
July, 2011 Page 1 of 19

BUILDING SUBPROCESSES

John Sadd

Fellow and OpenEdge Evangelist

Document Version 1.0

July 2010

Building SubProcesses John Sadd

July, 2011 Page 2 of 19

DISCLAIMER

Certain portions of this document contain information about Progress Software Corporation’s

plans for future product development and overall business strategies. Such information is
proprietary and confidential to Progress Software Corporation and may be used by you solely in
accordance with the terms and conditions specified in the PSDN Online (http://www.psdn.com)
Terms of Use (http://psdn.progress.com/terms/index.ssp). Progress Software Corporation
reserves the right, in its sole discretion, to modify or abandon without notice any of the plans
described herein pertaining to future development and/or business development strategies.

Any reference to third party software and/or features is intended for illustration purposes only.
Progress Software Corporation does not endorse or sponsor such third parties or software.

This paper accompanies the video which is another in the series on building business

process applications with OpenEdge BPM, combining OpenEdge and Progress Savvion.

Just as you wouldn’t want to put all of an OpenEdge application into a single ABL

procedure, you won’t want to put an entire complex business process into a single

BPM project either. This paper shows you how to break up a process into multiple

parts, by creating subprocesses. Just as you can with a procedure that represents

part of a larger application, a subprocess can be reused as a part of many different

larger processes, and a process that can stand alone under some circumstances can

also be incorporated into other processes as a subprocess.

To start with, I’ll open the main AutoEdge | The Factory process,

CustomerOrderVehicle.spt:

One simple way to break up a process visually is to select parts of it that you want to

be able to drill down into from the main diagram. If I draw a box around the two

steps GetDealerDetail and VehicleOrderNotification in the CustomerOrderVehicle

process, for instance, I can then right-click on any of the selected steps, and select

the Collapse option from the context menu.

http://www.psdn.com/
http://psdn.progress.com/terms/index.ssp

Building SubProcesses John Sadd

July, 2011 Page 3 of 19

All the steps I collapsed are replaced by a single visible step in the main process

diagram. The fact that it’s been collapsed is indicated by a plus sign in the step, but

that’s just decoration; if you click on it nothing happens.

However, you can right-click on the subprocess step, and see that it has properties of

its own. I can give the step a name, such as NotificationProcess, and I can also

open it. Here the steps that I collapsed are shown in a new diagram window:

Note that there’s no design window tab for the subprocess. What I just created is

called an internal subprocess. It’s just a separately-displayed part of the main

process. It can’t be saved independently, it can’t be reused from some other process,

and it shares the namespace of the process that it’s part of.

If I look at the Dataslots from the subprocess, for instance, I see all the Dataslots in

CustomerOrderVehicle. If I define a new one here, it is just added to the parent

process’s dataslots. The same is true of performers: parent process performers are

available to the internal suib-process. So an internal subprocess has limited value. It

just lets you break up the visual process diagram into multiple levels, which in a big

process can be very useful; but you can’t reuse the subprocess in any way. Since it

doesn’t have its own tab in BPM Studio, you can't really close it. Instead, to return to

the parent process, you select the dropdown at the top of the design window, and

select the main process diagram from there.

Building SubProcesses John Sadd

July, 2011 Page 4 of 19

You could create multiple nested levels of internal subprocess, and then select which

level you want to go back up to. That’s a quick introduction to how to create and use

an internal subprocess.

The more flexible way to separate out parts of a process is by creating an external

subprocess, one that can be saved and used independently. The AutoEdge sample

has an example of an external subprocess, called BuildVehicle. If I right-click on

that step in the CustomerOrderVehicle process, and select its Properties, you see

that the performer is called BuildVehicle:

If I look at its dataslots, I see CustomerOrderVehicle dataslots that are effectively

passed as parameters from the parent process to the subprocess, and returned. The

true and false flags indicate which ones are passed in, and which ones are returned as

output:

Building SubProcesses John Sadd

July, 2011 Page 5 of 19

As with the internal subprocess, I can open BuildVehicle from here, but when I do, it

gets its own tab for its design diagram, because this is in fact a separately saved and

deployed process of its own, just like one ABL procedure called from another

procedure:

If I select the Dataslots tab in the subprocess, I see just the Dataslots that are

defined for the subprocess. They occupy an independent namespace from whatever

parent process invokes the subprocess. The same is true for the subprocess

performers. Because BuildVehicle is built and deployed independently, it can be

invoked from any number of other processes like CustomerOrderVehicle. This lets you

separate out a part of a process that you want to be able to reuse in different places,

just like a separate ABL procedure file.

What I will do now is to show you just how to create and configure an external

subprocess. BuildVehicle is rather complicated to use as an example, so I’ll just create

simple examples to show you all the steps that are involved.

I create the subprocess first; it’s a BPM Project just like any other process. I name it

SubProcSample. All I need to create a minimal functional example is a Start step, a

single Activity workstep, and an End step.

Building SubProcesses John Sadd

July, 2011 Page 6 of 19

I’m starting from scratch with my dataslots, so I just see the built-in System

dataslots. I create a user dataslot, which I define as a number:

Then I create a second one, which I define as a string. These just give me something

to display in the subprocess, and something I can use as parameters to pass back to

the parent. The one subprocess Activity needs a performer, and for my purposes,

there’s a default performer just called Creator that I can choose, which means that

whoever creates the process is expected to execute its worksteps.

Building SubProcesses John Sadd

July, 2011 Page 7 of 19

I go back into its properties, where you can note that you can also change the

performer from the step’s context menu:

Note that you can also change the Performer from the workstep property sheet as

well. In this case though, I just want to have Savvion auto-generate a form for me,

so I select that Presentation type:

For an auto-generated form I just pick the dataslots I want to put into the form, by

selecting them from the Fields tab. In this case I pick both of the dataslots I just

defined:

Building SubProcesses John Sadd

July, 2011 Page 8 of 19

Now I have a single step defined in the subprocess. It displays the two subprocess

dataslots, and allows me to change their values. I’m going to use these as parameters

to receive as input from the parent process, and then to return. I can click on

Connect Shapes to connect up my three step, or I can also just type control-shift

and then right-click the mouse to do the same thing. I connect the Start step to the

Activity that has the one form in the subprocess, and that Activity to the End step.

That’s all I need the subprocess to do.

Now it’s time to create the parent process. It’s another BPM Project, of course, and I

name it ParentProcSample. My simple example just needs two activities, plus of

course a Start step and an End step. The first Activity is a call out to my subprocess.

The second one displays the Dataslot values that come back. After dragging the right

shapes onto the design surface I connect everything up.

Building SubProcesses John Sadd

July, 2011 Page 9 of 19

Next I define two Dataslots for the parent process, to match the two user Dataslots in

the subprocess. Activity 1 is the step that runs the subprocess, so I name it

RunSubProcess. I don’t need to define a form for the workstep because I’m going to

change the step’s Performer to be a subprocess. Under Performers, there’s a group

called Subprocesses. Subprocesses that were already defined would be grouped

under External References. I have to right-click to create a new one. There are

various ways to do this, but the most straightforward is to use the Sub-Process

option. I could use a Dataslot as the value of the subprocess name, which would allow

me to set the name dynamically at runtime. I could also locate a process that has

already been deployed to the server. But in this case I just select it from a file,

because the process project been saved but not yet deployed:

Here’s the folder for SubProcSample in my BPM Studio workspace:

Building SubProcesses John Sadd

July, 2011 Page 10 of 19

I select that Savvion Process Template file, and identify it as a performer available to

this parent process:

Now it’s in the list of defined performers, so I can select it, and make it the performer

for this workstep:

Now I’ve defined the first of the first two parent process activities to be a step that

runs the subprocess. I want to define a simple form for the Start step, to set the two

parent Dataslot values. That way I can pass them in to the subprocess and see what

Building SubProcesses John Sadd

July, 2011 Page 11 of 19

it takes to get them there and get them returned. The default Presentation type for a

Start step is auto-generated, and I just click Add to add the two parent Dataslots to

the form in the Fields tab:

Next I need to define the parameters to the subprocess, and I do that by mapping

Dataslots in the two processes:

I add both my parent Dataslots as parameters:

Building SubProcesses John Sadd

July, 2011 Page 12 of 19

You can see that by default parameters are expected to be passed in, and also

returned as output in case the subprocess modifies them. If I want to change that, I

can pick a Dataslot and click Modify, and see two checkboxes that let me make a

dataslot input only or output only:

This basic display in the Dataslots dialog assumes, when I first add Dataslots as

parameters, that the corresponding Dataslots in the subprocess will have the same

names. Remember that the parent process and the subprocess have separate

namespaces, so they can call their Dataslots whatever they want. If the target

Dataslots in the subprocess have different names, then you need to select Advanced

from this dropdown to map them:

I select first ParentValue1, and click Modify:

Building SubProcesses John Sadd

July, 2011 Page 13 of 19

A different dialog appears to let me change the Set Dataslot, that is, the name of the

Dataslot in the subprocess that gets set to the parent value passed in:

The dialog is prepared to let me map the value passed in to multiple Dataslots, which

I don’t want, so I select the default setting, and click Remove:

Then I type the name of the subprocess Dataslot I want to map to. BPM Studio

doesn’t actually reference the subprocess directly, so I have to type the name; I can’t

Building SubProcesses John Sadd

July, 2011 Page 14 of 19

select it from a list, and there’s no name checking at this point. So I click Add, and

the input mapping is complete.

Next I select the Get Dataslot fill-in. This is the name of the subprocess Dataslot that

will be passed back to ParentValue1 as output:

In this case I just edit it in place. I replace ParentValue1 with SubProcValue1, and

this parameter is complete:

Building SubProcesses John Sadd

July, 2011 Page 15 of 19

Now I do the same thing with ParentValue2 and SubProcValue2. Here you can see

the resulting mapping with the names of the subprocess dataslots that will accept

input and return output:

Now I need to configure the second of the two parent activities, which is just going to

display the values that come back, so I name it ParentDisplay, and define a form to

display them. I need a performer for this step as well, and as I did in the subprocess,

I just use Creator:

Now I need to add fields to the form, and I add both my two Dataslots, so that I can

see what values were passed back from the subprocess:

Building SubProcesses John Sadd

July, 2011 Page 16 of 19

Now I save the parent process, and deploy both processes to the server. The

subprocess gets deployed in exactly the same way as the parent process. After

deploying both processes to the server, it’s time to go see what happens when I run

them.

Below you see the BPM Portal, the runtime environment. As you can see, both the

parent process and subprocess have been deployed and are listed here. I can click the

Parent process link to start an instance of it:

Here’s the default form for the Start step:

Building SubProcesses John Sadd

July, 2011 Page 17 of 19

I set both the parent dataslots, the numeric one to 10, and the string value to

Parent Value IN, to confirm that this is going to be input to the subprocess. The

Create button completes the creation of the parent process instance. Since I’m the

Creator, the process tasks will be assigned to me. Here you can see that the parent

process has started an instance of the subprocess, in its first activity step. I can click

on the subprocess activity to access it:

The form confirms that the two parent Dataslot values were successfully passed in

and mapped to SubProcValue1 and SubProcValue2:

Building SubProcesses John Sadd

July, 2011 Page 18 of 19

Let’s see what happens on the way out when I modify them. When I click Complete,

the subprocess is done and it returns to the parent process.

Back in My Tasks, I see the ParentDisplay activity in the parent process is now

waiting for me to attend to it:

Here you can see that the two modified subprocess Dataslot values were returned as

output to the parent process. That completes the parent process activities:

Building SubProcesses John Sadd

July, 2011 Page 19 of 19

And that also completes this presentation. I’ve shown you how to define both internal

and external subprocesses, and how external subprocesses are defined and deployed

independently of any parent process that wants to use them. And I showed you how

to pass Dataslot values as parameters from one process to another. Now you can

break up a complex Business Process Application into as many reusable sub-

components as you need to.

