
July, 2011 Page 1 of 18

USING APPLICATION DATA IN FORMS

John Sadd

Fellow and OpenEdge Evangelist

Document Version 1.0

July 2011

Using Application Data in Forms John Sadd

July, 2011 Page 2 of 18

DISCLAIMER

Certain portions of this document contain information about Progress Software Corporation’s

plans for future product development and overall business strategies. Such information is
proprietary and confidential to Progress Software Corporation and may be used by you solely in
accordance with the terms and conditions specified in the PSDN Online (http://www.psdn.com)
Terms of Use (http://psdn.progress.com/terms/index.ssp). Progress Software Corporation
reserves the right, in its sole discretion, to modify or abandon without notice any of the plans
described herein pertaining to future development and/or business development strategies.

Any reference to third party software and/or features is intended for illustration purposes only.
Progress Software Corporation does not endorse or sponsor such third parties or software.

This document accompanies the two-part video which introduces you to the basics of

how to populate fields in your forms with data retrieved from an application. The

details on how to construct the actual calls out to the application are covered in a

later session on using Web services. Here I just show how Savvion’s controls can be

assigned values at runtime, and how you can construct a flow that alternates

between forms in the presentation and the calls that get data for them and pass the

data from one form to the next.

The model below shows a sequence of steps in the Factory application that has been

used before in videos and papers in this series:

It’s called a Presentation Flow, a special type of sub-process of a larger process

that represents a series of forms that an individual user goes through to accomplish

one of the major steps in the Savvion process, in this case, a customer placing an

order for a vehicle.

Just to review how this looks when this part of the process runs, I can start up an

instance of the CustomerOrderVehicle process, and in the first form that comes up,

the customer selects a brand:

http://www.psdn.com/
http://psdn.progress.com/terms/index.ssp

Using Application Data in Forms John Sadd

July, 2011 Page 3 of 18

When the brand is selected, all the other brands are effectively grayed out. In the

next step the user sees all the available models for the selected brand. (As you can

see, there isn't much data in the sample database for some models yet.)

For truck models in this case I just have two choices. This is the key to what I’m

covering in this paper: Where did these two values for Fjord truck models come from,

and how did the process developer use them to assign the values for this radio set?

That’s the question this paper answers. Continuing through the Flow, the customer

selects a model and proceeds, and goes on to the next step of selecting options,

which are also dynamically populated from data retrieved through the OpenEdge

application that is executing in the background:

Using Application Data in Forms John Sadd

July, 2011 Page 4 of 18

That’s as far as I need to go in the Presentation Flow. Let me drill down into a few of

the design details. The first step that has a visible form is called SelectBrand. I can

open the form for that step, and take a look at the images in the form. You can see

that there are actually two images for each brand, one color, and one black and

white:

If I select the color image for Fjord, I can drag the Properties view back up to see

what’s defined for it:

Using Application Data in Forms John Sadd

July, 2011 Page 5 of 18

The ID is the name of the image control in the form. The URL shows the path to the

actual file name for the image. What’s new here is that there is an event defined for

the image, so the image is really functioning as a button control. Selecting the

Events tab in the properties, you see that there’s an event defined for

onMouseDown, the click event:

Before looking at the code for that event, there is another interesting element on the

form, a text field under the footer:

It is bound to the Dataslot called SelectedVehicleBrand. The field didn’t actually

appear before when I ran the process. If I select the field and look at its properties,

you can see that it’s called txtBrand, and it’s a String field. You can also see that its

Visible property is off:

Using Application Data in Forms John Sadd

July, 2011 Page 6 of 18

This is a hidden field, set in the background to hold a value that gets passed from

form to form, which the user doesn’t see. Let’s look at the code for the form now by

selecting the Script tab. The code that gets run when the form is first loaded is the

onLoad event.

You can see that the code – and this is JavaScript – is executing a hide function

that’s in a library called sbm.util:

// highlight all brands

sbm.util.hide('imgCheryLogoBw');

sbm.util.hide('imgHindaLogoBw');

sbm.util.hide('imgPotomocLogoBw');

sbm.util.hide('imgToyolaLogoBw');

sbm.util.hide('imgScubarooLogoBw');

sbm.util.hide('imgFjordLogoBw');

There’s a color and a black and white image for each brand, and this little block of

code is hiding the black and white images when the form first comes up. Now look at

the code that gets run when the customer clicks on one of the visible color images,

like the Fjord image:

Using Application Data in Forms John Sadd

July, 2011 Page 7 of 18

sbm.util.setValue('txtBrand', 'Fjord');

// highlight selected brand, de-emphasise others

sbm.util.hide('imgCheryLogo');

sbm.util.show('imgCheryLogoBw');

sbm.util.hide('imgHindaLogo');

sbm.util.show('imgHindaLogoBw');

sbm.util.hide('imgPotomocLogo');

sbm.util.show('imgPotomocLogoBw');

sbm.util.hide('imgToyolaLogo');

sbm.util.show('imgToyolaLogoBw');

sbm.util.show('imgFjordLogo');

sbm.util.hide('imgFjordLogoBw');

sbm.util.hide('imgScubarooLogo');

sbm.util.show('imgScubarooLogoBw');

Remember that the form has a hidden field at the bottom named txtBrand. The first

highlighted line is setting that field to Fjord, in preparation for passing that value on

to the next step in the process. Then it hides all the color images for the other brands

and shows their black and white images instead. Even though the design window for

the form shows the color and black and white images stacked above one another, at

runtime the form layout is done dynamically based on what’s visible, so the black and

white images just appear in place of the color ones, and there’s no flashing or

jumping around of the display.

Below is a screenshot of the BPM Studio Users Guide in the documentation for

Savvion. Just to make sure you know where to look to find all of the built-in function

libraries,I can select the Util package down in the appendices at the end of the book,

and there you will find a summary of what all the sbm.util functions do. All of this

information is available for you when you start to write event handlers of your own:

Using Application Data in Forms John Sadd

July, 2011 Page 8 of 18

Back in the design window for the form, I want to give you a quick example of how

you can put event handlers like this together yourself. Using the color Fjord icon

again, I go back into the events for it, and this time I define a mouseOver event. I

do that by double-clicking on the event:

I get a default event handler name that I can accept or rename as I wish. Then I

press the View Action button. Since there’s no event handler code for this event yet,

I just see a message that says, “Click here to add action”, so I do that.

Immediately you can see that there are many types of actions that you can define

handlers for. The Select Expression dialog shown below is there to help you define

common actions in event handlers without having to write any code at all. In addition

to Data Operations like setting or copying a field value, there are expressions you

can define for the effects supported for a field, for a widget, and so forth. I select

Field Effects, and from the different effects an object like the image might support, I

select Hide.

Using Application Data in Forms John Sadd

July, 2011 Page 9 of 18

Now the event handler UI prompts me to pick a control, in this case any of the

controls on the form, so I select the black and white Hinda Logo.

The result is that when I select the Fjord brand, and its color logo is displayed and all

the black and white logos are shown for other brands, and then I mouse over the

Fjord logo, the Hinda logo will disappear.

Now to make it come back, I define a similar handler for mouseOut of the Fjord

image. Instead of Hide, this time I select the Show action, so when I mouse out of

the Fjord image, the Hinda logo will appear again.

Now I can go back to the form, and close it to save the changes I just made, and then

save the Flow that it’s a part of. As I mentioned before, the flow is a special type of

subprocess that gets deployed to the server on its own. I click the Deployment

button to deploy the flow. Once I do that and start up another application instance, I

can show the effect of the new event handlers I just defined. Once I get to the Select

Brand form, and select the Fjord button, mousing over that image makes the Hinda

logo disappear and then reappear.

This quick demo of how you can define event handlers of your own shows you that

the design interface provides a lot of guidance for you so that in many cases you

don’t actually have to write any code at all.

Using Application Data in Forms John Sadd

July, 2011 Page 10 of 18

Now take a look at the next step in the flow, called GetBrandDetails. This one

doesn’t have an image of a person on it in the process model diagram, so it’s not a

step executed by a person. In its properties, I see the Configuration tab; clicking on

that will tell me what kind of step it is.

First let me review how I got here. The first form in the flow has an action that sets a

hidden field called txtBrand to the value Fjord if I click on the Fjord image. Then it

binds that variable to the Dataslot SelectedVehicleBrand:

Now let’s look at the Configuration tab to see what this step does. Clicking the

Configure button, I see that this step is defined as a Web service adapter, in this

case, one that calls out to an entry point in an OpenEdge application. One of the input

parameters is called pcBrand:

Using Application Data in Forms John Sadd

July, 2011 Page 11 of 18

If I look at the output parameters, I see a number of parameters including one called

pcTruckModels, which is where the list of Fjord truck models like FJ-100 comes

from:

When I OK this dialog, I’m placed into the Dataslot mapping. This is where I’m able

to pass values from one form to this step through variables and dataslots, and from

here on to the next step as well:

Using Application Data in Forms John Sadd

July, 2011 Page 12 of 18

Remember that the SelectBrand step has an onChoose event that places the brand

represented by an image into the hidden field called txtBrand. You also saw that

txtBrand is bound to a dataslot called SelectedVehicleBrand. This is where the

process is using that value. In this step, it takes the Dataslot value, which is available

to all steps in the process, and maps that to the input parameter pcBrand that goes

out to the web service call:

For reasons I won’t go into in this paper, the output parameters from the service

come back with names beginning with response, so for example, responseTruck is

the output from the OpenEdge application call with all the available truck models for

the selected brand that was passed in. In the screenshot above you can see that is is

mapped in turn to a Target dataslot called TruckModels. This diagram will help

review the steps in the process:

The SelectBrand form set the SelectedVehicleBrand Dataslot. Now the Web

service adapter is using that value to set the input parameter to a call out to

Using Application Data in Forms John Sadd

July, 2011 Page 13 of 18

OpenEdge that returns a list of truck models, among other things, and that in turn

sets another Dataslot called TruckModels. Take a look at just a bit of the actual ABL

code that’s being called here. On the OpenEdge side, it’s a procedure called

service_branddata.p, which is part of the Web service proxy that provides access to

the ABL procedures from Savvion. You can see the pcBrand input parameter along

with the contextID, as well as all the output parameters with various kinds of

information for whatever brand was passed in:

define input parameter pcBrand as character no-undo.

define input parameter pcUserContextId as longchar no-undo.

define output parameter pcDealerNameList as longchar no-undo.

define output parameter pcCompactModels as longchar no-undo.

define output parameter pcTruckModels as longchar no-undo.

define output parameter pcSuvModels as longchar no-undo.

Later in the same procedure is code where the data in the ProDataSet that holds all

the values for the brand is converted into a JSON object with selected and value and

label properties, which is what a Savvion widget like the radio set expects:

 cOptions = ''.

 hQuery:get-first().

 do while hBuffer:available:

 cOptions = cOptions + ', ~{ '

 + '~"selected~" : false, '

 + '~"value~" : ~"' + SanitiseString(hBuffer::ItemId) + '~", '

 + '~"label~" : ~"' + SanitiseString(hBuffer::Description) +

 '~"'

 + ' ~}'.

 hQuery:get-next().

 end.

The value property in the JSON example below (truncated from its full length)

represents the unique character string key that the OpenEdge application uses to

identify each row in the database:

To continue, I open the next user-driven step in the process, called ModelSelection,

and open its form. This is the form where model names are displayed, and here under

Truck Models, take a look at the control. It is bound to the TruckModels dataslot,

which was populated by output values from the Web service in the previous step.

Using Application Data in Forms John Sadd

July, 2011 Page 14 of 18

Looking at its properties, you see that its name is uxTruckModels, and it’s a radio

set widget:

Under Data Binding, you can see that the radio set values are bound to the

TruckModels Dataslot. When this form is realized, this radio set is populated with

the values from TruckModels, which in turn was bound to an output parameter from

the Web service call:

If I now look at the control’s Events tab, there’s an onChange event:

Using Application Data in Forms John Sadd

July, 2011 Page 15 of 18

Selecting one of the radio set values fires this event. Selecting View Action again

shows two actions defined:

The first, highlighted as “Copy the value of widget…”, defined through the kind of

dropdowns and expression choices I showed you earlier, tells Savvion to copy the

value of the uxTruckModels control to another variable called txtModel.

The second action is actually a bit of handwritten JavaScript code, executing two

user-defined functions, both of which take the chosen radio set value as input:

clearOtherSelections('uxTruckModels');

assignModelName('uxTruckModels');

If I select the Code tab I can actually look at the code for those functions. Here’s the

first, assignModelName:

// Sets the value of the ModelName dataslot via a field

function assignModelName (srcModel) {

 var s = sbm.widgets.getValue(srcModel);

 var obj = eval(s);

 for(var i = 0; i < obj.length; i++) {

 var e = obj[i];

 if (e.selected) {sbm.widgets.setValue('txtModelName', e.label);}

 }

}

Using Application Data in Forms John Sadd

July, 2011 Page 16 of 18

The object-oriented view of the data makes this look a bit complicated, but basically

the code has to walk through all the possible values of the radio set control as a JSON

object like the example superimposed on the screenshot above, and find the one

whose selected property is set. That choice’s label property in turn is written into a

simple string variable called txtModelName. Note that this code is using another

Savvion library called sbm.widgets, which you can find in the same appendix I

showed you earlier in the BPM Studio Users Guide.

The other function clears any previous selection that was made for another model

type, such as Sedan or Crossover, by setting its selectedIndex property to minus 1.

function clearOtherSelections (selectedModel) {

 if (selectedModel !== 'uxCompactModels')

{document.getElementById('uxCompactModels').selectedIndex = -1;}

 if (selectedModel !== 'uxSedanModels')

{document.getElementById('uxSedanModels').selectedIndex = -1;}

 if (selectedModel !== 'uxSUVModels')

{document.getElementById('uxSUVModels').selectedIndex = -1;}

 if (selectedModel !== 'uxTruckModels')

{document.getElementById('uxTruckModels').selectedIndex = -1;}

 if (selectedModel !== 'uxPremiumModels')

{document.getElementById('uxPremiumModels').selectedIndex = -1;}

}

This is in case the customer changed his mind and selected one model type and then

another. You can see that the code uses the standard HTML convention of

document.getElementById to locate each radio set control within the form.

So overall, looking at the event handlers for just these steps has introduced you to

several of the different ways you can define event handlers for Savvion forms,

sometimes just using predefined categories of expression types that are offered to

you, sometimes by writing your own JavaScript code.

Finally, the screenshot below shows the two hidden fields that this form uses. Double-

click on the first one, which is bound to the SelectedVehicleModel dataslot, you see

that this is the one named txtModel, referenced in the code we just looked at:

Using Application Data in Forms John Sadd

July, 2011 Page 17 of 18

The second one, bound to the ModelName dataslot -- which in turn is passed on to a

later step in the process -- is the one named txtModelName.

One final look at a diagram to help you understand the data flow here:

This user form ModelSelection starts with the TruckModels dataslot value, a JSON

object holding a list of all the Fjord trucks, and uses it to set the radio set for the new

form. It then sets the hidden field txtModelName to the label of the selected model,

which in turn is mapped to the dataslot ModelName, which is used in a later step in

the flow.

My goal in this paper has been to show you just enough about the very powerful

ability to pass data values from one step in a process to another, and to define

flexible event handlers for control events, to get you started. As with all of these

videos and papers, you should take what you’ve been introduced to here and follow

up on your own in your investigation of all the kinds of ways you can use data

retrieved from your application to populate and control the steps in your Savvion

process. This can enable you to build an application process model that at runtime is

Using Application Data in Forms John Sadd

July, 2011 Page 18 of 18

closely tied to all the data and logic that’s already built into your OpenEdge ABL

application.

