USING APPLICATION DATA IN FORMS

John Sadd

Fellow and OpenEdge Evangelist
Document Version 1.0

July 2011

Building Business Process
Applications Using OpenEdge BPM

Using Application Data in Forms

PROGRESS

John Sadd

Progress. | OpenEdge

Progress. ‘ Savvion PROGRESS

software

PROGRESS

SOFTWARE
July, 2011 Page 1 of 18

Using Application Data in Forms John Sadd

DISCLAIMER

Certain portions of this document contain information about Progress Software Corporation’s
plans for future product development and overall business strategies. Such information is
proprietary and confidential to Progress Software Corporation and may be used by you solely in
accordance with the terms and conditions specified in the PSDN Online (http://www.psdn.com)
Terms of Use (http://psdn.progress.com/terms/index.ssp). Progress Software Corporation
reserves the right, in its sole discretion, to modify or abandon without notice any of the plans
described herein pertaining to future development and/or business development strategies.
Any reference to third party software and/or features is intended for illustration purposes only.
Progress Software Corporation does not endorse or sponsor such third parties or software.

This document accompanies the two-part video which introduces you to the basics of
how to populate fields in your forms with data retrieved from an application. The
details on how to construct the actual calls out to the application are covered in a
later session on using Web services. Here I just show how Savvion’s controls can be
assigned values at runtime, and how you can construct a flow that alternates
between forms in the presentation and the calls that get data for them and pass the
data from one form to the next.

The model below shows a sequence of steps in the Factory application that has been
used before in videos and papers in this series:

It's called a Presentation Flow, a special type of sub-process of a larger process
that represents a series of forms that an individual user goes through to accomplish
one of the major steps in the Savvion process, in this case, a customer placing an
order for a vehicle.

Just to review how this looks when this part of the process runs, I can start up an

instance of the CustomerOrderVehicle process, and in the first form that comes up,
the customer selects a brand:

July, 2011 Page 2 of 18

http://www.psdn.com/
http://psdn.progress.com/terms/index.ssp

Using Application Data in Forms

)
Hedoeroe

AutoEdge|TheFactory

Please select ane of ow brands.

Toﬁola

“% SCUBAROD
{8

John Sadd

When the brand is selected, all the other brands are effectively grayed out. In the
next step the user sees all the available models for the selected brand. (As you can
see, there isn't much data in the sample database for some models yet.)

e |

For truck models in this case I just have two choices. This is the key to what I'm
covering in this paper: Where did these two values for Fjord truck models come from,
and how did the process developer use them to assign the values for this radio set?
That’s the question this paper answers. Continuing through the Flow, the customer
selects a model and proceeds, and goes on to the next step of selecting options,
which are also dynamically populated from data retrieved through the OpenEdge
application that is executing in the background:

July, 2011

Page 3 of 18

Using Application Data in Forms

AutoEdge|TheFactory

Please customise yaur vehicle by selecting odditional cptions and ereessories

niurier Spiann || Evierir Dok

[— - Tom s accatasna
- Piuah b omdors Wcratiber uighe ey [Wevardon iwagesas Satem
- e I Banmben Prerasm G Syster
[
= T L
 Charcsl

John Sadd

That's as far as I need to go in the Presentation Flow. Let me drill down into a few of
the design details. The first step that has a visible form is called SelectBrand. I can
open the form for that step, and take a look at the images in the form. You can see
that there are actually two images for each brand, one color, and one black and

white:

Fin G been Mwigus St fojec G T Wnde sen

@FJURD °%' SCUBAROO
o

Ao boriee “d@ SCUBAROO

" @FJORD ?.

|- | H|O- B -] | eF] -0 - - £ wen
(om0 et o || sencmnd =8|
L e— | IR FIW

e = = Howder
Eruive s svsie, G0 = [
- (TR
Folowmioe] ook Tathe
81 cunten Tt
| rabbmiran
e Erer S
=
=] | ms [Fri
Porn [Tekiaon | Zrgd
-+ 7 =0

| 5 s et e | £ ot | ot < bk |

If I select the color image for Fjord, I can drag the Properties view back up to see
what’s defined for it:

July, 2011

ik
ri-G O e 8o as - T e e -
ot bl 1 || Stemnevviintaderiba o ||| Sheectieand [
= rrero— | 0500) [i)
- i Hinda
PR —————
8 Voo @Chlr'p
B] o
P U@FJORDD °%"SCUEP\F.UO
= o a o s
S forgrsene: " SCUBARDO
FJORD k"
(e o 215w T =B B
B = T
gt 1 epaetory e | 2 Prabiees | i |) T |
Convirod Propesties. (Inage] - EgFori gn
o |
Dom —
ot Tk e [
B e e | v
P
wr [l b [e e
L

Page 4 of 18

Using Application Data in Forms

John Sadd

The ID is the name of the image control in the form. The URL shows the path to the
actual file name for the image. What's new here is that there is an event defined for
the image, so the image is really functioning as a button control. Selecting the

Events tab in the properties, you see that there’s an event defined for

onMouseDown, the click event:

.' SCUBAROO
(3

o fn s i - SCUBARQO
: @FJDRD 2.
— o

e cuee
ol ot et || o [P S
T Ppties Lk ety B | = Prabiees | Bucknasis| < Tk

L T mep—
= = Boscpton

S v oy vt L e e, e, el s Pt o st 3k

Before looking at the code for that event, there is another interesting element on the

form, a text field under the footer:

PereT— = 0|+ Semerieiecadecibaton ||| Thetiond L

@I;JORD

Topmtas 1 . Pepmatory e | £ racem | Dot <1 Tk
Cumtred Propssios (e - g foriogs

Garwid = lvanspben

o
Enrpten

m Evars bt arien routs, Safra roarts, bt and ctiors Fuad s succitec it s 1 a Fors

= [I
Teests —

rbann

It is bound to the Dataslot called SelectedVehicleBrand. The field didn’t actually
appear before when I ran the process. If I select the field and look at its properties,
you can see that it’s called txtBrand, and it's a String field. You can also see that its

Visible property is off:

July, 2011

Page 5 of 18

Using Application Data in Forms

e

Fi G b Megus Gt Post G Tus Wndm e
= S |l | B-dw |- P e - 4 #- owsen
pr—— S0 cemmardns it “Sabctieand [=0
AR N — | (|0 ARG
i Pk ™ A
= & B (F)FJoRD
% i Cummsahanring —
R re—— »
e LTy
e b B
- = == EL | b Pty B | | Pobloms | Bobrasts| < | Pk =0
e cutre 23]| e = =
[P 1| comarel Proportios (Yot Foid) - trtivand
Gemerd | vt
acen
Ceuptn Tabonan [
vt
rorat: [=]
p—
Langtte. M W Legte =
-
I Fosimrd [~ Viatla [Biatle| I~ 5o

John Sadd

This is a hidden field, set in the background to hold a value that gets passed from
form to form, which the user doesn’t see. Let’s look at the code for the form now by
selecting the Script tab. The code that gets run when the form is first loaded is the

onLoad event.

i Devipm . Schocmeand Progres SeronBmsein =
Fi G b Megus Gt Post G Tus Wndm e
- wEB-os |- TV =4[tmen
R 0| Semsveisstibr s || St L1 =
3w 7| o] cae)
I @ o st [va, orica =
0 Cutrmes wshicedv it =
ESem *x3
=
sow|
e cuwe 51 =o)= = T pe—— Sl
o Fopmtan 1L epestory towar | | Prtlee |) bechraata | | Tasba |
Cumtrel Propurtio (Teod Tadd) - Llicand
Govers 8|t
s
Eessrprin reboeden [
s P - |
e
e[% Mg [
.
T~ Passwed [~ Vb & Eltstie ™ =

You can see that the code - and this is JavaScript - is executing a hide function

that’s in a library called sbm.util:

// highlight all brands
sbm.util.hide ('imgCheryLogoBw') ;
sbm.util.hide ('imgHindaLogoBw') ;
sbm.util.hide ('imgPotomocLogoBw') ;
sbm.util.hide ('imgToyolaLogoBw') ;
sbm.util.hide ('imgScubarooLogoBw') ;
sbm.util.hide ('imgFjordLogoBw') ;

There’s a color and a black and white image for each brand, and this little block of
code is hiding the black and white images when the form first comes up. Now look at
the code that gets run when the customer clicks on one of the visible color images,

like the Fjord image:

July, 2011

Page 6 of 18

Using Application Data in Forms John Sadd

sbm.util.setValue ('txtBrand', 'Fjord');
// highlight selected brand, de-emphasise others
sbm.util.hide ('imgCheryLogo') ;
sbm.util.show ('imgCheryLogoBw') ;
sbm.util.hide ('imgHindaLogo') ;
sbm.util.show ('imgHindaLogoBw') ;
sbm.util.hide ('imgPotomocLogo') ;
sbm.util.show ('imgPotomocLogoBw') ;
sbm.util.hide ('imgToyolaLogo') ;
sbm.util.show ('imgToyolaLogoBw') ;
sbm.util.show ('imgFjordLogo') ;
sbm.util.hide ('imgFjordLogoBw') ;
sbm.util.hide ('imgScubarooLogo') ;
sbm.util.show ('imgScubarooLogoBw') ;

=4[2 owen

Farn] e St
C broparten 31 Rapmstory Brmen | |2 Pl |) Boctrasta| < s

Cumiral Proprtis (Tt i) - tettiand

eonutie ot s

Goeeed | v

Emspen i kst
Fomat [y
B — —
Langen EO T
-
I Posvened [~ vsble 7 ik

s

Remember that the form has a hidden field at the bottom named txtBrand. The first
highlighted line is setting that field to Fjord, in preparation for passing that value on
to the next step in the process. Then it hides all the color images for the other brands
and shows their black and white images instead. Even though the design window for
the form shows the color and black and white images stacked above one another, at
runtime the form layout is done dynamically based on what’s visible, so the black and
white images just appear in place of the color ones, and there’s no flashing or
jumping around of the display.

Below is a screenshot of the BPM Studio Users Guide in the documentation for
Savvion. Just to make sure you know where to look to find all of the built-in function
libraries,I can select the Util package down in the appendices at the end of the book,
and there you will find a summary of what all the sbm.util functions do. All of this
information is available for you when you start to write event handlers of your own:

July, 2011 Page 7 of 18

Using Application Data in Forms

u] Configring Dashbecnd Wikges

1] waorieng s Sornce Designar 0ol
] Warsing with Lior Maragemen ol
3K

Whriing s s ees Calerclr
% K] Managing Messages. andl Charveds
8] Maraging faress Chjacts

. 9 Changes inFricssss
=) Biatoge mamples
¥l LetatBaLnge seampes
] Eofct Package it eéfect
] ket Pachcace (s valedam)
B Ll Pk (it
T ————
] g e Liconsa Lpdam Tagl
K sy
] ireon

Util Package (sbm.util)

1% presants the APl avakable n the sbm sl ibrang
Table 125 Uil Package APl

Fusetion Parsmmatins) Diseriptisn

addOptiens; Rllows it 1o agd Bems I e specled 1st in e
form

aList Tir ruarme o hes 6L Conirl cn thes S

AN armay of primile Sements
FeiTea & (elaTence in T dormain objec] model

)

d Fiehams the value of a relerence in the doman object
el

Feiares ek sl 01 & ELTRATI Exploeer

Gt

] Fichama W value of e bl

geivake) Foenama an HTML semers,

] Fichums the value of he Bek
The neame: of thes RSt control on the i

e lvales] FiEtiama B 1= (s an armary) of 4 REms i speched
st

alist Thv: vt of e W6L coNMTO! on T o

ade] Hides the speciied control

comol_narmse Tht rame of the comeol Tl i 0 be Feoden

e Fides the speciied kbes

Gbel_nase The name of the label that is to be Fédcen

Femaveatopions Feemoves all lems om ihe spedled it

aloi)
x

-

John Sadd

Back in the design window for the form, I want to give you a quick example of how
you can put event handlers like this together yourself. Using the color Fjord icon

again, I go back into the events for it, and this time I define a mouseOver event. I
do that by double-clicking on the event:

fr—
-
]
ventn

alct =]
I - ! v Le=—
ol — | N i
,:,,:::‘ Gy -, 'l e
@ s cririae Toyola Toyola
-* Hinda
o B a o
7 @ FJORD: 8, scuaroo
= T3
-:::‘-«m Ll r—— L [T

Comtrel Prapertios mage] - ngferdogo

= Dusrptisn

The Eserts

Fusctors, vt o b tha .

ety
s

IT™ T

erfonn
crfloutaliver, gl og_mb soen

[
crthasent

crtain

Crousbkechck e orbauseCvar itsm

I get a default event handler name that I can accept or rename as I wish. Then I
press the View Action button. Since there’s no event handler code for this event yet,
I just see a message that says, “"Click here to add action”, so I do that.
Immediately you can see that there are many types of actions that you can define
handlers for. The Select Expression dialog shown below is there to help you define
common actions in event handlers without having to write any code at all. In addition
to Data Operations like setting or copying a field value, there are expressions you
can define for the effects supported for a field, for a widget, and so forth. I select
Field Effects, and from the different effects an object like the image might support, I

select Hide.

July, 2011

Page 8 of 18

Using Application Data in Forms John Sadd

T

FR - N - EA .- =
..... okote B[Pyl | hed 4R
[e e [T —

PR e rp—————— agarys [Pabd e

el
L4

[o | cmt
Priomtes | b Bepestiry tetes | Pl | Bpwbests| it | =0

Conral Proporties (Inage) - gFfondLog

- Coerpen (s

e vt by e o b i i, e, e ki B o aveoc e ik 2P s e

i

Eta | rees T -
by -

afon
crMoumston ingfrdog oo

e
crboumedive ingfiardlogn_osFcaear
criazall,

o

Now the event handler UI prompts me to pick a control, in this case any of the
controls on the form, so I select the black and white Hinda Logo.

B |G- ? - Sl il 4[5 cuen

Framt gl

0| s ot ilectieand [}

7| e | e
I 1 Duktce et [P padnm_cresstim >
W it [parpetaz. =l
P CutrmsrsahichOniring
i sk - X

B i oo

s 182 |
e
] 3

I ooaties

.

Eu-:. o .
Taw] s g

| 5 et 1 gty o | 2 Pl | s | 21 Pk

Comtrgl Proporties (inage) - mgFjoniLogo
== = Beserptmn brawe,

= cutre 21
1 o e v,

oo S B by b ot e vk, b, ad b Bl aew e kb P 1 s s
Caserpton
=

Eta___[rens L e S

The result is that when I select the Fjord brand, and its color logo is displayed and all
the black and white logos are shown for other brands, and then I mouse over the
Fjord logo, the Hinda logo will disappear.

Now to make it come back, I define a similar handler for mouseOut of the Fjord
image. Instead of Hide, this time I select the Show action, so when I mouse out of
the Fjord image, the Hinda logo will appear again.

Now I can go back to the form, and close it to save the changes I just made, and then
save the Flow that it's a part of. As I mentioned before, the flow is a special type of
subprocess that gets deployed to the server on its own. I click the Deployment
button to deploy the flow. Once I do that and start up another application instance, I
can show the effect of the new event handlers I just defined. Once I get to the Select
Brand form, and select the Fjord button, mousing over that image makes the Hinda
logo disappear and then reappear.

This quick demo of how you can define event handlers of your own shows you that

the design interface provides a lot of guidance for you so that in many cases you
don’t actually have to write any code at all.

July, 2011 Page 9 of 18

Using Application Data in Forms

John Sadd

Now take a look at the next step in the flow, called GetBrandDetails. This one
doesn’t have an image of a person on it in the process model diagram, so it's not a
step executed by a person. In its properties, I see the Configuration tab; clicking on
that will tell me what kind of step it is.

.

|w.m|

First let me review how I got here. The first form in the flow has an action that sets a
hidden field called txtBrand to the value Fjord if I click on the Fjord image. Then it
binds that variable to the Dataslot SelectedVehicleBrand:

Key:

[selectbran form]

| txtBran d |

] _fxfﬁmnd_ﬁ ||

'_Selecfeﬁe hicle Br-:le' |

Now let’s look at the Configuration tab to see what this step does. Clicking the
Configure button, I see that this step is defined as a Web service adapter, in this
case, one that calls out to an entry point in an OpenEdge application. One of the input

parameters is called pcBrand:

July, 2011

Page 10 of 18

Using Application Data in Forms John Sadd

T G s Somh P 1ok
W B g oT—
-l BB S G- s

(s e £ 5 Y || =1] Comen | oo |
o T A e e e Fasmie s ety SRS
e bk * 2l
= e Ottt e [
- N ™ [7 Vot Tbhan |
T —— WS e AL Fakun —
T oate I
" Aartwa e e
ot [
it S it | Wawaticn | ms and Magsing)| Adearced | Tost|
= S e S
i cuee 51 e j Oustmmsrtogn s
| P operation Info
rocens 2] | 5 we | Jren——— Memesace 4 tutary sk e pan Sl Fga TheFavtan
Citcmrcerratnd 5] i Lacslpa Lntiraneis
ot P Shnon dzcame syl
earae
Logrédtmngtit mended f niomn
Logriustorar ¥ ez |IroL Paramsiers
fresrv)
Hoxietimision [name [Type
s
oot B e
ettt eteert cntnte ST
Selecteabctecpton Ll Ll-'l a
Clstrm g, = =
Custana = -
e of| 5 vt 5 il =)

If I look at the output parameters, I see a number of parameters including one called
pcTruckModels, which is where the list of Fjord truck models like FJ-100 comes
from:

e Ve S U T et — =
T e T =
A o [—
[Jill | @- B |G-
TR r | L e e e e e e | e, | sewihino
= - ety i
S | RN T Fasme WSty ST
= = e b
& i ot | P S
1 Cutomsbadedrc i P Pa— [L
- A— N A Taban - —
e T
e Ueres [=
i B
W Dl
ERE e | irtavation | s and Mapsing| Adearcad | Taat|
= & i ge ek st rsmsh s e
- e =5]
e cute ¥ 1 custrmarogn =1
1 Gettautucnt
[Precess =5 == ;11. - Culput Parame ars
= Coaswaeoeand 8] =t | Hame HML Type
= e =
]] nericon reDrareimrLin pre—y
o ¥ tocms BT o
Mociekadncicn £ C oo B e o Ll
i e]
Lokt - ey = ! -
“ele: toak i ptor A B L'_ ar
Custarartagn = = L]
Fom—— == 1
Cotmenspime || 5 popertes 71) + =0
J | = =T B

When I OK this dialog, I'm placed into the Dataslot mapping. This is where I'm able
to pass values from one form to this step through variables and dataslots, and from
here on to the next step as well:

F-rHalsd G- 08 |G- P |asd-]0 -0 - a- - |8 =4[5+ twn
(et =0 R &

o BRI R EED

Budhide [t ElA rak *
I Ot Onder i oy st

By T 3 EETITTEEE———

189 VaracaCrder b Sebearped [0t cuatats | Ptz | Ak |

[soumra |
2 [~ mcidwebrs =] s peonred
W, R E— T

aretvicrs il | = o)
Cusiaraizgn g [T |]]

Cuanan, = . = = T =
uauv:::-w dJi'_.m;:_:me;m:ﬂm] Fasbs| = T =

July, 2011 Page 11 of 18

Using Application Data in Forms John Sadd

Remember that the SelectBrand step has an onChoose event that places the brand
represented by an image into the hidden field called txtBrand. You also saw that
txtBrand is bound to a dataslot called SelectedVehicleBrand. This is where the
process is using that value. In this step, it takes the Dataslot value, which is available
to all steps in the process, and maps that to the input parameter pcBrand that goes
out to the web service call:

For reasons I won't go into in this paper, the output parameters from the service
come back with names beginning with response, so for example, responseTruck is
the output from the OpenEdge application call with all the available truck models for
the selected brand that was passed in. In the screenshot above you can see that is is
mapped in turn to a Target dataslot called TruckModels. This diagram will help
review the steps in the process:

o conras)| [seectand fom]

ptBrend] |

'_Selecfed_'v‘ehicleBrc?dl'{

| GetBrandDetails udupﬂri

| SelectedVehicle Brtfdl' |

The SelectBrand form set the SelectedVehicleBrand Dataslot. Now the Web
service adapter is using that value to set the input parameter to a call out to

July, 2011 Page 12 of 18

Using Application Data in Forms John Sadd

OpenEdge that returns a list of truck models, among other things, and that in turn
sets another Dataslot called TruckModels. Take a look at just a bit of the actual ABL
code that’s being called here. On the OpenEdge side, it's a procedure called
service_branddata.p, which is part of the Web service proxy that provides access to
the ABL procedures from Savvion. You can see the pcBrand input parameter along
with the contextID, as well as all the output parameters with various kinds of
information for whatever brand was passed in:

define input parameter pcBrand as character no-undo.
define input parameter pcUserContextId as longchar no-undo.

define output parameter pcDealerNamelList as longchar no-undo.
define output parameter pcCompactModels as longchar no-undo.
define output parameter pcTruckModels as longchar no-undo.
define output parameter pcSuvModels as longchar no-undo.

Later in the same procedure is code where the data in the ProDataSet that holds all
the values for the brand is converted into a JSON object with selected and value and
label properties, which is what a Savvion widget like the radio set expects:

cOptions =

hQuery:get-first() .

do while hBuffer:available:
cOptions = cOptions + ', ~{

+ '~"selected~" : false, '

+ '~"value~" : ~"' 4+ SanitiseString(hBuffer::ItemId) + '~", '
+ '~"label~" : ~"' + SanitiseString(hBuffer::Description) +
+ '~

hQuery:get-next () .
end.

The value property in the JISON example below (truncated from its full length)
represents the unique character string key that the OpenEdge application uses to
identify each row in the database:

<json>

[{"selected" : false, "value" : "fd1603...", "label" : "FJ-200" },
{ "selected" : false, "value" : "fd1604...", "label" : "FJ-100" }

|

</json>

To continue, I open the next user-driven step in the process, called ModelSelection,
and open its form. This is the form where model names are displayed, and here under
Truck Models, take a look at the control. It is bound to the TruckModels dataslot,
which was populated by output values from the Web service in the previous step.

July, 2011 Page 13 of 18

Using Application Data in Forms

Mg et ot dan Toss Widon e

3 - w il |@- OB |- lo e

: ke .
% i Crtrm kO ===

T O e | s

S] — s A

ry

e

[Eskect Sors and Acommraries |l Fraei]

rorm

m_.gmmmm] = prathoes | s] ra |

John Sadd

Looking at its properties, you see that its name is uxTruckModels, and it’s a radio

set widget:

Under Data Binding, you can see that the radio set values are bound to the
TruckModels Dataslot. When this form is realized, this radio set is populated with
the values from TruckModels, which in turn was bound to an output parameter from
the Web service call:

o BT St
Aan Tosk Wincke e
ARV S E A= :
T | et | ks
0 e— | NG a0

~— Y- = sertion Scnres Target
nu—m- | = Sl == |
st = | P =l
Ee el |
Dot et
s [B=] p
© souple: T p‘]

If I now look at the control’s Events tab, there’s an onChange event:

July, 2011

Page 14 of 18

Using Application Data in Forms John Sadd

o2 Desige - Hiodebiebertins - Progress Sewrion BV Sholks =
e G b Negus fewch foek G T Wnde e
AR Blale-lds e tlo s s s - S o
[rr— S| Samnaietisiadis b ot [rrr— =0
3 T | oo HF = s i
> D - -
5 Cunt -
i Crn ot v === &
g
Sederss
. Crassaver
Forn Sk | Fred.
e e T O et £, | ety o | sk | et | < Pk e
ML Coetral Progortics (Fadio] - uTruckModek:
G - bercrnon .
i T Evarta b st ot ks e, s, e 4 rm e e 4k 1 v o ——
b = I e
Bl P g T e e
testy ik
ucts e

Selecting one of the radio set values fires this event. Selecting View Action again
shows two actions defined:

JAT=T]
* twen
: | et] e |
BT, =
e Actors [eTraa s srctarcn 3
W Cutomar whiteCriwate — S — —]
o e L Y
L —p— *u
|
o] T et
e cutve 12 T = 1] ropertien T1 18 Bopastcry Bcowsen | 2. Prblis | B P | 2] Paks| =
pelat ol Conrel Propertios (Radi) - ulnuckModel
— Era— e
Skt o Events sebtal anaben pou o cefine meerts, hanchions, and action: that are sseccsted seth 4 ekt B fors. k .
SHAPS | [e I ==
el e TR e L]
Eeeniy i
et o

The first, highlighted as “"Copy the value of widget...”, defined through the kind of
dropdowns and expression choices I showed you earlier, tells Savvion to copy the
value of the uxTruckModels control to another variable called txtModel.

The second action is actually a bit of handwritten JavaScript code, executing two
user-defined functions, both of which take the chosen radio set value as input:

clearOtherSelections ('uxTruckModels"') ;
assignModelName ('uxTruckModels') ;

If I select the Code tab I can actually look at the code for those functions. Here's the
first, assignModelName:

// Sets the value of the ModelName dataslot via a field
function assignModelName (srcModel) {
var s = sbm.widgets.getValue (srcModel) ;
var obj = eval(s);
for(var i = 0; 1 < obj.length; i++) {
var e = obj[i];
if (e.selected) {sbm.widgets.setValue ('txtModelName', e.label);}

July, 2011 Page 15 of 18

Using Application Data in Forms John Sadd

£ be owan

i U Cstomiat g
B 4 vedece <json>
[{"selected™ : false, “value” : "fd1603..%, "label” : “F}-200" },
[“selected” : false, "value® : “fd1604..", “label" : “FJ-100" }
s
<fjson>

fuction clascinherSelecrons (i lscadiogal
Taw] awkn g
% ouiee 1 T O et 11 ety o | 1 Pkl | - pocbrnrks | < Fanbs|

A0 ot . vl e

i

Ve e

The object-oriented view of the data makes this look a bit complicated, but basically
the code has to walk through all the possible values of the radio set control as a JSON
object like the example superimposed on the screenshot above, and find the one
whose selected property is set. That choice’s label property in turn is written into a
simple string variable called txtModelName. Note that this code is using another
Savvion library called sbm.widgets, which you can find in the same appendix I
showed you earlier in the BPM Studio Users Guide.

The other function clears any previous selection that was made for another model
type, such as Sedan or Crossover, by setting its selectedIndex property to minus 1.

function clearOtherSelections (selectedModel) ({
if (selectedModel !== 'uxCompactModels')
{document.getElementById('uxCompactModels') .selectedIndex = -1;}
if (selectedModel !== 'uxSedanModels')
{document.getElementById ('uxSedanModels') .selectedIndex = -1;}
if (selectedModel !== 'uxSUVModels')
{document.getElementById('uxSUVModels') .selectedIndex = -1;}
if (selectedModel !== 'uxTruckModels')
{document.getElementById ('uxTruckModels') .selectedIndex = -1;}
if (selectedModel !== 'uxPremiumModels')
{document.getElementById ('uxPremiumModels') .selectedIndex = -1;}
}

This is in case the customer changed his mind and selected one model type and then
another. You can see that the code uses the standard HTML convention of
document.getElementByld to locate each radio set control within the form.

So overall, looking at the event handlers for just these steps has introduced you to
several of the different ways you can define event handlers for Savvion forms,
sometimes just using predefined categories of expression types that are offered to
you, sometimes by writing your own JavaScript code.

Finally, the screenshot below shows the two hidden fields that this form uses. Double-

click on the first one, which is bound to the SelectedVehicleModel dataslot, you see
that this is the one named txtModel, referenced in the code we just looked at:

July, 2011 Page 16 of 18

Using Application Data in Forms John Sadd

o [T | e |

et 71| gy B | © Pk | b < P | T =0

The second one, bound to the ModelName dataslot -- which in turn is passed on to a
later step in the process -- is the one hamed txtModelName.

One final look at a diagram to help you understand the data flow here:

| GetBrandDetails adupfur]

| Selec‘ted\r‘e hicle Brondl

pcBrun]
chruck els

| TruckModeil'i

This user form ModelSelection starts with the TruckModels dataslot value, a JSON
object holding a list of all the Fjord trucks, and uses it to set the radio set for the new
form. It then sets the hidden field txtModelName to the label of the selected model,

which in turn is mapped to the dataslot ModelName, which is used in a later step in
the flow.

My goal in this paper has been to show you just enough about the very powerful
ability to pass data values from one step in a process to another, and to define
flexible event handlers for control events, to get you started. As with all of these
videos and papers, you should take what you’ve been introduced to here and follow
up on your own in your investigation of all the kinds of ways you can use data
retrieved from your application to populate and control the steps in your Savvion
process. This can enable you to build an application process model that at runtime is

July, 2011 Page 17 of 18

Using Application Data in Forms John Sadd

closely tied to all the data and logic that's already built into your OpenEdge ABL
application.

July, 2011 Page 18 of 18

