
May, 2012 Page 1 of 15

USING THE OEBPM API

John Sadd

Fellow and OpenEdge Evangelist

Document Version 1.0

May 2012

Using the OEBPM API John Sadd

May, 2012 Page 2 of 15

DISCLAIMER

Certain portions of this document contain information about Progress Software Corporation’s

plans for future product development and overall business strategies. Such information is
proprietary and confidential to Progress Software Corporation and may be used by you solely in
accordance with the terms and conditions specified in the PSDN Online (http://www.psdn.com)
Terms of Use (http://psdn.progress.com/terms/index.ssp). Progress Software Corporation
reserves the right, in its sole discretion, to modify or abandon without notice any of the plans
described herein pertaining to future development and/or business development strategies.

Any reference to third party software and/or features is intended for illustration purposes only.
Progress Software Corporation does not endorse or sponsor such third parties or software.

This paper accompanies the final two parts in a series of presentations on Getting

Started with OpenEdge BPM using Progress OpenEdge release 11 and

Savvion version 8. There’s a new Application Programming Interface in OpenEdge

11 that lets you use methods in a set of built-in ABL classes to make calls to Savvion

from an OpenEdge application, to create process instances, retrieve and set DataSlot

values, and other operations. This paper introduces you to that API.

You’ve seen the AutoEdge The Factory application, which is the AutoEdge module for

showing OpenEdge BPM. In that application, a customer walks through a series of

web forms to request a new car, and a Savvion process is created to support the

delivery of the car. All the forms are defined in Savvion. The customer web forms can

be run in the SBM Portal or run over the Internet:

The support forms used by the finance, car sales, and support staff can also be run in

the Savvion BPM Portal. However, you may want to create a user interface

independent of Savvion, integrated into your OpenEdge application, and control a

Savvion process from there. That’s what the new API allows you to do. Below is a

window built using the OpenEdge support for GUI for .NET. Peter Judge, of the

OpenEdge Best Practices group, who created the Auto Edge The Factory module, has

expanded the sample GUI for .NET screen in that application into a very nice

application that runs the entire process from an ABL GUI for .NET user interface. Let’s

take a look at how that works. First I log in.

http://www.psdn.com/
http://psdn.progress.com/terms/index.ssp

Using the OEBPM API John Sadd

May, 2012 Page 3 of 15

Every car brand has its own support staff, so I choose one of the recognized brands,

Fjord.

Then I enter the user name. I start out logged in as a member of the Finance

department, because the first task assigned by the Savvion process will be assigned

to Finance. I enter a password for the user, and I log in:

Because I logged in as a finance person, Orders for Credit Check is highlighted,

since that’s the Savvion process task assigned to finance people. This is where Paul

Cox can look to see what credit check tasks have been assigned to him. But there are

Using the OEBPM API John Sadd

May, 2012 Page 4 of 15

no active orders at the moment, so someone has to create one. I let Paul do that next

by clicking on the New Order button.

Before I do that, I want to show some selected bits of the code that lies behind this

application module to show how it’s using the API to communicate with Savvion. The

ABL procedure that starts the GUI for .NET user interface is called

start_desktop_ui.p. Even this one example has a substantial amount of support

code, so I’m not going to make any attempt to show all of what it’s doing. I just point

out some examples of API calls that talk to Savvion. The startup procedure creates an

instance of the DealerReview class, and runs its Initialize method, passing in

localhost as a parameter:

oDealerReview = new DealerReview().

oDealerReview:Initialize('localhost').

The name DealerReview is really a holdover from the original sample application,

where that’s the one business function that’s implemented in ABL. Here, as you’ll see,

all the work is done from the ABL app for users in different departments.

DealerReview.cls and the other user interface components are good examples of

object-oriented programming in ABL. First you see the new classes that support the

interface to Savvion, Progress.BPM.UserSession, Process, Task, and DataSlot:

using Progress.BPM.UserSession.

using Progress.BPM.Process.

using Progress.BPM.Task.

using Progress.BPM.DataSlot.

You can learn about the specifics in the Reference documentation and the online Help.

For example, if you look for BPM.UserSession, you can see information on the

UserSession class, which allows you to connect to a BPM server:

And you can look at the specific methods within a class, like StartProcess, which

starts an instance of a process template.

Using the OEBPM API John Sadd

May, 2012 Page 5 of 15

Consult the documentation and online Help for all the details on what I show in

overview form in this paper.

Let’s look at that Initialize method that the start procedure runs. I just highlight

individual lines of code as I go here. Initialize creates an AppServer and connects to

it:

create server AppServer.

AppServer:connect(substitute('-AppService asAutoEdgeTheFactory -H &1 -sessionModel

 session-free', pcServerHost)).

On the one hand, this client OpenEdge application is going to run business logic on

the AppServer. The same service procedures that you’ve seen before being run as

Web services or as OpenEdge Adapter steps from Savvion, can now be run from the

ABL client application itself. Then the code creates a new UserSession object, just as

you saw documented in the Help topic we just looked at:

this-object:UserSession = new UserSession(substitute('-URL SBMServerDC://&1:18793',

 pcServerHost)).

The special URL SBMServerDC, which stands for Direct Connect, connects to the

server on the designated port. So the ABL client application is able to call out to

OpenEdge using an AppServer connection on the one hand, and to Savvion using a

UserSession object on the other.

Now let’s look at the LoginUser method. It first runs an ABL serveice called

service_employeelogin.p, which validates the user credentials against a database

and creates a Client-Principal object for the user:

run service_employeelogin.p on AppServer (

 input pcBrand,

 input pcUserName,

 input pcDepartment,

 input pcPassword,

 output UserContextId,

 output DealerCode,

 output DealerName,

 output SalesrepCode).

Using the OEBPM API John Sadd

May, 2012 Page 6 of 15

Then the method sets the BpmUserName property of the DealerReview object to the

department username passed in.

 case pcDepartment:

 when 'sales' or

 when 'support' or

 when 'manager' or

 when 'finance' then this-object:BpmUserName = lc(pcDepartment).

 when '_system' then this-object:BpmUserName = pcUserName.

 otherwise this-object:BpmUserName = ''.

 end case.

Then it connects to Savvion through the UserSession object with that username and

password. Now the method has a connection to Savvion just as if a user had logged

into the BPM Portal.

if this-object:BpmUserName ne '' then

 this-object:UserSession:Connect(this-object:BpmUserName, pcPassword).

That’s a summary of the code that got executed when I logged in as a Finance user.

Now in order for that user to have any tasks to complete, someone has to create an

order. This operation is really independent of which department and user is logged in,

but the user interface requires a login before the New Order button is enabled, so I

start there. Here you can see that the web forms user interface that was originally

defined as a Savvion bizsolo sequence has been redefined using a .NET GUI as part of

the ABL application UI, all contained within this one window:

As always, I like Fjords. Next I choose a vehicle model, just as the customer would in

the bizsolo interface:

Using the OEBPM API John Sadd

May, 2012 Page 7 of 15

I can also choose some options. Next, the presumption is that someone associated

with the business is taking the order; that’s why this is executing as a desktop

application UI. So I choose a user from the list of known customers:

Now the order definition is complete. The ABL application has created a Savvion order

process. Let’s take a look at how that was done.

The code for pretty much the entire set of forms for placing an order is in

SubmitOrderForm.cls. The Activate_OrderComplete method handles the final

Using the OEBPM API John Sadd

May, 2012 Page 8 of 15

step of getting the process started after all the data has been entered. The important

thing this method does is to run another ABL service to start a vehicle order process.

run service_startorderprocess.p on hAppServer (

 this-object:VehicleBrand,

 cSelectedVehicleModel, /*mcVehicleModel,*/

 mcModelName,

 eCustomer.CreditLimit,

 cCustomerEmail,

 string(eCustomer.Number),

 eCustomer.Name,

 this-object:DealerCode,

 uxPaintColour:Value:ToString(),

 uxMoonroof:Value:ToString(),

 uxWheels:Value:ToString(),

 cSelectedInteriorAccessories,

 uxTrimMaterial:Value:ToString(),

 uxTrimColour:Value:ToString(),

 output cError).

This might seem a little indirect, because the ABL procedure is going to turn around

and send a call back to Savvion to start the process, but if some of the data being

passed in these parameters is also updating an OpenEdge database, then this could

be an appropriate way to get things started.

Let’s take a look at that procedure. It’s in the AppServer folder, of course.

You can see the reference to Progress.BPM.UserSession at the top:

using Progress.BPM.UserSession.

This sample procedure just uses a hardcoded username and password to simplify the

example, so the process is started on behalf of the manager user, not the user who

happened to be logged into the GUI application. The name of the Savvion process is

VehicleOrderProcess. You’ve seen this before. This is the same Savvion process

that runs with Savvion forms in the BPM portal. The code creates another UserSession

object. Remember that the first new UserSession we saw is for the session the

finance person, Paul Cox, is logged into, and which he will use to take care of his

Credit Check tasks. This is a separate session used to start the Savvion process that

generates those tasks. Then the code connects to the Savvion session using manager

and the manager’s password:

cBPMProcessName = 'VehicleOrderProcess'.

cBPMPassword = 'letmein'.

cBPMUserName = 'manager'.

oUserSession = new UserSession('-URL SBMServerDC://localhost:18793').

oUserSession:Connect(cBPMUserName, cBPMPassword).

Next the code uses the GetDataSlotTemplates method in the API to get back an

object that holds a list of all the DataSlots for that process. Think of this as being

rather like an OpenEdge buffer, one set of values with their own individual names and

datatypes:

Using the OEBPM API John Sadd

May, 2012 Page 9 of 15

oDataSlotTemplate = oUserSession:GetDataSlotTemplates(cBPMProcessName).

The iLoop block loops through the list, and assigns each Dataslot the right initial value

from all the parameters passed in, which of course represent the data that was filled

in on behalf of the customer ordering the vehicle.

do iLoop = 1 to iMax:

 case oDataSlotTemplate[iLoop]:name:

 when 'CustomerCreditLimit' then oDataSlotTemplate[iLoop]:Value =

 pcCustomerCreditLimit.

 when 'CustomerEmail' then oDataSlotTemplate[iLoop]:Value =

 pcCustomerEmail.

 when 'CustomerId' then oDataSlotTemplate[iLoop]:Value = pcCustomerId.

 when 'CustomerName' then oDataSlotTemplate[iLoop]:Value = pcCustomerName.

 when 'DealerCode' then oDataSlotTemplate[iLoop]:Value = pcDealerCode.

 when 'ModelName' then oDataSlotTemplate[iLoop]:Value = pcModelName.

 …

 when 'VehicleBrand' then oDataSlotTemplate[iLoop]:Value = pcVehicleBrand.

 when 'VehicleModel' then oDataSlotTemplate[iLoop]:Value = pcVehicleModel.

 /* only pass values we know about. */

 otherwise

 oDataSlotTemplate[iLoop] = ?.

 end case.

end.

Finally, the procedure uses the StartProcess method to create an instance of the

Savvion vehicle order process, passing in the DataslotTemplate object to initialize all

the Dataslot values.

oUserSession:StartProcess(cBPMProcessName, oDataSlotTemplate).

This gets us through the starting of the vehicle order process.

Let me bring up the BPM Portal for a moment to show you the result of what just

happened. I’m logged in as manager. You can see that there’s now an instance of the

VehicleOrderProcess started by the manager, its instance number is 3424, the next

assigned task is Credit Check, and it’s assigned to a member of the Finance group:

I log back into the Portal as Finance, and here I see the Credit Check task assigned to

the finance user.

Using the OEBPM API John Sadd

May, 2012 Page 10 of 15

Back in the GUI application, in order to see the first task associated with that process,

Paul Cox clicks the Refresh Tasks button:

Let me show what happens when he presses that button.

A method named RefreshTasksList gets run in DealerReview. Below you can see

that the method runs first GetAssignedTasks in the UserSession, and then

GetAvailableTasks. GetAssignedTasks will return an object containing a set of all

the tasks that have been assigned to this individual user, and the second call will

return a set of tasks that have been allocated to a group the user belongs to, so they

are available to be handled by that user.

method protected void RefreshTasksList(input pcActivity as character):

 session:set-wait-state('general').

 /* Empty all the existing orders */

 ClearUI(pcActivity).

 PopulateTaskList(this-object:UserSession:GetAssignedTasks(), pcActivity).

 PopulateTaskList(this-object:UserSession:GetAvailableTasks(), pcActivity).

 finally:

 session:set-wait-state('').

 end finally.

 end method.

Using the OEBPM API John Sadd

May, 2012 Page 11 of 15

Together, these lists are received by PopulateTaskList, and for all

VehicleOrderProcess tasks – just in case there might be tasks for some other process

that would be handled by another user interface – the code uses the API’s

GetDataSlots method to retrieve a list of the process instance Dataslot values, and

walks through those getting specific values out such as the DealerCode and

OrderNum. Note that there’s no way to directly access a single Dataslot value by

name. Currently, you have to walk through the set of values in a Dataslot object to

find the ones you’re looking for:

if poTaskList[iTaskLoop]:name matches 'VehicleOrderProcess*::' + pcActivityName

then

 do:

 oDataSlot = poTaskList[iTaskLoop]:GetDataSlots().

 iDataSlotMax = extent(oDataSlot).

 lAddItem = false.

 do iDataSlotLoop = 1 to iDataSlotMax:

 case oDataSlot[iDataSlotLoop]:Name:

 /* only get tasks for this dealer */

 when 'DealerCode' then

 lAddItem = (oDataSlot[iDataSlotLoop]:Value eq

 this-object:DealerCode).

 when 'OrderNum' then

 assign cOrderNum = string(oDataSlot[iDataSlotLoop]:Value)

 lAddItem = not (cOrderNum eq ? or cOrderNum eq '')

 when not lAddItem. /* all add conditions must be true */

 end case.

 end.

That’s what happened when Paul clicked Refresh Tasks, so back in the client

application, he sees the Credit Check task for instance number 3424, which we saw in

the Portal just a moment ago.

When Paul selects task 3424, he can see the relevant Order and Customer values for

the task. Paul can make changes if needed, and then approve the credit check or not.

He’ll approve this one.

Using the OEBPM API John Sadd

May, 2012 Page 12 of 15

Now let’s go back into the code again, and look at the CustomerCreditCheck class.

The Initialize method runs a service on the AppServer to retrieve order information

from the OpenEdge database. Remember that the client user interface has to

communicate and coordinate both with OpenEdge via the AppServer calls, and with

Savvion.

run service_orderbynumber.p on hAppServer

 (input pcBrand,

 input iOrderNum,

 output dataset dsOrder).

Then it runs another service to get customer information, and assigns the values that

come back to the UI.

run service_getcustomer.p on hAppServer

 (input pcBrand,

 input iCustNum,

 output dataset dsCustomer).

When Paul clicks the Approve button, the method that handles that event runs the

UpdateCreditApproval method, and that first runs another service to update the

approval status in the database:

run service_updatecreditapproval.p on AppServer (

 input uxVehicleBrand:Text,

 input integer(uxOrderNumber:Text),

 input plApproved).

Then, after retrieving Dataslot values for the current task from Savvion…

 oDataSlot = this-object:CurrentTask:GetDataSlots().

…the method updates the CreditApproval Dataslot value:

Using the OEBPM API John Sadd

May, 2012 Page 13 of 15

 do iLoop = 1 to iMax:

 case oDataSlot[iLoop]:Name:

 when 'CreditApproval' then

 do:

 oDataSlot[iLoop]:Value = plApproved.

 leave.

 end.

 end case.

 end.

Remember that the user sees a list of both tasks assigned to him specifically, and

tasks assigned to his group which are available to him. If the current task was one

available to the group, which the task Status value shows, then the code assigns it to

Paul:

if this-object:CurrentTask:Status eq 'I_AVAILABLE' then

 this-object:CurrentTask:Assign(this-object:BpmUser).

Finally, it tells Savvion to mark the task as complete, just as you would do in the

Savvion forms by clicking the Complete button at the bottom of the form:

 this-object:CurrentTask:Complete().

That’s what happens in the background when Paul reviews and approves Amy’s order.

When he approves the order, it disappears from his task list, and he can wait for

more orders to come in. Instead, I have Paul log out so that I can show you the rest

of the steps in completing the order process.

First a quick look at what happens when he logs out. In the DealerReview class, I look

at the DealerLogout method. (Once again, some of the method names here are

dealer specific because that’s what the original version of the GUI application handles.

Now the method applies to all users.) After running a procedure on the AppServer to

register there that the user is logging out, the code runs the Disconnect method in

the UserSession object. The parameter value of true tells Savvion to log out of the

process instance, just as I could do in the Portal.

run service_userlogout.p on AppServer (input UserContextId).

 if this-object:UserSession:Connected then

 this-object:UserSession:Disconnect(true).

That’s as much as I’m going to show you in the code. So that you can see how the

rest of the application works, the remainder of the paper walks through the remaining

screens and tasks. Just as I have logged in and out of the same BPM Portal instance

in other videos to show what different users would see, I use this one instance of the

user interface for all the types of users who would be running this application on their

desktops and keeping track of their own assigned tasks. As always, the brand is

Fjord. I log in as a sales user this time. Here the application knows to gather assigned

and available task instances for the Dealer Review task, and you can see that after

Paul Cox completed the Credit Check task for Amy’s pickup truck, the next task in the

process instance number 3424 has been assigned to Sales:

Using the OEBPM API John Sadd

May, 2012 Page 14 of 15

The Sales person sees the order information, checks whether the Vehicle is in stock or

not, and approves the order for delivery:

Now there’s just one more step in the process. This time Alice does the job of the

Support organization, and prepares the truck for delivery:

Everything’s complete on prepping the vehicle, so the process instance is completed:

Using the OEBPM API John Sadd

May, 2012 Page 15 of 15

Alice can log out or wait for more tasks to come her way.

This is a very nice example of how you can build an ABL user interface of any kind,

using the OpenEdge support for GUI for .NET, or WebSpeed, or an RIA user interface,

or a native ABL user interface, to manage part or all of a Savvion process from within

your ABL application. Once again, consult the documentation for the full details on

using the new BPM Application Programming Interface in OpenEdge 11.

