiies.xml Feste Sl
«[£] CustomerForm.cls Lock Controls
Reload Design Surface
Properties and Events
2= outline | #F DB Str... | El Proper... 52| T B
EiE T D
| CustomerForm - Progress.windows Form =l
[Properties | Everts |
ShowinTaskbar True -
Size 300,293
SizeBripStyle Auto = = S ==
| = - F9 -
StatPosiion WrvdonshefsulLocaon ||| B Censcle 51 | £ Probles | 22 Tasks | Be BB 2 B - O =
Tag ABL Console
Teut Customers Project 'Sawples' AVH nesds to be started first. = |
Tophiost False _|/|lopenEage 2vM startea successfully for 'Samples' .
Transparencykey [] ~>||/|Project 'Samples' runtime connection to 'autoedge' : OK
Text >CustomerForm.cls (C:)GuidDotNet) Seuples’ reode) CustomerForm.)
The text sssaciated with the control,
il _>lJ
e Writable |
2009 Page 3 of 8

Defining an ABL Form and Binding Source

John Sadd

The first control | add to the form is a non-visual control to manage data for visual controls that can be
added later on. It's one of the built-in controls created specifically as part of OpenEdge to support ABL
applications, so | expand the list of OpenEdge controls and select the ProBindingSource, dragging it onto
the form. As soon as | drop the control onto the form, the ProBindingSource Designer opens, so that |
can define the data | want the control to manage. | can get that data definition from an XSD file — an XML
schema definition file that | could create very easily from ABL, to correspond to a temp-table or ProDataSet
definition for instance. Or | can select the DB icon and create schema for the binding source directly from a
connected database. In this case | have the AutoEdge sample database connected, so | can expand that
selection and pick the Customer table as the one | want the control to manage, and then click OK.

[Properties | Everts

[openEdge Editor - Samples,/CustomerForm.cls - DpenEdge Architect - C:' o] 53]
File Edt Design Mavigate Search Project Opendge Run Window Help
r9 - o | £ |3 -0 -~ || -0 G o,
[E7 | 82 openedge Editor
g)
e =0 : - =0
= i Toolbox R
- ome _lal =ik
5 2 sanples || | EOrr =
@ Referenced Asserblies [@rroBindingsource Designer o [[1 LIENE Do Inls
B L Procedure Libraries AR e =) OpenEdge Controls
&= reode Torie o PO L Pointer
[dbconnection [schema Selection =Bl | 5 PoBindingSource
oK) progect Available Schema ltems | | |48 windonContainer
= .propath M
O sessmblios sl S sutosdae 1] DpenEdge Ultra Controls
[customerFormcls (#1f Baselode
=8 ca
[+ CarBrand
(#1] Catodel
(+15 Contact
5% outling | 29 08 Str... | = Proper... l;']ﬁ'cumme'?
o [+ Dealer
o [+ Employee =
| CustomerFoim : Progress.windows. Faim (415 Testive

SominTaskba Toe © Replace curertschema (% Append to curent schema ax. Cancel
e 20n. 283 | ¥ Noroottable defined |
SizeGipStyle Auto il B 50
StartPosition \wiindowsDefaull T | pe— | Ee -
Tag
(] —— s =
TapMast Fake Project 'Sswples' runtime connection to 'autoedge' : O
Transparencykey [2|l »customerForm.cls (1) Guiabotiet) Sanp les) roode) CustomerForu. r)
Text
The text associated with the contrl
Ll _>I_I
[wrikable |

December, 2009

Page 4 of 8

Defining an ABL Form and Binding Source

John Sadd

If in fact | don’t want to use all the fields in the table, | can delete the ones that the form won’t need to
display. In the Designer | can also change the order of fields so that the default display order for fields in a
grid control, for instance, will be the way | want them, just by selecting a field and then the Move Up or

Move Down buttons.

DpenEdge Editor - Samples;CustomerForm.cls - OpenEdge Archite | =) 5[
File Edit Design Mavigate Search Project OperEdge Run Window Help
G- B L0 [|%H-0-Q- || -% - sl
[| 8 openEdge Editor
5 Resources 2 == ==
o | B s Y Toolbox a
[E® cuctomers
= (2 samples = — an | Microsoft Controls
-2 Referenced Assemblies [idProBindingSource Designer =10] x|
AL Procedurs Libraries By X 1t e LA——.eControls
& reode Tables : Field: CustomerL astName 4 Poirter
i [2) .dbconnection Move Selection Up (Alt+UIp) 4 ProBindngSouce
[¥] project) Customer A CustomedD B5 41 | =l B windonContainer
| th
E Dmnahl | A CustomerFirsth ame B Appearance +| DpenEdge Ultra Controls
: AsSEMbliEs. xm i Label Last [Family) N
e [2] CustomerForm.ds : H
B CustomerBirthCountry B Design
Datatype CHARACTER
A CustomerBithdate Name CustomerlastN
E CustomerGender
0% outline | 57 D str... | = Proper...
i §
ICuslomelFolm Progress.windows. Form MName
- The name of the field
‘ Properties I Everts
ShowlnT askbar True
Size 300, 292 ‘
SizeGripStyle Auta = | o = =
StPosiion WindowsDefaull Cagl|ct B-r9-20
T oK Cancel
ag
T Customers e — =]
Toptost False Froject 'Sawples' runtime connection to 'autoedge' @ 0K
Transparencykey [] ~|ll|7CustomerForm. 2ls (C:GuidbotNeth Samp les) reode) CustomerForm. x)
Text
The text associated with the control
b
il ;lJ
J = J

Now my binding source is set up to manage fields from the Customer table in the database and make them

available to any visual controls | add to the form that are “data bound”, that is, controls that have

properties to display data from the binding source. So this is a very powerful feature of our support for GUI
for .NET, that a standard data source property of many visual controls is satisfied by a specialized control

provided as part of OpenEdge.

Reviewing the code that results from creating the form and dropping a ProBindingSource onto it, you first
see a comment section at the top with the file name, description, and other information.

/* __
File CustomerForm
Purpose
Syntax
Description Simple form to display Customers in a grid
Author (s) john
Created Wed Aug 19 09:11:36 EDT 2009
Notes

The class inherits from the top-level Progress.Windows.Form class. The USING statement identifies the
package the Form class is in so that it can then be referenced by its simple name.

USING Progress.Lang.*.
USING Progress.Windows.Form.

CLASS CustomerForm INHERITS Form

December, 2009

Page 5 of 8

Defining an ABL Form and Binding Source John Sadd

Next is a variable definition for the binding source instance. This is the part of the generated code that’s
outside of the InitializeComponent method, so be careful not to change or delete these lines in the main
block of the class.

DEFINE PRIVATE VARIABLE BSCustomer AS Progress.Data.BindingSource NO-UNDO.

Visual Designer defines a variable named components which acts as a collection for some kinds of controls
that it wants to make sure get disposed of properly when the form exits; there’s no need to understand
more than just to leave the definition alone when you start adding your own code to the form.

DEFINE PRIVATE VARIABLE components AS System.ComponentModel.IContainer NO-UNDO.

There’s a default constructor that runs the method InitializeComponent, and default error handling code
that reflects some of the options in the New Form wizard.

CONSTRUCTOR PUBLIC CustomerForm () :

SUPER () .

InitializeComponent () .

CATCH AS Progress.Lang.Error:
UNDO, THROW

END CATCH.

END CONSTRUCTOR.

InitializeComponent is where all the generated code goes that describes the form and its controls, and
Visual designer relies on this to be able to reconstruct the form when you’re editing it. As the comment
notes, you shouldn’t edit this method directly. Your own code can go in other parts of the class file.

METHOD PRIVATE VOID InitializeComponent () :

/* NOTE: The following method is automatically generated.
We strongly suggest that the contents of this method only be modified
using the Visual Designer to avoid any incompatible modifications.
Modifying the contents of this method using a code editor will
invalidate any support for this file. */

Annotations such as this one provide design time information for Visual Designer, and should not be
touched:

@VisualDesigner.FormMember (NeedsInitialize="true").

The TableDesc and ColumnPropDesc objects are used by Visual Designer to identify at design time what
tables and fields the binding source manages. They don’t really affect behavior at runtime but they're
needed when you add controls to the form at design time that use fields in the binding source, so like all
the code in this method, be careful not to touch it:

DEFINE VARIABLE tableDescl AS Progress.Data.TableDesc NO-UNDO.
tableDescl = NEW Progress.Data.TableDesc ("Customer") .

And here is the NEW statement that creates an instance of the binding source.

THIS-OBJECT:BSCustomer = NEW Progress.Data.BindingSource() .

December, 2009 Page 6 of 8

Defining an ABL Form and Binding Source John Sadd

Similar to SuspendLayout and ResumelLayout for the form, there are methods called Beginlnit and
EndlInit defined in the ISupportlnitialize interface that let the code set all of a control’s properties before
it’s displayed.

CAST (THIS-OBJECT:BSCustomer,
System.ComponentModel.ISupportInitialize) :BeginInit ().

The SuspendLayout and ResumelLayout methods are a standard convention to prevent the controls from
being displayed when they’re in the middle of being initialized.

THIS-OBJECT: SuspendLayout () .

Here you can see property settings for three ProBindingSource properties that have initial values. Two of
them appear in the Properties View. The third one, Position, is a good example of another important
thing to understand about controls. Part of the design of a control is determining which properties even get
displayed in the Properties View, and in this case the control developer has decided that Position is not one
of them. So some properties that a control supports may not appear in the Properties View, perhaps
because the developer does not expect them to be set by the user. Some may have default values; some
may have initial values that are explicitly set and so result in these lines of code being generated. Visual
Designer queries each control at design time to determine both what code to generate and what properties
to expose for use.

/* o x/
/* BSCustomer */
/* 0 x/

THIS-OBJECT:BSCustomer:MaxDataGuess = 0.
THIS-OBJECT:BSCustomer:NoLOBs = FALSE.
THIS-OBJECT:BSCustomer:Position = 0.

Next comes more code used at design time to define the database fields that become columns in the
ProBindingSource schema.

@VisualDesigner.FormMember (NeedsInitialize="false",
InitializeArray="true").

DEFINE VARIABLE arrayvar(O AS "Progress.Data.TableDesc[]" NO-UNDO.

arrayvar0O = NEW "Progress.Data.TableDesc[]" (0).

tableDescl:ChildTables = arrayvar0.

@VisualDesigner.FormMember (NeedsInitialize="false",
InitializeArray="true").

DEFINE VARIABLE arrayvarl AS Progress.Data.ColumnPropDesc EXTENT 6 NO-UNDO.

arrayvarl[l] = NEW Progress.Data.ColumnPropDesc ("CustomerID", "Customer
ID", Progress.Data.DataType:CHARACTER) .

arrayvarl[2] = NEW Progress.Data.ColumnPropDesc ("CustomerFirstName", "First
(Given) Name", Progress.Data.DataType:CHARACTER) .

arrayvarl[3] = NEW Progress.Data.ColumnPropDesc ("CustomerLastName", "Last
(Family) Name", Progress.Data.DataType:CHARACTER) .

arrayvarl[4] = NEW Progress.Data.ColumnPropDesc ("CustomerBirthCountry",
"Birth Country", Progress.Data.DataType:CHARACTER) .

arrayvarl[5] = NEW Progress.Data.ColumnPropDesc ("CustomerBirthdate", "Date
of Birth", Progress.Data.DataType:DATE) .

arrayvarl[6] = NEW Progress.Data.ColumnPropDesc ("CustomerGender", "Gender",

Progress.Data.DataType:LOGICAL) .
tableDescl:Columns = arrayvarl.
THIS-OBJECT:BSCustomer:TableSchema = tableDescl.

December, 2009 Page 7 of 8

Defining an ABL Form and Binding Source

John Sadd

The code sets the ClientSize property to determine the size of the form, the Name property, which

corresponds to the class file name, and the Text property for the form’s title.

/* o x/

/* CustomerForm */

/* o x/

THIS-OBJECT:ClientSize = NEW System.Drawing.Size (292, 266).
THIS-OBJECT:Name = "CustomerForm".

THIS-OBJECT:Text = "Customers".

And here at the end is the EndInit method that signals that initialization of the control is complete.

CAST (THIS-OBJECT:BSCustomer,
System.ComponentModel.ISupportInitialize) :EndInit () .
THIS-OBJECT:ResumeLayout (FALSE) .
CATCH AS Progress.Lang.Error:
UNDO, THROW
END CATCH.
END METHOD.

There’s also a destructor that cleans up the components object.

DESTRUCTOR PUBLIC CustomerForm ():
IF VALID-OBJECT (components) THEN DO:

END.
END DESTRUCTOR.
END CLASS.

CAST (components, System.IDisposable) :Dispose() .

This completes the presentation on creating a form and adding a ProBindingSource to it. In the next
session on Adding a Grid Control to a Form, you'll see how easy it is to attach your binding source to the

controls that display and update the data in your form.

December, 2009

Page 8 of 8

