
August, 2011 Page 1 of 21

BUILDING AND USING WEB APPLICATIONS

John Sadd

Fellow and OpenEdge Evangelist

Document Version 1.0

July 2010

Building and Using Web Applications John Sadd

August, 2011 Page 2 of 21

DISCLAIMER

Certain portions of this document contain information about Progress Software Corporation’s

plans for future product development and overall business strategies. Such information is
proprietary and confidential to Progress Software Corporation and may be used by you solely in
accordance with the terms and conditions specified in the PSDN Online (http://www.psdn.com)
Terms of Use (http://psdn.progress.com/terms/index.ssp). Progress Software Corporation
reserves the right, in its sole discretion, to modify or abandon without notice any of the plans
described herein pertaining to future development and/or business development strategies.

Any reference to third party software and/or features is intended for illustration purposes only.
Progress Software Corporation does not endorse or sponsor such third parties or software.

This document accompanies a two-part video in a series on building business process

applications using OpenEdge Business Process Management (BPM). In other sessions

I’ve walked through parts of the sequence of forms that the customer uses to order a

car in the AutoEdge Factory sample application. In this paper I’ll show you a bit about

the type of process that sequence represents, called a Flow or a Web Application.

I’ll also show you how to create a new one.

First I open the main BPM process for the Factory application again, called

CustomerOrderVehicle. Within its project, I find it under the processtemplates

folder. And it has a suffix of spt, for Savvion Process Template:

This is the main process diagram for the AutoEdge | The Factory sample. You’ve

seen in other sessions that it has swimlanes representing different parts of the overall

process performed by different types of users. There are various types of steps

executed by non-human users as well, like email messages and web services. And the

paths through the process can include complicated routes that represent multiple

parts of the job being done in parallel. If I open up all the BPMN diagramming shapes

available to me, and scroll down to see them all, you can see the complete set.

http://www.psdn.com/
http://psdn.progress.com/terms/index.ssp

Building and Using Web Applications John Sadd

August, 2011 Page 3 of 21

I want to point out a couple of shapes that can be used in complex process diagrams

like this one. The AND gateway allows you to define multiple paths that execute in

parallel, and that can all come together again when they’ve all completed. The XOR

join shape allows you to specify that only one of multiple paths completes before the

process continues. These types of paths are possible because a BizLogic process can

have multiple tasks going on at the same time.

Next I select the Connect Shapes task type. In addition to normal arrow connectors,

you can define compensation flows for rollback operations, and timeouts for certain

paths as well:

Now under the participants for the process, you can take a look at all the process user

types defined for the sample, and see the list that includes all of the performer types

identified in the various swimlanes:

Building and Using Web Applications John Sadd

August, 2011 Page 4 of 21

These are all notations that are available for a standard BPM process, what Savvion

calls a BizLogic process.

If I now look at the Start step for the vehicle order process, I see that in place of a

single form is something called a Flow with a bizsolo suffix. You can set the type of

a start step or an activity step to be a process of this type in the step’s properties.

CustomerVehicleOrderSubmit is actually a separate process. It’s called a bizsolo

process because it’s intended to be executed by a single user, in a Web browser,

which is why it can be identified as a Web application, and why it has the swt

suffix, for Savvion Web Template. And it is also referred to as a presentation flow

because it represents the visible flow from one web form to the next, in a prescribed

sequence.

Let me try to make its characteristics clear by comparing what Design Tasks are

available to this diagram compared with the BizLogic process. First, there’s no Design

Task category for swimlanes and phases at all. You don’t need swimlanes if there’s

only one user.

Selecting Draw Shapes, you see that only the shapes shown below are available to

you within the Flow. There’s no AND gateway or XOR gateway because you can’t have

multiple paths executing concurrently:

Building and Using Web Applications John Sadd

August, 2011 Page 5 of 21

Under Connect Shapes, there is a different set of choices. You can connect one step

to the next in the form of a Submit button, a link, or an image:

Under Assign Participants, there’s no Users folder, and if I expand Process,

there’s just one generic User. All this confirms that the flow is just one user’s

experience working through the web application. Note that you can use Adapters,

though, such as Web services, and in fact in the AutoEdge | The Factory Web

application there are a number of steps in between user forms that use Web services

to call out to OpenEdge to get and submit data, like this one, as was shown in

another presentation.

A presentation Flow can be used as a standalone application invoked from a Web

browser; I show later in this paper how to build one of these. Or it can be a part of a

larger process as this one is. Here the Web application is a specialized kind of sub-

process that lets you separate out a particular sequence of steps to be executed by a

single user in a web-based user interface. In a follow-on presentation and paper I

show you how to do that integration as well.

The remainder of this paper shows you how to build a new independent Web

application in Savvion. Under File -> New, instead of a BPM Project, you can create a

Web application project. You give it a name like any other project; I call this one

BuildOrBuy:

Building and Using Web Applications John Sadd

August, 2011 Page 6 of 21

That’s all I need to specify. Under Draw Shapes, I grab a Start step, and drag that

onto the design diagram:

I want some Activity steps; remember that they can only have one user. I drag that

generic user onto the form to create a user activity:

In this first step the user just enters his or her name. That’s as much Data as I need

in this simple example to make it work. There’s a form created for the step whose

name needs to be adjusted to match the name of the activity, so I name the Start

step Data Input.

Next I want to show two different paths the user can take from the first Activity. One

of them is the request that something be built, so I call this step BuildIt:

Building and Using Web Applications John Sadd

August, 2011 Page 7 of 21

The other path will be to request that the something should be bought instead, so I

call that one BuyIt. I also need an End step for each of those alternatives, one for

the Build option, and a second for the Buy option:

Now I need to connect all these shapes together in the sequence they should follow.

The default when you select Connect Shapes is the same as for a regular process.

You draw arrows between shapes to establish a sequence. The Start step just links

directly to the Data Input step. That step in turn can go either to the BuildIt Activity

or to the BuyIt Activity. The process doesn’t do anything else, so BuildIt just goes to

an End step, and so does BuyIt. Here all the links are complete:

Building and Using Web Applications John Sadd

August, 2011 Page 8 of 21

By clicking on Select and Change Layout in the Tasks pane to the right, I cancel

the Connect Shapes activity. Now I can move things around like a connector's label,

and importantly, I want to right-click on it to change its label. This isn’t just to make

the diagram look better, but as you’ll see in a moment, when I give this link a label of

Build, that affects how the Data Input step’s form looks at runtime. I do the same for

the other link that comes out of the Data Input step, and I label this one Buy:

Likewise, I want to name the links from the BuildIt and BuyIt steps to their End steps.

The first one I call Done Building, and the second one Done Buying. The link labels

from Acitivity steps to an End step aren’t displayed in the diagram, but they still have

an effect on how the forms look.

Next I need to define just a couple of Dataslots to have some data for the forms. The

Data Input step will just let the user enter a username. The other two forms will

display that user name and provide a description field, just so we can tell the Build

and Buy forms apart, and confirm which path the process has taken. In addition,

there’s a special Dataslot you need to define if you want the Web application to go to

a specific web page when it completes. Remember this I’m first building this as a

standalone Web application; it will be in the next video that I show how to make it

part of a larger process. The Dataslot that lets you return the user to another web

page must be named returnPage, and note how it’s camel-cased. Dataslot names

are case-sensitive.

Building and Using Web Applications John Sadd

August, 2011 Page 9 of 21

I give the Dataslot an initial value that points the user to the Progress Savvion web

page – http://www.progress.com/savvion -- when the Flow completes.

This is enough Dataslots to get some minimal forms built. Now I’ll show you what the

forms look like when the activities are connected together the way they are. First I

open the form for the Data Input step. Because there are two connections coming out

of this step, and I labeled them Build and Buy, Savvion has added two buttons to the

form’s footer labeled Build and Buy:

This is why it was significant that I give the connectors meaningful labels. If the user

clicks Build after filling in the form, the Flow follows the Build link to the BuildIt

step. If the user clicks the Buy button, it will follow the Buy link to the BuyIt step.

I need at least one field in the form so that the user can do something in the form, so

I grab one of my Dataslots, the one called Username. That’s as much as I need to

create a rudimentary form.

Next I create a form for the BuildIt step. Below you can see that the link from this

step to the End step has resulted in a Done Building button for this form. When the

user clicks this button, the Flow is complete:

Building and Using Web Applications John Sadd

August, 2011 Page 10 of 21

In this case, I grab the Username Dataslot again, just so I can confirm it’s been set

by the previous step. I also add the BuildDescription Dataslot, which is what makes

this form distinct from the BuyIt form:

I do exactly the same for the BuyIt form. For this form there’s a Done Buying

button that signals the completion of the Flow. I drag the Username and the

BuyDescription Dataslots onto this form, and that’s all there is to it. Finally, I need

to save the Web application itself:

Building and Using Web Applications John Sadd

August, 2011 Page 11 of 21

Then I deploy the Web application to the server as I would any other process. In this

case, the URL of the Flow’s Start step is important to note, because that’s what the

user will enter in a browser, or link to from somewhere else, to start the Web

application:

I copy that URL and Finish the deployment. Next, in a browser, I paste in that link

and press return, and the Web application is off and running. Here’s the Data Input

form, for the step the Start step links to:

I enter a username, and I can select Build or Buy. I click Build. Below you can see

that the Flow has followed the Build link to the BuildIt step, and here is its form:

Building and Using Web Applications John Sadd

August, 2011 Page 12 of 21

I enter a description field, and click Done Building, which ends the Flow. Since the

Flow has completed, Savvion looks for the returnPage Dataslot and directs the

browser at that page:

This completes the first part of the introduction to using Flows, or Web applications, in

Progress Savvion. I’ve showed you an example from the AutoEdge | The Factory

module of a flow integrated into a larger process. In that case the flow lets you

separate out a sub-process that an individual executes, an important part of

modularizing a large complex process. I also showed you a simple standalone web

application. Even though this is executed by a single individual, BPM Studio still gives

you the ability to create a complex decision map that sends the user interface in

different directions based on data entered or retrieved in the flow.

In the next part of this paper I show you how to integrate the BuildOrBuy Flow into a

larger process, the sample process that I built in the series on building your first

project, the VehicleOrder process. You can see that the process has a dummy

workstep called BuildVehicle that I added just to have something at one end of a

decision step. Now I’ll give that workstep something to do.

Building and Using Web Applications John Sadd

August, 2011 Page 13 of 21

In its properties, I change the presentation Type from a form to a Flow. This means

that when this workstep is reached, it will initiate a Flow as a sub-process:

I give the flow the right name, which is the name of the Flow I already have,

BuildOrBuy, and when I OK that, and go back into the workstep Properties, you can

see that the step now knows that its job is to invoke a flow called

BuildOrBuy.bizsolo:

Building and Using Web Applications John Sadd

August, 2011 Page 14 of 21

Opening it, you can see that BPM Studio has found the Flow successfully in the project

workspace:

I want to set up just a bit of communication between the flow and its parent process,

so I add a Dataslot to the flow. Remember that the Flow is a separate process, used

here as a sub-process, so it has its own namespace and its own Dataslots. I create a

new boolean dataslot in the Flow called VehicleInStock, which is the same name as

a Dataslot in the parent. Now I have something I can easily pass back and forth

between here and the parent process.

Back in the diagram for the Flow, I want to make a change to a couple of its little

forms. BuildIt is the step the Flow goes to if the user clicks the Build button in the

first form. I want to add the VehicleInStock dataslot to the form, so it can be set

there. I choose it from the Flow’s Dataslots, drag it onto the form, and place the

checkbox after the label.

Building and Using Web Applications John Sadd

August, 2011 Page 15 of 21

Next I do the same thing to the BuyIt step. In order to pass the value of the

VehicleInStock dataslot from parent to Flow and back again, I need to do something

similar to defining parameters to a regular sub-process, as I showed you in another

of these presentations. In the Flow’s Start step Properties, I identify the dataslot to

add to what the Start step expects.This is how you identify a dataslot that will be

passed from the parent process to the flow.

Because the Dataslots have the same name in both processes, I don’t need to do any

more mapping than this. I’m done with the changes to the Flow itself.

Now in the Parent process, I go into its workstep properties, and I add the Dataslot as

a Field for this Flow workstep. This tells Savvion to pass the Dataslot as a parameter

to the Flow. Again, this is similar to how you pass a Dataslot as a parameter to an

ordinary sub-process. And remember that I’m now referencing the VehicleInStock

Dataslot that’s defined in the parent process, VehicleOrder. The Flow has its own

Dataslot with the same name.

Building and Using Web Applications John Sadd

August, 2011 Page 16 of 21

Once again, because the dataslot names match, that’s as much as I need to do to get

them mapped to one another.

Now just to confirm that the Dataslot value is passed back successfully from the Flow,

I drag another Activity onto the parent diagram, and name it IsVehicleInStock,

because its purpose is to display the value of the Dataslot after the Flow completes. I

just make this a simple auto-generated form:

The only Dataslot I need to add as a Field is VehicleInStock, and once again, this is

the parent process Dataslot whose value the form will be showing.

Building and Using Web Applications John Sadd

August, 2011 Page 17 of 21

That’s all I need to do here. I insert the new Activity into the process sequence in

between the BuildVehicle Flow step and the End step:

I’m done with changes to the VehicleOrder process, so I can save it. Now I need to

redeploy both processes to the server, so I can see how they work together.

After deploying the two modified processes to the server, I can log into the BPM

Portal, and select the VehicleOrder application to start up an instance of it:

Building and Using Web Applications John Sadd

August, 2011 Page 18 of 21

You will remember what this looks like from the presentation on building your first

project. I enter a customer name, and an email, assign it an order number, and set

the process running:

Back in the Portal, if I check the running instances, I can see the one I just created,

and remind you that the next step is the CreditCheck that someone in Finance

does:

After I log out and log back in as Finance, I see the CreditCheck task, where I can

approve the buyer’s credit, and complete that step.

Building and Using Web Applications John Sadd

August, 2011 Page 19 of 21

Then it goes on to the Sales department for DealerReview. In this case I approve

the Order but don’t check VehicleInStock. Taking another look at the process

diagram, you can confirm that if the order is approved but the vehicle is not in stock,

the process goes to the BuildVehicle step; that’s now the presentation flow, and it’s

executed by someone at the Factory:

Logging into the Portal as Factory, you see that the BuildVehicle task is the next

one up:

Building and Using Web Applications John Sadd

August, 2011 Page 20 of 21

When I initiate that task, it runs the Flow, and its first form, the DataInput form,

comes up. I enter a username. I can use the same name as the customer name I

entered earlier, but keep in mind that this is one of the Flow’s Dataslots, independent

of the parent process.

I click Build, and the modified BuildIt form comes up next. I enter a description, and

I’ll just presume that a miracle happens, so that as soon as I do that, the vehicle is

built and is now in stock. So I click that checkbox, and I’m done building the car.

Because the Flow is now embedded in a larger process, the returnPage Dataslot with

the website URL, which I defined when I used BuildOrBuy as an independent Web

application, doesn’t have any effect; it’s just ignored when the Flow is used as a sub-

process. Instead, the Flow completes like any other subprocess. Back in the Factory

view of the Portal, the new IsVehicleInStock Activity workstep is next. This is where

we get to see if the VehicleInStock dataslot value was successfully passed back to the

parent process. And sure enough, it was:

Building and Using Web Applications John Sadd

August, 2011 Page 21 of 21

The VehicleOrder process is complete, and so it this presentation. Here I showed you

how to take a Presentation Flow, which executes a series of browser-based forms

navigated by a single user, and integrate it into a parent process that has other

components involving other users and adapters. Like any other subprocess, the Flow

can be reused in other parent processes where the same behavior is needed.

