
May, 2012 Page 1 of 26

OPENEDGE BPM IN OPENEDGE 11

John Sadd

Fellow and OpenEdge Evangelist

Document Version 1.0

May 2012

OpenEdge BPM in OpenEdge 11 John Sadd

May, 2012 Page 2 of 26

DISCLAIMER

Certain portions of this document contain information about Progress Software Corporation’s

plans for future product development and overall business strategies. Such information is
proprietary and confidential to Progress Software Corporation and may be used by you solely in
accordance with the terms and conditions specified in the PSDN Online (http://www.psdn.com)
Terms of Use (http://psdn.progress.com/terms/index.ssp). Progress Software Corporation
reserves the right, in its sole discretion, to modify or abandon without notice any of the plans
described herein pertaining to future development and/or business development strategies.

Any reference to third party software and/or features is intended for illustration purposes only.
Progress Software Corporation does not endorse or sponsor such third parties or software.

This paper accompanies a multi-part presentation on OpenEdge BPM, using OpenEdge

11 and Savvion version 8 together to create process-driven business applications. In

many ways this is a follow-on to the series of videos covering the two products using

OpenEdge 10 and Savvion version 7, so if you haven’t used the products together

before, you can start with a look at those materials. This series focuses on what’s new

when you use the latest versions of the products together.

It is already true in the latest releases of OpenEdge 10 and Savvion 7 that you can

use an OpenEdge database as the repository database for Savvion’s process

information, and I begin by starting a database server for that database. You could

configure OpenEdge Explorer or Management to do this, but there’s a batch file,

startdb.bat, created in the oebpmdb directory as part of the install to start the

database. Principally, it uses a .pf file to specify the startup parameters:

@rem

echo off

@rem

@rem Start the oebpmdev database server

@rem Generated on Wed 02/01/2012 at 15:42:55.99

@rem

setlocal

set PATH=;;;;;;;C:\Program Files\Common Files\Microsoft Shared\Windows

Live;C:\oraclexe\app\oracle\product\10.2.0\server\bin;C:\WINDOWS\system32;C:\WINDOW

S;C:\WINDOWS\System32\Wbem;C:\WINDOWS\system32\WindowsPowerShell\v1.0;C:\Program

Files\NTRU Cryptosystems\NTRU TCG Software Stack\bin\;C:\Program Files\Wave Systems

Corp\Gemalto\Access Client\v5\;C:\Program Files\Common Files\Roxio

Shared\DLLShared\;c:\Program Files\Microsoft SQL Server\100\Tools\Binn\;c:\Program

Files\Microsoft SQL Server\100\DTS\Binn\;C:\PROGRA~1\ABSOLU~1;C:\Program

Files\QuickTime\QTSystem\;C:\Program Files\Common Files\Microsoft Shared\Windows

Live;C:\Progress\OpenEdge11\bin;C:\Progress\OpenEdge11\BIN;

set PROSQL_LOCKWAIT_TIMEOUT=302;

call sql_env

call proserve -pf oebpmdev.pf

So looking at that oebpmdev.pf file, you can see that the database server is started

on port 8910, as well as some other parameters that are needed by the way the

database is used:

http://www.psdn.com/
http://psdn.progress.com/terms/index.ssp

OpenEdge BPM in OpenEdge 11 John Sadd

May, 2012 Page 3 of 26

Server startup parameters file for the oebpmdev database

Generated on Wed 02/01/2012 at 15:42:55.96

-db oebpmdev

-H 127.0.0.1

-S 8910

-n 75

-bibufs 25

-L 32000

-B 5000

-SQLStmtCache 200

I simple double-click on startdb.bat in the file Explorer to start the database itself.

Once it’s started, I can go on and start up the other supporting pieces of the

environment. In OpenEdge Explorer, I have a sample database configuration that my

simple example uses, and an AppServer where ABL business logic runs. I want to

focus just on the mechanics of how the new features of the environment work, so my

example is a very simple one that uses the familiar sports2000 database, so I start

a server for the database:

Then I start an AppServer configured to work with the SBM environment. This new

AppServer configuration, called sbmbroker1, is defined for you as part of the

OpenEdge 11 installation. There’s no particular reason why you would have to use

this one, but it’s one of several built in server configurations that come with the

OpenEdge product. You can see that it’s configured to use the state-free operating

mode, so that each request is independent of every other request:

OpenEdge BPM in OpenEdge 11 John Sadd

May, 2012 Page 4 of 26

Then in the Agent tab, I’ve added startup parameters to connect to the sports2000

database server I just started. In addition, I’ve added a directory to the end of the

propath named CreditCheckDeploy. I’m going to define an AppServer for my

development workspace, and this is the name of the directory that it will deploy

AppServer code to:

Now I can start the AppServer, and I’m ready to move on:

Next, from the Progress SBM8.0 sub-menu in the Windows Start menu, I can select

the First Steps Console to bring up a useful set of operations to select from. If you

OpenEdge BPM in OpenEdge 11 John Sadd

May, 2012 Page 5 of 26

are starting up your environment for the first time after installing Savvion, you need

to click the Prepare Repository link and let it configure the repository database:

Otherwise, I select the Start JBOSS Servers link to start the servers that support

the SBM runtime environment.

This can take several minutes, and you need to wait until you see the message in

each of the two command windows that the ejb server and the portal server have

both started. You’ll see a message similar to the one at the bottom of the display in

the two command windows shown here:

Once that’s done, you can go back to the First Steps Console and select the link

labeled Launch Business Manager Portal. This starts the Savvion runtime

environment where you can start and monitor instances of the business processes

you’ve defined. During the product installation process you have an opportunity to set

the username and password that will be used for administration access to the SBM

Portal. By default it’s ebms and ebms. As you can see below, I haven’t deployed any

processes yet, so there’s nothing much to look at in the Portal:

OpenEdge BPM in OpenEdge 11 John Sadd

May, 2012 Page 6 of 26

Next I move on to Progress Developer Studio. This is a combined development

environment that’s now supported in OpenEdge 11 and Savvion 8. To review the

steps you go through to combine both versions of Developer Studio in one Eclipse-

based environment, you should consult the Web paper distributed with the product

titled OpenEdge Business Process Management Installation and Overview. In

particular, during the Savvion install, select the checkbox labeled Configure Savvion

with OE, as shown below. This lets you use the same development tool for ABL code

and other work related to the OpenEdge side of the application, as well as building

and deploying Savvion process models.

So after starting the combined Developer Studio, I’m going to create a new project:

OpenEdge BPM in OpenEdge 11 John Sadd

May, 2012 Page 7 of 26

I call it an OpenEdge Project, though as you’ll see, I’ll be adding Savvion

capabilities to it shortly:

It’s going to be the world’s simplest credit check application, and this will be a project

that deploys to the AppServer. That is, it won’t have its own OpenEdge user interface,

and the ABL procedures I develop will be business logic run on the AppServer, in this

case from the Savvion process:

OpenEdge BPM in OpenEdge 11 John Sadd

May, 2012 Page 8 of 26

Moving on, you can see that the new project wizard has selected the checkbox labeled

Use TTY for runtime. This is because I indicated that this is an AppServer project

with no UI of its own:

On the next wizard page, I can name the directory that will be used as the source

folder for all code that is destined to run on the AppServer. Code that I locate under

this directory will be published to the deployment folder I later name, which will be

the CreditCheckDeploy directory I showed you in the AppServer’s Propath when I

was starting the AppServer in Explorer. I’ll just keep the name AppServer as the

source folder name. I haven’t defined an AppServer in Developer Studio yet, so

nothing is displayed in that part of the page. I’ll get to that a little later.

I had already defined a database connection in Developer Studio for sports2000, so I

just select that to add to the project, and I’m done:

OpenEdge BPM in OpenEdge 11 John Sadd

May, 2012 Page 9 of 26

Because I defined an OpenEdge AppServer project, the tool invites me to open the

OpenEdge Server perspective for my development, and I just answer Yes:

Next I need to set up an ABL procedure to be called from Savvion and define the

OpenEdge AppServer connection in Developer Studio. The simple credit check process

needs just a single procedure for the Savvion process to call in the OpenEdge

AppServer, so I’m going to import that into the project. Remember that Developer

Studio will publish the contents of my AppServer directory to the

CreditCheckDeploy target directory, so I start in the AppServer folder:

OpenEdge BPM in OpenEdge 11 John Sadd

May, 2012 Page 10 of 26

I select Import, and Import again, and then indicate that I’m importing something

from the File System:

I select the folder where the ABL procedure is stored away, and select the procedure,

GetCreditCheck.p:

I click Finish, and now I can see the procedure in the AppServer folder. The procedure

takes a sports2000 customer name as input:

OpenEdge BPM in OpenEdge 11 John Sadd

May, 2012 Page 11 of 26

The procedure looks up the Customer name in the database, and returns the credit

limit and customer balance values. The procedure has been used in a larger example

where higher amounts were called for, so the code multiplies the values by a

hundred:

/*--

 File : GetCreditLimit.p

 Description : Returns the Balance and Credit Limit for a named customer,

 multiplying both by 100 for use with the LoanApp process.

 --*/

/* *************************** Main Block *************************** */

/* GetCreditLimit.p */

define input parameter pcCustName as character no-undo.

define output parameter pdCreditLimit as decimal no-undo.

define output parameter pdBalance as decimal no-undo.

find Sports2000.Customer where Customer.Name = pcCustName no-lock no-error.

if available(Customer) then

 assign pdCreditLimit = Customer.CreditLimit * 100

 pdBalance = Customer.Balance * 100.

else assign pdCreditLimit = ?

 pdBalance = ?.

In order to be able to run this procedure from the Savvion process, I need to

generate an annotation that goes at the top of the sourse code to define a service

interface. So I right-click the procedure, and under Progress OpenEdge, select

Define Service Interface:

The path to the procedure I want to generate the interface for is selected for me. I

confirm this and click Next to preview the text of the annotation:

OpenEdge BPM in OpenEdge 11 John Sadd

May, 2012 Page 12 of 26

I don’t need to change anything in the annotation, but I can take a look at it just to

point out what some of the components of the annotation are:

The type is BPM. In my environment, with OpenEdge and Savvion installed, that’s the

only option for the type.

The end result of what I’m doing is that Developer Studio is going to generate a

special file containing a description of the parameters of this procedure, which will act

as an intermediary between the Savvion environment and the OpenEdge AppServer

which will actually execute the ABL procedure. The new file extension for that type of

file is bizoe, since it connects a BizLogic process to OpenEdge. Think of this file as

being much like the WSDL file you would need in order to invoke the ABL procedure

as a Web service, as you would have done in OpenEdge 10. By default the .bizoe file

will have the same base name as the procedure file, with a different filename

extension. That’s what %FILENAME% indicates, so I leave that alone.

Next, this is an external procedure, that is, a stand-alone ABL procedure that I want

to run, not an internal procedure inside a persistent procedure instance, so I leave

that as well.

Finally, there are a couple of special case checkboxes if the ABL RETURN-VALUE is

significant, or if there will be an updated ProDataSet passed back. I don’t need those

either, so I’m done. If I look at the top of the procedure file itself, I can see the

generated annotation in the source code:

OpenEdge BPM in OpenEdge 11 John Sadd

May, 2012 Page 13 of 26

@openapi.openedge.export FILE(type="BPM", operationName="%FILENAME%",

useReturnValue="false", writeDataSetBeforeImage="false", executionMode="external").

When I save the procedure, it is compiled with the annotation information in the .r

file. Note that you can specify which types of filename extensions you want to see in

the Project Explorer. If you drop down the Project Explorer View menu, and select

Customize View, you see a list of all the possible filters that can be applied to

filenames. Because I have .r checked, they're filtered out and I don’t see .r files in the

Project Explorer. You could uncheck this if you wanted to see .r files. I leave it

checked, since the .r file isn’t one I would normally want to select in the Explorer:

The next step is therefore to generate the bizoe file itself. I right-click on the

procedure, and once again, under Progress OpenEdge, I select Generate BPM

Invocation Files.

With the bizoe file generated, the next thing I have to do is to define a connection

from Developer Studio to the AppServer that will run the GetCreditCheck procedure. I

right-click in the Servers view, and select New Server. What I’m defining here is

actually not a new server, but a new connection from Developer Studio to that server,

so keep that in mind:

It’s an Open Edge AppServer, and I adjust the string that serves as an identifier for it.

I put sbmbroker into the name, so that it’s clear which AppServer is used for the

connection. Next I need to identify the instance of OpenEdge Explorer that the

OpenEdge BPM in OpenEdge 11 John Sadd

May, 2012 Page 14 of 26

actual server is defined on. There is only got one instance running, but I select

Configure just so you can see what things are available to be defined:

In the Configuration, I select the one instance, Explorer 1, and then Edit:

Port number 9090 is the default for OpenEdge Explorer. Then I need to make sure

that the administrator username and password are valid. The connection wizard

assumes admin and admin by default, so I select the password field, and replace

that with my own admin password. That’s the only thing that would be different from

the defaults for my environment. Finally, I click Test Connection to make sure that

Studio can talk to Explorer:

OpenEdge BPM in OpenEdge 11 John Sadd

May, 2012 Page 15 of 26

That succeeds, so I’m finished with the Explorer connection definition. Having

established that connection, the New Server wizard populates the Broker list with a

list of the AppServer brokers defined in my instance of Explorer. The one I want to

use is sbmbroker1:

Next I need to define the publish directory. This means, when I change ABL code in

the local AppServer sub-directory, which I designated as being the source for code

destined for the AppServer, where should Developer Studio copy that code to be

found for testing? The answer is the directory that I added to the Propath for the

sbmbroker1 AppServer, called CreditCheckDeploy. Note that you can configure

whether you want both source code and r-code published or not. I leave both those

options checked, and continue on:

OpenEdge BPM in OpenEdge 11 John Sadd

May, 2012 Page 16 of 26

Next I select the sample project to Add to the configured projects in Developer

Studio, so that code is automatically published as I do development work:

In the Servers view, the broker is shown as stopped, so to synchronize this

connection definition with the AppServer I started in Explorer, I right-click on it, and

select Start. If I expand the broker now, I can see that the CreditCheck server

connection is started and synchronized:

What does it mean that it’s synchronized? Here’s the AppServer directory under the

CreditCheck project:

OpenEdge BPM in OpenEdge 11 John Sadd

May, 2012 Page 17 of 26

This is the source directory for the AppServer code. You can see the GetCreditLimit

procedure that was imported into the directory, compiled, and the bizoe file that was

generated for it to define how it can be run from Savvion.

If I switch to the CreditCheckDeploy directory, which is the target directory for the

project, you can see that the source procedure and the compiled r-code have been

copied there. This is the effect of configuring this project in Developer Studio and

having it synchronize the code. This directory is in the Propath for the AppServer

agent, so it will be found when I do a test that runs the procedure from the Savvion

process. Note that the bizoe file is not deployed, because it is used on the client, in

this case by the Savvion process, to understand how to run the procedure on the

AppServer:

This finishes the configuration work for the project. In the next section of this paper I

define the Savvion project and define a call out to the GetCreditLimit procedure using

the new Savvion OpenEdge Adapter.

Next I have to turn this OpenEdge project into one that can support a Savvion

process design as well. This is the key capability that is enabled by creating a

combined Developer Studio environment during the product installation.

I right-click on the project, and in the Project Properties, I select Project Facet,

and check on the Process facet, which adds the capability to define Savvion

processes to the project:

OpenEdge BPM in OpenEdge 11 John Sadd

May, 2012 Page 18 of 26

Checking on the Process facet also selects the Java facet, which Savvion requires.

When I apply this change, Developer Studio opens a new diagram for a Savvion

process, represented as a Savvion process template file with the extension spt:

I create one user by dragging New User onto the diagram. When I’m prompted, I

name the user Finance. This creates an Activity for the Finance user:

I then create a second Activity step for the Finance user.These two steps will execute

just before and just after the process calls the ABL procedure on the AppServer. I also

need a Start step and an End step to make the diagram complete.

OpenEdge BPM in OpenEdge 11 John Sadd

May, 2012 Page 19 of 26

Next the process needs three dataslots, which will map to the three parameters to the

procedure GetCreditLimit.p. The first I call CustomerName, and it shows part of

what is new with the new OpenEdge Adapter support in Savvion 8. In addition to the

native Savvion datatypes, there are now dataslot datatypes specific to calling out to

OpenEdge. They’re listed under the header ABL Types. I can select Character for

this one:

Most of the ABL types map to Savvion types, and in many cases can be used

interchangeably, but you should use ABL types for dataslots that will map to ABL

procedure parameters to assure type compatibility, and to allow the use of the Null

value passed to or from ABL, which the Savvion types don’t support.

To continue, I create a second dataslot with an ABL Datatype. This one is for the

CreditLimit output parameter. Looking through the ABL types, I select Decimal:

OpenEdge BPM in OpenEdge 11 John Sadd

May, 2012 Page 20 of 26

I need one more dataslot for the CustomerBalance output parameter. and that is

Decimal as well. After I create that, I return to the diagram. I want to give more

meaningful names to the two Activity steps, so I call the first one BeforeCheck:

I rename the form for the step as well. Now I need to go into the form and add a

dataslot to the form. Under the new User dataslots I select the CustomerName. This

step will run before I run GetCreditCheck, so I need to be able to enter a customer

name that I can then pass into GetCreditCheck.p:

OpenEdge BPM in OpenEdge 11 John Sadd

May, 2012 Page 21 of 26

I need to do the same for the other Activity. This will be the AfterCheck step. In its

form I want to add all three of the ABL dataslots. The Customer Name won’t change

from the Before step, but I let the form display it just to confirm that it has been

entered properly. The CreditLimit and the CustomerBalance will be returned from

the procedure, so I need to display those to make sure the call worked properly.

Now I need to create an instance of the new OpenEdge Adapter that Savvion 8

supports. The easiest way to do that is just to drag the bizoe file from the Project

Explorer onto the process diagram. As soon as I do that, the OpenEdge Adapter

Configurator opens:

The great thing about this is that all the information needed for the call is embedded

in the bizoe file that was generated from the procedure. You can see the host name,

port, and the AppServer name displayed. Putting these together gives Savvion the

URL it needs to use to call out to the AppServer.

The session model is properly displayed as Session-Free. The procedure name that

it will call is displayed, as are the three parameters to the procedure. Thus, unless I

want to change the default configuration that was specified when Developer Studio

generated the service interface annotation and the bizoe file, I don’t need to change

anything here. All the work is done for me.

When I OK the configurator, I’m dropped into the dataslot mapping. The one input

parameter name is displayed, pcCustName, and from the Source dropdown on the

OpenEdge BPM in OpenEdge 11 John Sadd

May, 2012 Page 22 of 26

left, I can select the CustomerName dataslot, which was defined as type ABL

Character, to map to the input parameter:

For the output parameters, I map pdCreditLimit to the CreditLimit dataslot, which

is of type ABL Decimal, and for pdBalance, I select the CustomerBalance Decimal

dataslot. Now all the input and output parameters are mapped to the call, so the call

is integrated right into the rest of the Savvion process steps:

Back in the process diagram, the new step created by dragging the bizoe file onto the

diagram has been transformed into an OpenEdge Adapter activity in the diagram.

All I have to do to finish up is to connect all the steps together. The Start step, which

just displays the instance name when the process is run, to the BeforeCheck step,

where I can enter a Customer Name; the BeforeCheck step to the Adapter step,

which will take the CustomerName as input and return the two decimal values; the

Adapter output to the AfterCheck step, which displays the dataslots that are

mapped to the output parameters; and the AfterCheck step to the End step:

OpenEdge BPM in OpenEdge 11 John Sadd

May, 2012 Page 23 of 26

Selecting Check diagram from the diagram’s context menu confirms that the

diagram is valid at least, so I save the process. Next I need to tell the SBM server

about the process, so I right-click on that server in the Servers View and select Add

and Remove:

I select the CreditCheckProj process and add it to the resources for the SBM server:

When I click Finish, Developer Studio synchronizes the SBM server, which means

that the process is automatically deployed to the server.

OpenEdge BPM in OpenEdge 11 John Sadd

May, 2012 Page 24 of 26

Let’s take a look in the SBM Portal to see if it’s there. The

CreditCheckProj_process is installed on the server:

If I select the link for the process, I start up an instance of the new process. The Start

step displays a default form with the Instance Name and an Instruction field. I can

add a distinctive number to the end of the Instance Name, and Create the new

instance:

Remember that the activities in the process are assigned to the Finance user, so I

have to log out and log back in to the SBM Portal as Finance, to see the first task

assigned to Finance, the BeforeCheck step:

OpenEdge BPM in OpenEdge 11 John Sadd

May, 2012 Page 25 of 26

I can enter a valid customer name from the sports2000 database, and complete the

step:

Now what should happen next? The BeforeCheck step should proceed to the

OpenEdge Adapter step, which uses the customer name dataslot to populate the

input parameter to GetCreditCheck.p. The procedure is run and returns the two

decimal values, which are then transferred to the ABL Decimal dataslots. Finally

AfterCheck should run to display them:

The Finance user now has an AfterCheck task to run, so I select that:

OpenEdge BPM in OpenEdge 11 John Sadd

May, 2012 Page 26 of 26

This form displays the data values returned from OpenEdge for Lift Tours. (Remember

that they’ve been multiplied by 100.) I complete the step and my process is done:

That completes this exercise in combining the OpenEdge and Savvion Developer

Studio environments, and defining a Savvion process that uses the new Savvion

OpenEdge Adapter to make a call out to an ABL procedure, making the definition of

the call as simple as it could be.

