
August, 2011 Page 1 of 16

CALLING AN OPENEDGE WEB SERVICE

John Sadd

Fellow and OpenEdge Evangelist

Document Version 1.0

August 2011

Calling an OpenEdge Web Service John Sadd

August, 2011 Page 2 of 16

DISCLAIMER

Certain portions of this document contain information about Progress Software Corporation’s

plans for future product development and overall business strategies. Such information is
proprietary and confidential to Progress Software Corporation and may be used by you solely in
accordance with the terms and conditions specified in the PSDN Online (http://www.psdn.com)
Terms of Use (http://psdn.progress.com/terms/index.ssp). Progress Software Corporation
reserves the right, in its sole discretion, to modify or abandon without notice any of the plans
described herein pertaining to future development and/or business development strategies.

Any reference to third party software and/or features is intended for illustration purposes only.
Progress Software Corporation does not endorse or sponsor such third parties or software.

In an earlier video and paper in this OEBPM series, Using Application Data in

Forms, I walked through how data gets passed between forms and Web service calls

in a Progress Savvion presentation flow, but I postponed actually talking about how to

set up the Web service call itself. It that presentation, I was focusing on how to map

Dataslot values and form field values to and from parameters to other calls. In this

session I’ll get into the details of how to construct the Web service call itself out to

OpenEdge. If you haven’t watched that other video, or read the paper, you should do

that before continuing with this one.

Starting in the main AutoEdge | The Factory process, CustomerOrderVehicle, if I

look at its Start step, I can see once again that it’s a Flow, a separate data entry sub-

process, and open it:

GetBrandDetails is the first workstep in the Flow that’s an instance of a Web service

adapter. Looking at its properties, and configuration information, I can see the input

parameters that we looked at in that earlier presentation.

http://www.psdn.com/
http://psdn.progress.com/terms/index.ssp

Calling an OpenEdge Web Service John Sadd

August, 2011 Page 3 of 16

Clicking OK, I’m placed into the parameter mapping, for input parameters going into

the call:

Selecting the Outputs tab shows the output parameters coming back that are

mapped back to Savvion Dataslot values:

Here is what those parameters look like on the OpenEdge side, in the procedure

service_branddata.p:

Calling an OpenEdge Web Service John Sadd

August, 2011 Page 4 of 16

This is what has been set up in the AutoEdge | The Factory sample application flow.

Now I want to go through how to recreate a piece of this call, so you can see how to

do it yourself. Given an ABL procedure that you want to call out to, the first step is to

go into ProxyGen to create a Web service proxy for the procedure.

I’ll recreate a subset of the Web service call we just looked at, and call it

AETFWebServices. The way the sample application is put together, all the Web

service calls, which represent a number of different ABL procedures, are enclosed in a

single proxy, which is one good way to organize them. First I just recreate the

Propath components the Web service call requires:

The first is the bin directory under the AutoEdge The Factory Server folder. The

second, in the OEWorkspace Architect workspace I’ve set up, is the folder Common

Infrastructure Server, and its bin directory.

Calling an OpenEdge Web Service John Sadd

August, 2011 Page 5 of 16

Now it’s time to add procedures to the proxy. As I mentioned, the full sample

application has a number of ABL procedures in its proxy, but I’ll just add the one that

is used in the GetBrandDetails call.

So I right-click, and add a non-persistent procedure. This corresponds to the state-

free mode the AppServer runs in; I don’t want to bind the AppServer by running a

persistent procedure from the client. In the code structure for the sample app, it’s

under the Factory -> Server -> Order folder for all the procedures that support

ordering a vehicle. Under that, Business Component, and the procedure whose

parameters I showed you is service_branddata.p; to create the proxy you always

need to identify the compiled .r file for it:

I click Add to add that as the one and only procedure in the proxy for now, and then

Close. Now I’ll make an adjustment to it that corresponds to how the Factory sample

is organized. Right-clicking on the r-code file I just added, I select the Customize…

option. One of the things it lets me do is to give the service call a method name that

is different from the ABL procedure name, if that makes things more readable or

intuitive. I rename it ListBrandData.

Calling an OpenEdge Web Service John Sadd

August, 2011 Page 6 of 16

Now I press the Generate button, and the Generate Proxies dialog comes up to let

me define all the particulars. I specify that this is a Web service proxy by selecting

that radio set option. That enables the Session Model radio set, which I make sure is

set to Free.

At this point I want to take another look at how things are set up in OpenEdge

Explorer. First I’ll look at the AppServer the application uses, and confirm that its

name is asAutoEdgeTheFactory. It’s active and it is state-free, so it’s all set to

go.

Calling an OpenEdge Web Service John Sadd

August, 2011 Page 7 of 16

Now I look at the Web services adapter. In this case the application is using the

default adapter wsa1. If I look at its configuration, I need to note the URL. It’s just

running on localhost in this instance, and because I’m using Tomcat, it’s port 8080.

Back in Proxygen, I set the output directory for the proxy to the

autoedgethefactory server cfg directory. I’m not using an AppServer named AETF

Web services, which would be the default, so I need to rename that, and enter the

AppServer name we just saw in Explorer. I enter an author value for documentation

purposes, and indicate that I’m working with version 1.0.4 of the Factory sample

application code:

The namespace needs to be a distinctive qualifier for the factory services. In this case

I use factory-ae-com as that distinguishing value. You’ll see in a moment where I

use that. The WSA pathname we also saw in Explorer a moment ago. That’s

wsa/wsa1 on localhost port 8080.

Calling an OpenEdge Web Service John Sadd

August, 2011 Page 8 of 16

When I’m done defining the Web service proxy, and click OK, the proxy is generated

into the cfg directory I named. Back in Explorer, I need to deploy that service. I enter

the name of the Web Service Map file that ProxyGen created in the same cfg

directory:

Then I deploy that file. Finally, I have to enable it, so I click Status Enablement and

click Enable.

Calling an OpenEdge Web Service John Sadd

August, 2011 Page 9 of 16

If I go back to the WSA summary, you can see that the Web service is active and

deployed:

Now I want to recreate a piece of how this service is then enabled for access from

BPM Studio. I just delete is the existing Web service adapter in the application and

start over. Under Assign Participants, I can make the participant an adapter. Under

that I select Managed adapters, then the WebService adapter, and the Generic

one that comes with the product. I drag one of those onto the process diagram:

I drop it, and right click on it to set its Properties:

Calling an OpenEdge Web Service John Sadd

August, 2011 Page 10 of 16

I name this variation GetJustBrandDetails, and in its configuration, the identifying

information I need to enter here is the WSDL address, including the Namespace URN

I specified in proxyGen, which allows Savvion to pull in the definition of the

procedures in the proxy and their parameters. So when I enter that full WSDL and

click Go, Savvion displays all the services in the AETFWebServices proxy, and for

me, there’s just one, ListBrandData, so I select it.

Now I need to map Dataslot values from the process to parameters into and out from

the call. I select the Types and Mapping tab. The default is that data will be passed

in both directions as Java, but in the current releases of the two products this format

will not perform correctly. So It’s necessary to select the radio set option labeled

Java input and SOAP message output.

Calling an OpenEdge Web Service John Sadd

August, 2011 Page 11 of 16

The dialog now displays a list of the input parameters to the Web service call, and lets

me enter test values for them. So I enter Fjord as the value for pcBrand, and for the

contextID, which identifies a particular client to the server, I will enter the special

value Savvion::Test.

Let me show you why that works. In the ABL code for service_branddata.p, there’s

a block of code that checks for this special value, and if it’s been passed in, the

procedure constructs a response in which each output parameter is given a value that

is actually the name of the parameter:

Calling an OpenEdge Web Service John Sadd

August, 2011 Page 12 of 16

Let’s look at how this comes back. To test the Web service call, I click the Invoke

button. If I expand the dialog box some to see what comes back from the call, and

then expand the display pane for the SOAP Response, you can see part of the

response:

As you can see, it’s an XML document in which the value of each node, corresponding

to the service’s output parameters, has a value that is the name of the node, that is,

the name of the parameter. This is an arbitrary construction, but it makes it easy to

do the next step in the mapping. Next I need to select the checkbox labeled Map

Response Fields. Then I click the Response Mapper button. This places me into

what’s called the XPath wizard. I click Add, and I am able to provide a name, an

Xpath expression, and a datatype for a parameter. It’s perhaps easiest just to identify

a piece of the XML data stream as an XPath expression and then give it a name, so I

click on the ellipsis next to the XPath fill-in:

I then select the value for one of the output parameter nodes. This is why it is handy

to construct sample data where the data value matches the name of the parameter

you want to map it to.

Calling an OpenEdge Web Service John Sadd

August, 2011 Page 13 of 16

At the top you can see that the mapper has identified the value I selected, and

generated an XPath expression that tells the Web service adapter how to locate

whatever value occupies the spot where pcDealerNameList is in the sample data. I

click OK, the XPath wizard dialog displays the XPath expression, and now I just need

to give it a name and verify the basic datatype:

By convention, the Factory application uses names beginning with response; you’ve

seen those when I reviewed that parameters for the Factory Web service I’m

replacing. However, you can name the parameter anything you want, because the

next step will be to map that parameter to a Dataslot in the business process.

I map a second parameter for data used by the next form in the Flow, the one that

returns a list of the truck models available for the brand. I give the response

parameter a name, and I’m done. And I’m also done with this part of the Web service

configuration. When I click OK, I’m put into the Dataslot mapping process.

For each input parameter, I need to identify the application dataslot that is going to

provide a value for the parameter, going into the Web service call. In this case the

first one, mapped to pcBrand, is the one called SelectedVehicleBrand. This

Dataslot value gets set when I pick an icon like the Fjord icon in that first form of the

Flow. The second one is the Context ID that identifies a particular client The details of

how you might establish that are beyond the scope of this talk, but it’s a dataslot just

named ContextID:

Calling an OpenEdge Web Service John Sadd

August, 2011 Page 14 of 16

After I’m done with the input parameter mapping, I select the Outputs tab.

Remember that I just created responses for two out of all the output parameters. The

first maps to the DealerList Dataslot, and the second one to the TruckModels

Dataslot:

There’s one other option you can set here, by selecting the Advanced tab. This

allows you to map a Dataslot to what is labeled the Target Endpoint Address. This

means the URL of the web service adapter that is the one actually used at runtime, in

production, and lets you make this a value settable at runtime. In the Factory

application there’s a Dataslot set up to hold that value, called

AutoEdgeWebServiceEndpoint:

Calling an OpenEdge Web Service John Sadd

August, 2011 Page 15 of 16

This screenshot shows you that Dataslot to make clear what it is I’m saying here:

Here you can see the Endpoint Dataslot, which in this case is hard-coded to be the

web service adapter that I set up for building and testing the model. If the application

allowed this value to be set at runtime, then the endpoint of the actual wsa used

would be more flexible. In any case, I’m done with the Web service configuration

now. Since I replaced the workstep that represents the Web service call in the Flow, I

have to reconnect it back into the diagram. I can select Connect Shapes or do

Control-Shift right-click as I’ve done before, and re-establish that after the Web

service call the Model Selection form comes up.

Calling an OpenEdge Web Service John Sadd

August, 2011 Page 16 of 16

Now I’ve completed re-configuring this one Web service call to OpenEdge, and I can

re-save the model with my new Web service adapter workstep.

I'll just give you one quick tip before I wrap up this presentation. Under the Tools

menu in BPM Studio, you can select Managed Adapters, and use this to import or

export Web services you've gone to the trouble of configuring, like this list of adapters

for the Factory application, so you can easily reuse them.

Now I'm ready to re-deploy my application, and you’re ready to connect up steps in a

Progress Savvion business process with services in an ABL application that provide

data and business logic support for your Savvion business process application.

