
December, 2011 Page 1 of 27

DEFINING TENANTS, DOMAINS AND USERS

John Sadd

Fellow and OpenEdge Evangelist

Document Version 1.0

November 2011

Defining Tenants, Domains and Users John Sadd

December, 2011 Page 2 of 27

DISCLAIMER

Certain portions of this document contain information about Progress Software Corporation’s

plans for future product development and overall business strategies. Such information is
proprietary and confidential to Progress Software Corporation and may be used by you solely in
accordance with the terms and conditions specified in the PSDN Online (http://www.psdn.com)
Terms of Use (http://psdn.progress.com/terms/index.ssp). Progress Software Corporation
reserves the right, in its sole discretion, to modify or abandon without notice any of the plans
described herein pertaining to future development and/or business development strategies.

Any reference to third party software and/or features is intended for illustration purposes only.
Progress Software Corporation does not endorse or sponsor such third parties or software.

The first video and paper in this series on support for multi-tenancy in OpenEdge 11

introduced you to some of the basic concepts and to the support for managing multi-

tenant tables in the OpenEdge tools. This paper accompanies the next three videos in

the series, on defining tenants, enabling tables for multi-tenancy, and defining

security domains and users. In this paper I go into the definition of tenants in the

database in somewhat more detail, and show you how to define tenants in the

Database Administration Console. I’ve enabled the sportsmt database for multi-

tenancy, and now it’s time to define some actual tenants, one for each of the

databases that are being combined here into one.

First let’s look at some diagrams that illustrate at a high level how this is all

organized. When you enable multi-tenancy in a database, and then define specific

tenants, the OpenEdge DBMS separates their data in what we refer to as the tenancy

layer of the database.

http://www.psdn.com/
http://psdn.progress.com/terms/index.ssp

Defining Tenants, Domains and Users John Sadd

December, 2011 Page 3 of 27

The data for different tenants is kept absolutely separate, so that there is no danger

of applications and their users retrieving data that they should not see. The diagram

above shows two of the four tenants I’m going to create, NorthSports and

SouthSports. There’s also something called a Default Tenant. In a sense the default

tenant is no tenant at all. If you convert a database from OpenEdge 10 to OpenEdge

11, which is something I’ll do later in this series, then initially all the migrated data is

placed in the Default Tenant area until you move it to where it belongs. It can also be

a place to store data that’s no longer part of a particular tenant, typically when a

tenant is removed from the database, until you determine what to do with it.

We also refer to shared data in a multi-tenant database. This is effectively what all

data is in databases prior to OpenEdge 11. We continue to have space for shared data

for two reasons, as illustrated above. One is that some tables may contain data that

is common to all tenants, for example the State table in the sportsmt database.

There’s no need for separation of data by tenant for the list of states. The second use

is that the meta-schema tables are shared by all tenants, so they always go into the

shared area.

I’m not going to go into any detail in terms of the internals of the OpenEdge

database, but you should know by now that multi-tenant data goes into Type II

storage areas. There’s no restriction on how you allocate data within the Type II areas

you define. You can put data for multiple tenants into a single storage area, as shown

below, and the database manager will make sure it’s all kept separate:

However, for reasons of database maintenance and storage management, you may

find it advantageous to allocate data for different tenants in different sets of Type II

areas, as shown below.

Defining Tenants, Domains and Users John Sadd

December, 2011 Page 4 of 27

With that in mind, you need to understand that you can allocate three different kinds

of information independently. The first is the actual data in the tables, except for

large objects. The second is a table’s indexes, and the third is a table’s large object

fields, its CLOBs and BLOBs. You can put these all into the same areas or allocate

them independently. The following diagram also illustrates that when you define

tenants, you define a default storage area for each of these three types of data.

However, you can change and specialize that allocation as you go along:

You can have additional storage areas that you allocate data, indexes or LOBs to, in

addition to the default areas, if you wish:

Defining Tenants, Domains and Users John Sadd

December, 2011 Page 5 of 27

For shared tables and for the schema tables, it’s possible to use Type I storage areas,

but for a new database, type II storage areas are always recommended.

That’s enough to get you started. I created sportsmt as an empty OpenEdge 11

database, and enabled multi-tenancy, but that’s all that’s been done so far. The next

job is to load the schema definitions into the database, just as you would do in earlier

releases. You can do this directly from the Admin Console:

I locate the .df file that was dumped from one of the identical OpenEdge 10 databases

that I’m going to combine. I could Preview the contents of that file in a visual form

and possibly make some adjustments, but for now I just press the Commit button to

load the file:

Defining Tenants, Domains and Users John Sadd

December, 2011 Page 6 of 27

Here you can see a number of options in the Commit dialog:

Add new objects online lets you define new tables, fields, indexes, or sequences

beyond what’s in the .df you’re loading.

Add multi-tenant tables as shared tables doesn’t apply to the current example,

because I’m presuming that the .df came from an OpenEdge 10 database. But if you

were loading a .df from an OpenEdge 11 database, it might have statements in it that

define multi-tenant tables in that database, and this option tells the loader to

disregard those definitions and make all the tables start out as shared tables.

Force allocation is a little advanced to discuss right now; later you’ll see that when

you define a tenant you can specify that you want the actual allocation of its

partitions to be delayed, or even suspended until the first actual data for the tenant is

defined. This option would override that.

The next option tells the loader to add any new indexes in the .df file as initially

deactivated.

The final option to Commit changes even when errors are detected means what

it says; note that if errors are encountered you might wind up with your database in a

corrupt state. I just take the defaults and click Commit.

Remember that even if you’re just running Explorer, you do get a Dashboard with a

multi-tenancy tasks pane, or viewlet, since many operations you select are run as

batch jobs. The dashboard comes up automatically, and if I click the Refresh button,

I see my load database definitions task. If I select it, I can see that it’s executing,

and in fact has already run to completion:

Defining Tenants, Domains and Users John Sadd

December, 2011 Page 7 of 27

Now I reselect the Database Connection Details tab to get back to where I was,

and I’m ready to start creating tenants for the new database. There’s a link to do that

right on the main display in the Details Frame:

The screenshot below shows the New Tenant form with all the essential information

filled in.

I call the first tenant EastSports. Remember that my goal is to combine the data in

four existing databases that were set up in OpenEdge 10 for four different customers,

who become my new tenants. I could add a free-form description if I wanted, and

Defining Tenants, Domains and Users John Sadd

December, 2011 Page 8 of 27

also what’s called an External ID, which can help later to follow the progress of

transactions as they are committed. EastSports is a Regular tenant. I introduce

super tenants later in this series.

Unchecking the Enable data access checkbox would allow me to disable data access

for the tenant, so that users defined for that tenant would not be able to access multi-

tenant data. This is something you can also set on and off later on as part of security

management.

The Database connection I’m defining the tenant for is of course sportsmt.

Next you can see what the diagrams in the introduction to this video illustrated: I can

define a default storage area for data, for indexes, and for LOBs. The easiest way to

do that is to select the magnifier icon. This brings up a list of all the database’s Type

II storage areas. I just have two to choose from, and for this tenant, I choose Area2.

I do the same for the indexes, though remember that you can define independent

areas for indexes for a tenant, as well as for the default LOB area.

Now that I’ve defined the default allocation for all the data partitions for this tenant, I

have to define when I want that space allocated. The default is on tenant creation,

which we also refer to as immediate. As soon as the tenant is created an initial cluster

of space is allocated in its default areas for all the database’s multi-tenant tables,

including their indexes and large objects. You may not want this default, for one of

two broad reasons. You may not want to pre-allocate space at all. In this way you

avoid allocating space that may never be used, if not all of the database’s tenants

wind up having records in all the multi-tenant tables. Your customers who are

represented as tenants may not purchase all the modules that use all the database

tables, for instance. The other case is that you may want to delay allocation so that

you can assign individual table data, or their indexes and LOBs to different areas on a

more fine-tuned basis than just using the defaults, either using the Admin Console, or

as part of individual database transactions once your application is in production. For

this tenant I just choose delay space allocation, and click Create tenant to finish

creating this first tenant:

Defining Tenants, Domains and Users John Sadd

December, 2011 Page 9 of 27

Now I need to move on and create another tenant. I call this one WestSports.

WestSports has its own Customers and Orders and Orderlines, just as EastSports

does. I select delay space allocation here as well. When I selected the delay

allocation option, the final Copy default from choices shown below are enabled. If

allocation is not immediate, I can copy the rest of the tenant definition from another

tenant, or from a template I could create. I select Tenant:

This brings up a list of existing tenants, and of course there’s only one – EastSports –

so I select that, and WestSports is assigned the same default areas as EastSports:

Remember that you can assign different tenants to the same storage areas, and the

database still keeps their data securely separated.

Defining Tenants, Domains and Users John Sadd

December, 2011 Page 10 of 27

I create one more tenant, called SouthSports, and likewise, copy the area

assignments from EastSports. My final tenant I name NorthSports, and I assign its

default allocation to Area1. I do the same for its indexes and LOBs. I leave its

allocation rule set to on tenant creation.

In passing, I'll just briefly mention the Generate tenant program button shown

below. In addition to using a tenant as a template for another tenant, you can click

this button to generate an ABL procedure containing the code to create the tenant

you've defined. You could then parameterize the procedure to allow you to create

additional similar tenants programmatically, perhaps even during execution of your

application.

For now I just create NorthSports in the usual way, by clicking Create tenant.

I select the View link under the database connection to force a refresh of the details

display, which shows that I have four named regular tenants defined for the

database, in addition to the default tenant:

Defining Tenants, Domains and Users John Sadd

December, 2011 Page 11 of 27

The next job is to define which of my database tables should be made multi-tenant,

so that they can hold data securely in separate partitions for each of my tenants. In

order to do that, I select the dropdown arrow on the Database Administration tab.

Generally, the dropdown menus provide shortcuts to common operations you’ll also

find elsewhere, but in this case this is the one place for enabling tables for multi-

tenancy:

For the sportsmt database, I want all the tables except for the shared State table to

be enabled for multi-tenancy:

Defining Tenants, Domains and Users John Sadd

December, 2011 Page 12 of 27

I click the Preview button, and I see a visual representation of how data is going to

be allocated for all the tables, their indexes, and LOB fields. If I select the EastSports

tenant, for instance, I can see that its default allocation area is Area2. The yellow

color-coding means that allocation is delayed, which is what I specified as the default

for tenant EastSports. If I select a single table, like Customer, I see as shown below

that default applied to the Customer table. Because I asked that allocation be

delayed, I can make changes to the allocation. First I select the Configure working

areas button:

Defining Tenants, Domains and Users John Sadd

December, 2011 Page 13 of 27

Then I can select Area1 to add to the display:

Now I can select the Customer table again, and drag it over to Area1. This would

override the default and place data for the Customer table for the tenant EastSports

into Area1:

But I’ll put it back where it was, and select a different tenant, NorthSports. Its tables

and other objects are green, which indicates that they were immediately allocated

space in Area1. I can add Area2 to the display, but when I try to drag the Customer

table to Area2, which is not the default for this tenant, it doesn’t work, because initial

space has already been allocated in Area1 for all tables for NorthSports:

Defining Tenants, Domains and Users John Sadd

December, 2011 Page 14 of 27

This illustrates the key difference between immediate and delayed allocation.

Now I click the Commit button on the upper left. I've just shown how you can adjust

the allocation details for tenants that have delayed allocation, but at some point you

must allocate partitions before you can actually load data for those tenants, so I do

that here:

Three of my four tenants have an allocation state of delayed, so it's those partitions

that I want to go ahead and finalize here.

Defining Tenants, Domains and Users John Sadd

December, 2011 Page 15 of 27

Now I can Commit that allocation:

Once again this shows up as a background task I can monitor, and I can see that it’s

done:

If I select the sportsmt database connection link itself, then a set of choices appears

in the list pane:

Defining Tenants, Domains and Users John Sadd

December, 2011 Page 16 of 27

Selecting Tenants, and then one of my named tenants, such as EastSports, I can

then then select Edit tenant:

The basic tenant information comes up with its own side menu. If I select Partitions

from that menu, then I see the same allocation display I saw when I was first

enabling tables for multi-tenancy. Here I can open the helpful Legends alert box

from the Tools menu:

Defining Tenants, Domains and Users John Sadd

December, 2011 Page 17 of 27

This brings up a message box where you can see the meaning of the color coding of

the different allocation rules:

Now I can take advantage of the breadcrumbs built into the new user interface to

return to my database connection, and from there to the list of all connections. To

close out, I just View the sportsmt connection again, and I’m done enabling tables

for multi-tenancy. In the next video in the series, and the final section of this paper, I

set up the first security domains that allow access to tenant data, and then some

users who will access data through those domains.

In the Database Administration Console, there are prompts here for creating users

and editing the list of domains. Let me talk for a moment about what those things

really mean in the context of multi-tenancy, using this diagram:

Defining Tenants, Domains and Users John Sadd

December, 2011 Page 18 of 27

On the right you can see the representation of the database. There’s a tenancy layer

for each of the named tenants, plus a default tenant, and within that layer each

tenant has allocated for it what we can refer to as a table instance for each multi-

tenant table, in effect a private copy of that table for the tenant’s data.

So how do you control access to each tenant’s private data? You do it through what

are called security domains. Each domain defines a means of access and

authentication for a single tenant. In this new system, every user who logs into an

application has to provide not just a username and password, but the name of the

domain they belong to. The domain acts as the intermediary between the user and

the tenant data they’re supposed to be able to see. The only exception to this is that,

if you don’t disallow it, it could be possible for someone to log in just with a

username, that is, with a blank domain name. In that case, they would have access

to shared tables and whatever may be in the default area. That is an exceptional case

that you will probably want to disallow in a production environment.

Let’s see how to set up the pieces you need to do all this. In the details frame for the

database connection is a link labeled Edit authentication systems. That’s what we

need to look at first:

Defining Tenants, Domains and Users John Sadd

December, 2011 Page 19 of 27

The authentication systems records, which are part of the schema, represent different

ways in which users can be authenticated to get access to the database. There are

three built-in ones:

The first, named _extsso, provides support for single sign-on access to multiple

systems.

Another built-in authentication system, _oslocal, lets you use an operating system-

level user ID to access the database.

The third is named _oeusertable, which uses the traditional OpenEdge _User table

to identify and authenticate users. You can define additional authentication systems

here, including for instance a new type to represent your own application-level

authentication, which is very common in OpenEdge applications. To do that you would

Defining Tenants, Domains and Users John Sadd

December, 2011 Page 20 of 27

just click New, and give the new system a name and an optional description. There’s

no other built-in support for or understanding of your own authentication system,

only that you are taking responsibility for it. In order to show you how to create

users, I’ll use _oeusertable for my example, even though I want to emphasize that

there’s no need to use the _User mechanism in order to take advantage of multi-

tenancy. I just leave these records as they are.

Once I have identified the authentication system that I want to use, whether it’s new

or built-in, I need to define domains to provide access to the tenants. Remember that

every user gets access to its tenant data through a domain. I click the edit domains

link:

Here you can see that there are five built-in domains:

Defining Tenants, Domains and Users John Sadd

December, 2011 Page 21 of 27

One provides access for the blank domain to the Default area, as I showed in the

slide, and which I advised that you probably want to disable when you set up your

security system. The others provide a starting point for operating system

authentication using _oslocal, for Windows and UNIX. I want a domain specifically for

each of my tenants, so I click New.

I call my first domain EastSportsUser, just to emphasize that I’m choosing to use

the _User table mechanism for authentication. You might have only one domain

definition for a tenant, or you might have several. If you wanted to segregate

different sets of users and use different authentication systems for them, you would

define multiple domains for the tenant. If you intend to use only one authentication

system for a tenant, then that tenant will have just one domain. This may be pretty

typical, and in that case there’s probably no reason not to make the domain name the

same as the tenant name; that’s perfectly valid.

In this example I want to make sure you understand that what the users specify

when they login is not the tenant name, though they may think of it that way. Rather,

it’s the domain name, so I make the names a little distinct for that reason, by adding

User to the end of the name.

Next I need to match up the domain with its authentication system. As I said earlier,

I’m going to use _oeusertable, just so that it will make sense for me to create some

users later on.

Next I pick a tenant to match up with the domain. Each domain is for a specific

tenant. There can be multiple domains for a tenant, but never multiple tenants for a

single domain. I choose EastSports.

Using domains provides an additional level of security, because each domain has its

own access code, rather like a password for the domain. All the alternatives for how

you might secure this access code are beyond the level of this presentation, but when

you define a domain you specify an access code for it, and this is stored in encrypted

form as part of the domain record in the schema. I enter an access code, which is

suppressed in the display, like a password. I make it the same as the domain name

for this simple example.

I can enter a description for the domain if I want, and there are some other optional

fields I could fill in that I won’t go into here.

Note that there is a checkbox that as an administrator you can check on or off if you

wish to enable or disable a domain, in order to restrict access to the database for that

domain’s users. This screenshot shows the comnpleted form:

Defining Tenants, Domains and Users John Sadd

December, 2011 Page 22 of 27

I click Save for this first new domain.

Next I have to create at least one domain for each of the other tenants, so that their

users can get also into the database. I create one for WestSports called

WestSportsUser, one for SouthSports called SouthSportsUser, and one for

NorthSports called NorthSportsUser. I now have a total of nine domains, the five

built-in ones, and the four I’ve just finished creating.

Right above the edit domains link is a link that prompts me to create users. Once

again I want to emphasize that there’s normally no reason to create users in the

Admin Console unless you are using the built-in _User table to maintain your users,

which means that your domains use the _oeusertable authentication system. Since

that’s what I’m doing in my example, I do select create user. I’m placed into user

maintenance, so I need to click New:

Defining Tenants, Domains and Users John Sadd

December, 2011 Page 23 of 27

I create one user for each domain, which in turn provides access to one tenant’s data.

First is JoeEast, who works for EastSports, so he gets connected to the

EastSportsUser domain. Keep in mind that this pairing of user name and domain

name means that you can easily have the same user name for different domains, two

people named Joe for instance who work for different companies that are tenants in

your database. I’ve tacked “East” onto the end of Joe’s Userid just to help clarify who

is who, but of course in a real application you probably wouldn’t do that; it’s the

domain name that identifies which user gets to see which data.

Next of course I have to enter a password. Remember that I’m just doing _User table

maintenance here, just as I would have (and could still do) in the older Data

Administration tool. JoeEast’s password is just Joe. Note that although the Userid

format with the “@” sign is the way OpenEdge recognizes the combination of Userid

and domain name, an end user might login in any number of ways, where for

instance the domain is looked up by the login module and supplied without the user

having to enter it directly. The format with the “@” sign is the form recognized as a

complete user identifier by OpenEdge.

There’s other optional user information that I could enter that goes into the user

record as well. The one thing I want to note here is the SQL Only checkbox. You can

use _User records for access to the database through SQL, for reporting, for instance,

without having those users be active or recognized from an ABL application. You

would check this box to enable that SQL-only access.

I’ve entered all the information I need to, so I Save this first user, and start in to

define another user. The second one is Jim, who works for WestSports, so of course

Jim’s Userid is connected to the WestSportsUser domain. In all, I create four users,

one for each domain, to provide access in turn to each tenant’s data. Here you see all

four users:

Defining Tenants, Domains and Users John Sadd

December, 2011 Page 24 of 27

I return to the main display for sportsmt, and the Security Summary shows that I

now have four users:

At this point I have everything set up in the Admin Console to allow people to actually

log into the database and start working. There’s one more thing I should show you

before finishing up this paper.

Toward the bottom of the Security Summary area is a link you can select to edit data

security for individual users and groups of users:

Defining Tenants, Domains and Users John Sadd

December, 2011 Page 25 of 27

You’re familiar with all the Can-Read and Can-Write settings for users. They’re the

same as they’ve always been. However, there’s one new wrinkle I want to make sure

you’re aware of. If I select the Order table, and then the Can-Read privilege setting,

for example, then if I want to enable or disable a user, I need to include the user’s

domain name, with the “@” sign in between, since the domain name is an essential

qualifier for the Userid, to make sure each combination is unique. Below I’ve removed

Read permission on the Order table for JoeEast:

If I press Commit to save the change, I can then select Review user data security

to take a look at the effects of the setting. I click the Find user link, select JoeEast,

and I can see that I have successfully turned off Can-Read permission for JoeEast for

the Order table:

Defining Tenants, Domains and Users John Sadd

December, 2011 Page 26 of 27

There’s one other thing you need to understand when working with domains. You can

enable or disable permission for all users in a domain by using the domain name,

preceded by an asterisk (*) and the at sign (@), in a setting. Below for example I’ve

removed Can-Write permission on the Order table for all users in the WestSportsUser

domain:

Once again I can confirm the effects of that, by retrieving JimWest, the one

WestSports user, and I see that he no longer has Can-Write permission on the Order

table:

Defining Tenants, Domains and Users John Sadd

December, 2011 Page 27 of 27

The same would be true for anyone else in the WestSportsUser domain. That gives

you an idea of what’s new in user permission settings.

Now that I’ve set up everything I need to in the Admin Console, I need to show you

how you actually program your ABL login to provide the proper authentication of a

user to the domain he uses to access data for his tenant. That will be in the next

videos in this series, along with the white paper that accompanies them.

