
July, 2010 Page 1 of 21

PROGRAMMING WITH ABL CLASSES IN OPENEDGE 10

John Sadd

Fellow and OpenEdge Evangelist

Document Version 1.0

July 2010

Programming with ABL Classes in OpenEdge 10 John Sadd

July, 2010 Page 2 of 21

DISCLAIMER

Certain portions of this document contain information about Progress Software Corporation’s

plans for future product development and overall business strategies. Such information is
proprietary and confidential to Progress Software Corporation and may be used by you solely in
accordance with the terms and conditions specified in the PSDN Online (http://www.psdn.com)
Terms of Use (http://psdn.progress.com/terms/index.ssp). Progress Software Corporation
reserves the right, in its sole discretion, to modify or abandon without notice any of the plans
described herein pertaining to future development and/or business development strategies.

Any reference to third party software and/or features is intended for illustration purposes only.
Progress Software Corporation does not endorse or sponsor such third parties or software.

This document accompanies the video series on Programming with ABL Classes in

OpenEdge 10. The paper summarizes the content of the video sessions, and

provides complete code samples used in the videos. It does not duplicate all the

spoken text of the videos, which should be viewed to get a more complete

understanding of what the code samples show.

The two-part session Introduction to Class Syntax in ABL starts by showing a

simple ABL procedure that can be run as a persistent procedure, with internal

procedures and user-defined functions.

/*--

 File : SampleProc.p

 Description : Sample procedure to use to compare procedural coding to

 class-based

 --*/

The Definitions section includes definitions for the temp-table, a ProDataSet, a Data-

Source for the ProDataSet, a static query, and an ordinary variable.

/* *************************** Definitions ************************** */

DEFINE TEMP-TABLE ttEmployee

 FIELD EmployeeID AS CHARACTER

 FIELD EmployeeFirstName AS CHARACTER

 FIELD EmployeeLastName AS CHARACTER

 FIELD EmployeePosition AS CHARACTER

 FIELD EmployeeStartDate AS DATE

 FIELD EmployeeNotes AS CHARACTER

 FIELD EmployeeBirthCountry AS CHARACTER

 FIELD EmployeeGender AS CHARACTER.

DEFINE DATASET dsEmployee FOR ttEmployee.

DEFINE DATA-SOURCE srcEmployee FOR AutoEdge.Employee.

DEFINE QUERY qEmployee FOR ttEmployee.

DEFINE VARIABLE cAssignedCountry AS CHARACTER NO-UNDO.

http://www.psdn.com/
http://psdn.progress.com/terms/index.ssp

Programming with ABL Classes in OpenEdge 10 John Sadd

July, 2010 Page 3 of 21

Since the procedure contains user-defined functions, these require function

prototypes at the head of the procedure.

/* ************************ Function Prototypes ********************** */

FUNCTION AssignCountry RETURNS INTEGER

 (INPUT pcCountry AS CHARACTER) FORWARD.

FUNCTION GetEmployeeCount RETURNS INTEGER

 () FORWARD.

The Main Block contains code that gets executed when the procedure starts up, which

fills the temp-table with all the employees in the AutoEdge database.

/* *************************** Main Block *************************** */

BUFFER ttEmployee:ATTACH-DATA-SOURCE (DATA-SOURCE srcEmployee:HANDLE).

DATASET dsEmployee:FILL (). /* All 18 Employees */

OPEN QUERY qEmployee PRESELECT EACH ttEmployee.

The Main Block also contains an ON CLOSE block of code which will do cleanup if the

calling procedure applies the CLOSE event to the persistent procedure handle.

ON CLOSE OF THIS-PROCEDURE

DO:

 CLOSE QUERY qEmployee.

 EMPTY TEMP-TABLE ttEmployee.

 DELETE PROCEDURE THIS-PROCEDURE.

END.

There is one internal procedure, which sets the EmployeeNotes value for all

employees matching the EmployeePosition value passed in.

/* ********************** Internal Procedures *********************** */

PROCEDURE InitializeNotes:

/*--

Purpose: Assign a value to all empty EmployeeNotes.

Notes: Done for a specific EmployeePosition.

--*/

DEFINE INPUT PARAMETER pcPosition AS CHARACTER.

 FOR EACH ttEmployee WHERE ttEmployee.EmployeePosition = pcPosition:

 ttEmployee.EmployeeNotes = "Initial note for this " + pcPosition.

 END.

END PROCEDURE.

The first user-defined function assigns a BirthCountry value to all employees that

don’t have one, and keeps a count of the number of rows modified.

Programming with ABL Classes in OpenEdge 10 John Sadd

July, 2010 Page 4 of 21

/* ************************ Function Implementations ***************** */

FUNCTION AssignCountry RETURNS INTEGER

 (INPUT pcCountry AS CHARACTER):

/*--

Purpose: Assigns a value to all blank EmployeeCountry fields.

Notes: Returns the number of Employees assigned.

--*/

 DEFINE VARIABLE iCount AS INTEGER NO-UNDO.

 FOR EACH ttEmployee WHERE ttEmployee.EmployeeBirthCountry = "":

 ttEmployee.EmployeeBirthCountry = pcCountry.

 iCount = iCount + 1.

 END.

 cAssignedCountry = pcCountry.

 RETURN iCount.

END FUNCTION.

The second function returns the count of modified employee rows to the caller.

FUNCTION GetEmployeeCount RETURNS INTEGER

 ():

/*--

Purpose: Return the total number of employee in the temp-table.

--*/

 RETURN QUERY qEmployee:NUM-RESULTS.

END FUNCTION.

The persistent procedure is then converted into a class with the equivalent behavior.

/*--

 File : SampleClass.cls

 Description : Sample class to use to compare procedural coding to class-based

 Author(s) : john

 Created : Wed Feb 17 14:53:32 EST 2010

 Notes :

 --*/

The CLASS statement identifies the name of the class and its location – the package

– to the compiler:

CLASS OOSamples.SampleClass:

A class can have a Definitions section just as a procedure can. In addition, variables

in the Main Block’s definitions can be made PUBLIC, PRIVATE, or PROTECTED, and

are referred to as data members to emphasize these special characteristics.

Programming with ABL Classes in OpenEdge 10 John Sadd

July, 2010 Page 5 of 21

/* *************************** Definitions ************************** */

DEFINE TEMP-TABLE ttEmployee

 FIELD EmployeeID AS CHARACTER

 FIELD EmployeeFirstName AS CHARACTER

 FIELD EmployeeLastName AS CHARACTER

 FIELD EmployeePosition AS CHARACTER

 FIELD EmployeeStartDate AS DATE

 FIELD EmployeeNotes AS CHARACTER

 FIELD EmployeeBirthCountry AS CHARACTER

 FIELD EmployeeGender AS CHARACTER.

DEFINE DATASET dsEmployee FOR ttEmployee.

DEFINE DATA-SOURCE srcEmployee FOR AutoEdge.Employee.

DEFINE QUERY qEmployee FOR ttEmployee.

DEFINE VARIABLE mcAssignedCountry AS CHARACTER NO-UNDO.

A function that returns a value can be turned into a property of a class, which allows

it to be referenced from another procedure or class as if it were a simple variable, but

with supporting blocks of code to get or set the property value.

DEFINE PUBLIC PROPERTY EmployeeCount AS INTEGER

 GET():

 RETURN QUERY qEmployee:NUM-RESULTS.

 END GET.

 PRIVATE SET.

The Main Block of a class can’t have executable statements. Startup code goes into

the class’s constructor, a special method with the same name as the class.

CONSTRUCTOR PUBLIC SampleClass():

 BUFFER ttEmployee:ATTACH-DATA-SOURCE (DATA-SOURCE srcEmployee:HANDLE).

 DATASET dsEmployee:FILL (). /* All 18 Employees */

 OPEN QUERY qEmployee PRESELECT EACH ttEmployee.

END.

Cleanup code can go into the destructor, which is reliably executed when the running

class instance is deleted.

DESTRUCTOR PUBLIC SampleClass():

 CLOSE QUERY qEmployee.

 EMPTY TEMP-TABLE ttEmployee.

END.

An internal procedure in a procedure becomes a method in a class with a return type

of VOID.

METHOD PUBLIC VOID InitializeNotes (INPUT pcPosition AS CHARACTER):

/*--

Purpose: Assign a value to all empty EmployeeNotes.

Notes: Done for a specific EmployeePosition.

--*/

 FOR EACH ttEmployee WHERE ttEmployee.EmployeePosition = pcPosition:

 ttEmployee.EmployeeNotes = "Initial note for this " + pcPosition.

 END.

END METHOD.

Programming with ABL Classes in OpenEdge 10 John Sadd

July, 2010 Page 6 of 21

A user-defined function in a procedure becomes a method with a return type in a

class.

METHOD PUBLIC INTEGER AssignCountry (INPUT pcCountry AS CHARACTER):

/*--

 Purpose: Assigns a value to all blank EmployeeCountry fields.

 Notes: Returns the number of Employees assigned.

--*/

 DEFINE VARIABLE iCount AS INTEGER NO-UNDO.

 FOR EACH ttEmployee WHERE ttEmployee.EmployeeBirthCountry = "":

 ttEmployee.EmployeeBirthCountry = pcCountry.

 iCount = iCount + 1.

 END.

 mcAssignedCountry = pcCountry.

 RETURN iCount.

END METHOD.

The class ends with an END CLASS statement to balance the CLASS header

statement.

END CLASS.

The presentation then shows a wrapper procedure to run an instance of the persistent

procedure and invoke the internal procedure and the functions it contains. Any errors

in the run statements are not detected until runtime, because the compiler does not

cross-check the validity of calls to other procedures.

/*--

 File : SampleProcRunner.p

 Purpose : Wrapper procedure to run SampleProc.p

---*/

DEFINE VARIABLE iEmployeeCount AS INTEGER NO-UNDO.

DEFINE VARIABLE iCountryCount AS INTEGER NO-UNDO.

DEFINE VARIABLE hSampleProc AS HANDLE NO-UNDO.

RUN OOSamples/SampleProc.p PERSISTENT SET hSampleProc.

RUN InitializeNotes IN hSampleProc (INPUT "Admin").

iEmployeeCount = DYNAMIC-FUNCTION ("GetEmployeeCount" IN hSampleProc).

iCountryCount = DYNAMIC-FUNCTION ("AssignCountry" IN hSampleProc,

 INPUT "France").

DELETE PROCEDURE hSampleProc.

MESSAGE "There are" iEmployeeCount "employees, of which" SKIP

 iCountryCount "have just been assigned to France."

 VIEW-AS ALERT-BOX.

A similar wrapper procedure can create an instance of the class and invoke its

methods and reference its properties. Any errors in references to the class are

detected by the compiler, because the variable that holds the reference to the class

Programming with ABL Classes in OpenEdge 10 John Sadd

July, 2010 Page 7 of 21

instance names the class type. This is referred to as strong typing, and allows the

compiler to cross-check to make sure that references to the other classes are valid at

compile time.

/*--

 File : SampleClassRunner.p

 Purpose : Wrapper procedure to run SampleClass.cls

 --*/

DEFINE VARIABLE miEmployeeCount AS INTEGER NO-UNDO.

DEFINE VARIABLE miCountryCount AS INTEGER NO-UNDO.

DEFINE VARIABLE moSampleClass AS OOSamples.SampleClass NO-UNDO.

moSampleClass = NEW OOSamples.SampleClass().

moSampleClass:InitializeNotes(INPUT "Admin").

miEmployeeCount = moSampleClass:EmployeeCount.

miCountryCount = moSampleClass:AssignCountry (INPUT "France").

DELETE OBJECT moSampleClass.

MESSAGE "There are" miEmployeeCount "employees, of which" SKIP

 miCountryCount "have just been assigned to France."

 VIEW-AS ALERT-BOX.

The presentation on Using Interfaces as a Programming Contract creates an

interface for a set of classes that do data management.

/*--

 File : IDataManager

 --*/

USING Progress.Lang.*.

INTERFACE OOSamples.IDataManager:

 METHOD PUBLIC HANDLE FetchData (INPUT pcFilter AS CHARACTER).

 DEFINE PUBLIC PROPERTY RowCount AS INTEGER GET.

END INTERFACE.

The interface acts as a contract. A class that IMPLEMENTS the interface must adhere

to the contract, and this is verified by the compiler.

 /*--

 File : EmployeeManager

 --*/

USING Progress.Lang.*.

USING OOSamples.IDataManager.

CLASS OOSamples.EmployeeManager IMPLEMENTS IDataManager:

EmployeeManager.cls implements the PUBLIC property defined in the interface,

and extends it to specify that the property cannot be set by another class.

Programming with ABL Classes in OpenEdge 10 John Sadd

July, 2010 Page 8 of 21

 DEFINE PUBLIC PROPERTY RowCount AS INTEGER

 GET.

 PRIVATE SET.

It defines a temp-table and a query specific to employees.

 DEFINE TEMP-TABLE ttEmployee

 FIELD EmployeeFirstName AS CHARACTER

 FIELD EmployeeLastName AS CHARACTER

 FIELD EmployeePosition AS CHARACTER.

 DEFINE QUERY qEmployee FOR AutoEdge.Employee.

The default constructor runs a constructor in this class’s super class, if there is one.

 CONSTRUCTOR PUBLIC EmployeeManager ():

 SUPER ().

 END CONSTRUCTOR.

EmployeeManager implements FetchData, populating its temp-table with rows

from the Employee table, and setting the RowCount property.

 METHOD PUBLIC HANDLE FetchData(INPUT pcFilter AS CHARACTER):

 DEFINE VARIABLE hQuery AS HANDLE NO-UNDO.

 hQuery = QUERY qEmployee:HANDLE.

 hQuery:QUERY-PREPARE("FOR EACH AutoEdge.Employee WHERE " + pcFilter).

 hQuery:QUERY-OPEN ().

 hQuery:GET-FIRST ().

 DO WHILE NOT hQuery:QUERY-OFF-END:

 CREATE ttEmployee.

 BUFFER-COPY AutoEdge.Employee TO ttEmployee.

 hQuery:GET-NEXT ().

 END.

 RowCount = hQuery:NUM-RESULTS.

 hQuery:QUERY-CLOSE ().

 RETURN TEMP-TABLE ttEmployee:HANDLE.

 END METHOD.

EmployeeManager can also have additional methods or properties that are not

specified by the interface, such as this one:

 METHOD PUBLIC VOID InitializeNotes (INPUT pcPosition AS CHARACTER):

 /*---

 Purpose: Assign a value to all empty EmployeeNotes.

 Notes: Done for a specific EmployeePosition.

 ---*/

 FOR EACH AutoEdge.Employee WHERE Employee.EmployeePosition = pcPosition:

 Employee.EmployeeNotes = "Initial note for this " + pcPosition.

 END.

 END METHOD.

Programming with ABL Classes in OpenEdge 10 John Sadd

July, 2010 Page 9 of 21

The default destructor and END CLASS statement end the class definition for

EmployeeManager.

 DESTRUCTOR PUBLIC EmployeeManager ():

 END DESTRUCTOR.

END CLASS.

EmployeeClient.cls serves as a test class that creates an instance of

EmployeeManager and invokes its methods.

/*--

 File : EmployeeClient

 --*/

USING Progress.Lang.*.

CLASS OOSamples.EmployeeClient:

The variable oEmpManager holds the object reference to the instance of

EmployeeManager. If this class needs to invoke InitializeNotes, which is not part

of the IDataManager interface, then it must define oEmpManager as of type

EmployeeManager. Otherwise it can define the variable as IDataManager.

 DEFINE PRIVATE VARIABLE oEmpManager AS OOSamples.EmployeeManager.

The constructor invokes the class’s one method, FetchEmployees:

 DEFINE PRIVATE VARIABLE cFilter AS CHARACTER NO-UNDO.

 DEFINE PRIVATE VARIABLE hEmpTable AS HANDLE NO-UNDO.

 CONSTRUCTOR PUBLIC EmployeeClient ():

 SUPER ().

 FetchEmployees().

 END CONSTRUCTOR.

Its FetchEmployees method creates an instance of EmployeeManager, executes

the InitializeNotes and FetchData methods, and displays a message that uses the

RowCount property.

METHOD PRIVATE VOID FetchEmployees():

 DEFINE VARIABLE hEmpBuffer AS HANDLE NO-UNDO.

 oEmpManager = NEW OOSamples.EmployeeManagerAlt().

 oEmpManager:InitializeNotes("SalesRep").

 cFilter = "EmployeePosition = 'SalesRep' ".

 hEmpTable = oEmpManager:FetchData(INPUT cFilter).

 hEmpBuffer = hEmpTable:DEFAULT-BUFFER-HANDLE.

 hEmpBuffer:FIND-FIRST ().

 MESSAGE " Employee "

 hEmpBuffer:BUFFER-FIELD ("EmployeeFirstName"):BUFFER-VALUE

 hEmpBuffer:BUFFER-FIELD ("EmployeeLastName"):BUFFER-VALUE

 " is the first of " oEmpManager:RowCount " employees with "

 cFilter VIEW-AS ALERT-BOX.

 RETURN.

END METHOD.

Programming with ABL Classes in OpenEdge 10 John Sadd

July, 2010 Page 10 of 21

The two-part session on Inheritance and Super Classes shows how to refactor the

EmployeeManager and CustomerManager classes to extract common code from

them and move it into a common super class, called DataManager.cls.

/*--

 File : DataManager

 --*/

USING Progress.Lang.*.

CLASS OOSamples.DataManager:

The RowCount property is common to both employee and customer management, so

it is moved to the super class.

DEFINE PUBLIC PROPERTY RowCount AS INTEGER

GET.

PRIVATE SET.

There are two data values that are used in the super class but must be set in the

respective subclass: the buffer handle of the database table that data is retrieved

from, and the handle of the temp-table buffer that data is copied into. To make these

values available to the super class to use, and to the subclass to set, they are defined

in the super class as protected properties.

DEFINE PROTECTED PROPERTY DB_BufferHandle AS HANDLE

GET.

SET.

DEFINE PROTECTED PROPERTY TT_BufferHandle AS HANDLE

GET.

SET.

Almost all the code from the FetchData method is moved to the super class, with

adjustments to make its references to the database and temp-table buffers dynamic:

 METHOD PROTECTED HANDLE FetchData(INPUT pcFilter AS CHARACTER):

 DEFINE VARIABLE hQuery AS HANDLE NO-UNDO.

 CREATE QUERY hQuery.

 hQuery:SET-BUFFERS (THIS-OBJECT:DB_BufferHandle).

 hQuery:QUERY-PREPARE (pcFilter).

 hQuery:QUERY-OPEN ().

 hQuery:GET-FIRST ().

 DO WHILE NOT hQuery:QUERY-OFF-END:

 TT_BufferHandle:BUFFER-CREATE ().

 TT_BufferHandle:BUFFER-COPY (DB_BufferHandle).

 hQuery:GET-NEXT ().

 END.

 RowCount = hQuery:NUM-RESULTS.

 hQuery:QUERY-CLOSE ().

 DELETE OBJECT hQuery.

 RETURN TT_BufferHandle.

 END METHOD.

Programming with ABL Classes in OpenEdge 10 John Sadd

July, 2010 Page 11 of 21

Most of the executable code can then be removed from CustomerManager.cls,

which is now a subclass of DataManager.cls. The INHERITS phrase tells the

compiler that this subclass inherits common behavior from DataManager.cls.

/*--

 File : CustomerManager

 --*/

USING Progress.Lang.*.

USING OOSamples.IDataManager.

CLASS OOSamples.CustomerManager

 INHERITS OOSamples.DataManager IMPLEMENTS IDataManager:

Because the super class constructor is PROTECTED, some other class outside its

class hierarchy cannot create an instance of DataManager directly (“NEW” it).

However, when another class creates a new CustomerManager, an instance of

DataManager is also created, and both constructors executed:

The static temp-table definition is specific to the table being managed, so that stays

in CustomerManager.cls:

 DEFINE TEMP-TABLE ttCustomer

 FIELD CustomerFirstName AS CHARACTER

 FIELD CustomerLastName AS CHARACTER

 FIELD CustomerBirthCountry AS CHARACTER.

The subclass constructor sets the values of the two protected properties that the

super class uses:

 CONSTRUCTOR PUBLIC CustomerManager ():

 SUPER ().

 DB_BufferHdl = BUFFER AutoEdge.Customer:HANDLE.

 TT_BufferHdl = BUFFER ttCustomer:HANDLE.

 END CONSTRUCTOR.

Programming with ABL Classes in OpenEdge 10 John Sadd

July, 2010 Page 12 of 21

The subclass’s FetchData method now has almost no code if its own. It defines itself

as being an OVERRIDE of a method with the same name in its super class, and then

invokes the common behavior in the super class.

 METHOD PUBLIC OVERRIDE HANDLE FetchData(INPUT pcFilter AS CHARACTER):

 SUPER:FetchData("FOR EACH AutoEdge.Customer WHERE " + pcFilter).

 RETURN TEMP-TABLE ttCustomer:HANDLE.

 END METHOD.

The subclass implementation of FetchData can now invoke the common code in its

super class, so that together they provide a complete implementation of its behavior:

The destructor is still there as a place to put any cleanup code required by

CustomerManager.cls. If there is none, it could be dispensed with.

 DESTRUCTOR PUBLIC CustomerManager ():

 END DESTRUCTOR.

 END CLASS.

In the test class CustomerClient.cls, which creates an instance of

CustomerManager.cls, invokes its FetchData method, and references its

RowCount property, nothing changes. It is unaware that most of the code for

FetchData is now in a super class, and that the property RowCount is defined in

that super class. Factoring out common code into a class hierarchy is transparent to

all other classes, which instantiate and reference only the subclass.

Programming with ABL Classes in OpenEdge 10 John Sadd

July, 2010 Page 13 of 21

 METHOD PRIVATE VOID FetchCustomers():

 DEFINE VARIABLE hBuffer AS HANDLE NO-UNDO.

 oManager = NEW OOSamples.CustomerManager().

 cFilter = "CustomerBirthCountry = 'USA' ".

 hTable = oManager:FetchData(INPUT cFilter).

 hBuffer = hTable:DEFAULT-BUFFER-HANDLE.

 hBuffer:FIND-FIRST ().

 MESSAGE " Customer "

 hBuffer:BUFFER-FIELD ("CustomerFirstName"):BUFFER-VALUE

 hBuffer:BUFFER-FIELD ("CustomerLastName"):BUFFER-VALUE

 " is the first of " oManager:RowCount " Customers with "

 cFilter VIEW-AS ALERT-BOX.

 RETURN.

 END METHOD.

The same changes can be made to EmployeeManager.cls so that it now acts as

another subclass of DataManager.cls. All the common code is now in one place.

/*--

 File : EmployeeManager

 --*/

USING Progress.Lang.*.

USING OOSamples.IDataManager.

CLASS OOSamples.EmployeeManager

 INHERITS OOSamples.DataManager IMPLEMENTS IDataManager:

 DEFINE TEMP-TABLE ttEmployee

 FIELD EmployeeFirstName AS CHARACTER

 FIELD EmployeeLastName AS CHARACTER

 FIELD EmployeePosition AS CHARACTER.

 CONSTRUCTOR PUBLIC EmployeeManager ():

 SUPER ().

 DB_BufferHdl = BUFFER AutoEdge.Employee:HANDLE.

 TT_BufferHdl = BUFFER ttEmployee:HANDLE.

 END CONSTRUCTOR.

 METHOD PUBLIC OVERRIDE HANDLE FetchData(INPUT pcFilter AS CHARACTER):

 SUPER:FetchData("FOR EACH AutoEdge.Employee WHERE " + pcFilter).

 RETURN TEMP-TABLE ttEmployee:HANDLE.

 END METHOD.

 METHOD PUBLIC VOID InitializeNotes (INPUT pcPosition AS CHARACTER):

 FOR EACH AutoEdge.Employee WHERE Employee.EmployeePosition = pcPosition:

 Employee.EmployeeNotes = "Initial note for this " + pcPosition.

 END.

 END METHOD.

The presentation on Encapsulation and Overloading shows an alternative way to

make the two buffer handles available to the super class. It defines them as

PRIVATE variables (data members) in the main block of DataManager.cls, and

accepts the values from the subclass as new parameters to its constructor:

Programming with ABL Classes in OpenEdge 10 John Sadd

July, 2010 Page 14 of 21

DEFINE PRIVATE VARIABLE hDB_BufferHdl AS HANDLE NO-UNDO.

DEFINE PRIVATE VARIABLE hTT_BufferHdl AS HANDLE NO-UNDO.

 CONSTRUCTOR PROTECTED DataManager

 (INPUT phDB_BufferHdl AS HANDLE,

 INPUT phTT_BufferHdl AS HANDLE):

 SUPER ().

 ASSIGN hDB_BufferHdl = phDB_BufferHdl

 hTT_BufferHdl = phTT_BufferHdl.

 END CONSTRUCTOR.

The parameters to the constructor must be assigned to data members in the main

block, because just like any other parameters or variables local to a method, the

constructor parameters cannot be accessed outside the constructor:

In addition, the FetchData method in DataManager.cls is changed to turn it into an

overloaded method rather than an overridden one. This allows its signature to change

so that it accepts two parameters rather than one, which are combined to form the

query prepare string. Its return type is changed to VOID, since the subclass that

invokes it does not need to get back the handle that it previously returned. And

because the remaining FetchData method in the subclass is the one that must

adhere to the PUBLIC signature declared in the interface IDataManager, the

modified version in the super class is made PROTECTED:

 METHOD PROTECTED VOID FetchData

 (INPUT pcDBTable AS CHARACTER ,

 INPUT pcFilter AS CHARACTER):

 DEFINE VARIABLE hQuery AS HANDLE NO-UNDO.

 CREATE QUERY hQuery.

 hQuery:SET-BUFFERS (hDB_BufferHdl).

 hQuery:QUERY-PREPARE("FOR EACH " + pcDBTable + " WHERE " + pcFilter).

 hQuery:QUERY-OPEN ().

 hQuery:GET-FIRST ().

 DO WHILE NOT hQuery:QUERY-OFF-END:

 hTT_BufferHdl:BUFFER-CREATE ().

 hTT_BufferHdl:BUFFER-COPY (hDB_BufferHdl).

 hQuery:GET-NEXT ().

 END.

 RowCount = hQuery:NUM-RESULTS.

 hQuery:QUERY-CLOSE ().

 DELETE OBJECT hQuery.

 END METHOD.

Programming with ABL Classes in OpenEdge 10 John Sadd

July, 2010 Page 15 of 21

The subclasses CustomerManager.cls (shown here) and EmployeeManager.cls

are modifed to remove the OVERRIDE keyword and the SUPER reference when

invoking the super class FetchData, since it is now an overloaded rather and an

overridden method. It would be an error to define a subclass method as an

OVERRIDE when its signature does not match the signature of the method being

overridden.

The compiler distinguishes the two variants now by their differing signatures. The

subclass now passes two arguments to the super class version of FetchData instead

of one:

 METHOD PUBLIC HANDLE FetchData(INPUT pcFilter AS CHARACTER):

 FetchData("AutoEdge.Customer", pcFilter).

 RETURN TEMP-TABLE ttCustomer:HANDLE.

 END METHOD.

In the final presentation on the Object Life Cycle, CustomerClient.cls (shown

here) and EmployeeClient.cls are modified to make their fetch methods PUBLIC,

and to remove their invocation from the constructor. In this way FetchCustomers or

FetchEmployees can be invoked independently of creating the client object itself.

Programming with ABL Classes in OpenEdge 10 John Sadd

July, 2010 Page 16 of 21

Also, the filtering value is now passed in as a parameter, rather than being

hardcoded, to allow different instances of the objects to retrieve different sets of data.

 CONSTRUCTOR PUBLIC CustomerClient ():

 SUPER ().

 END CONSTRUCTOR.

 METHOD PUBLIC VOID FetchCustomers(INPUT pcFilterValue AS CHARACTER).

 DEFINE VARIABLE hBuffer AS HANDLE NO-UNDO.

 DEFINE VARIABLE oManager AS OOSamples.IDataManager.

 DEFINE VARIABLE cFilter AS CHARACTER NO-UNDO.

 DEFINE VARIABLE hTable AS HANDLE NO-UNDO.

 oManager = NEW OOSamples.CustomerManager().

 cFilter = "CustomerBirthCountry = '" + pcFilterValue + "'".

 hTable = oManager:FetchData(INPUT cFilter).

 hBuffer = hTable:DEFAULT-BUFFER-HANDLE.

 hBuffer:FIND-FIRST ().

 MESSAGE " Customer "

 hBuffer:BUFFER-FIELD ("CustomerFirstName"):BUFFER-VALUE

 hBuffer:BUFFER-FIELD ("CustomerLastName"):BUFFER-VALUE

 " is the first of " oManager:RowCount " Customers with "

 cFilter VIEW-AS ALERT-BOX.

 RETURN.

 END METHOD.

A new class AutoEdgeManager now creates instances of both CustomerClient.cls

and EmployeeClient.cls.

/*--

 File : AutoEdgeManager

 --*/

USING Progress.Lang.*.

CLASS OOSamples.AutoEdgeManager:

The new class defines a temp-table to hold references to objects -- running instances

of the other classes that it starts. ObjectNum is just a sequence number.

ObjectType is the name of the client class invoked. ObjectFilter is the filter string

passed in to qualify the WHERE clause applied to the data retrieved into each object.

And finally, the ObjectRef field holds the object reference to each created (NEW’d)

EmployeeClient or CustomerClient object. As a temp-table field, ObjectRef is

required to be defined as the type Progress.Lang.Object, the virtual parent class for

all ABL classes.

 DEFINE TEMP-TABLE ttObject

 FIELD ObjectNum AS INTEGER

 FIELD ObjectType AS CHARACTER

 FIELD ObjectFilter AS CHARACTER

 FIELD ObjectRef AS Progress.Lang.Object.

All classes are subclasses of Progress.Lang.Object, just as EmployeeManager is a

subclass of DataManager:

Programming with ABL Classes in OpenEdge 10 John Sadd

July, 2010 Page 17 of 21

The constructor invokes the class’s one method, StartObjects.

 CONSTRUCTOR PUBLIC AutoEdgeManager ():

 SUPER ().

 StartObjects().

 END CONSTRUCTOR.

StartObjects itself creates two instances of EmployeeClient and two of

CustomerClient, which in turn create instances of their respective manager classes

to retrieve data. The identifying information for each object, including its object

reference, is added to the ttObject temp-table.

 METHOD PRIVATE VOID StartObjects():

 CREATE ttObject.

 ASSIGN ttObject.ObjectNum = 1

 ttObject.ObjectType = "EmployeeClient"

 ttObject.ObjectFilter = "SalesRep"

 ttObject.ObjectRef = NEW OOSamples.EmployeeClient().

 CREATE ttObject.

 ASSIGN ttObject.ObjectNum = 2

 ttObject.ObjectType = "EmployeeClient"

 ttObject.ObjectFilter = "Admin"

 ttObject.ObjectRef = NEW OOSamples.EmployeeClient().

After these first two groups of statements have been executed, these objects are now

in the session:

Programming with ABL Classes in OpenEdge 10 John Sadd

July, 2010 Page 18 of 21

After the next two sets of statements have been executed, these are now two

CustomerClient objects as well as the two EmployeeClient objects:

 CREATE ttObject.

 ASSIGN ttObject.ObjectNum = 3

 ttObject.ObjectType = "CustomerClient"

 ttObject.ObjectFilter = "USA"

 ttObject.ObjectRef = NEW OOSamples.CustomerClient().

 CREATE ttObject.

 ASSIGN ttObject.ObjectNum = 4

 ttObject.ObjectType = "CustomerClient"

 ttObject.ObjectFilter = "Germany"

 ttObject.ObjectRef = NEW OOSamples.CustomerClient().

Next, for each row in the temp-table, the method invokes the correct fetch method.

Because the ObjectRef field is of the generic type Progress.Lang.Object, the code

must CAST the reference to the appropriate type to tell the compiler what type is

actually being referenced. This tells the compiler to allow the type-specific methods

FetchEmployees and FetchCustomers to be invoked.

 FOR EACH ttObject:

 IF ttObject.ObjectType = "EmployeeClient" THEN

 CAST (ttObject.ObjectRef,

 OOSamples.EmployeeClient):FetchEmployees(ttObject.ObjectFilter).

 ELSE IF ttObject.ObjectType = "CustomerClient" THEN

 CAST (ttObject.ObjectRef,

 OOSamples.CustomerClient):FetchCustomers(ttObject.ObjectFilter).

 END.

After the first iteration of the FOR EACH loop, the EmployeeClient object has

created a new EmployeeManager. The AVM transparently creates an instance of

DataManager as well, since that is EmployeeManager’s super class and forms

parts of its behavior and data.

Programming with ABL Classes in OpenEdge 10 John Sadd

July, 2010 Page 19 of 21

After the second iteration of the loop, there are two instances of EmployeeManager,

each with its own instance of DataManager to support it. Runtime optimization may

eliminate the duplication of the code segments of these objects, but each has its own

data, for instance the different contents of the two ttEmployee tables, resulting from

two different filter values being passed in to them.

After the final two iterations of the loop, two instances of CustomerManager have

been created as well, each again with its own DataManager object:

Programming with ABL Classes in OpenEdge 10 John Sadd

July, 2010 Page 20 of 21

The method now deletes each client object it created, which will in turn delete the

corresponding manager object. It also deletes each row from the temp-table.

 FOR EACH ttObject:

 DELETE OBJECT ttObject.ObjectRef.

 DELETE ttObject.

 END.

 RETURN.

 END METHOD.

After the first iteration of the loop, for instance, an EmployeeClient object, along

with its EmployeeManager object and DataManager object, will be gone.

Programming with ABL Classes in OpenEdge 10 John Sadd

July, 2010 Page 21 of 21

Deleting the objects is actually not necessary, because the garbage collection which is

a feature of the ABL support for classes will delete objects automatically when they

are no longer referenced elsewhere in the session.

For a complete description of the principles of object-oriented programming and the

use of classes in ABL that these examples illustrate, please view the videos on PSDN

on the Progress Communities website.

For more comprehensive information on programming with classes in OpenEdge 10,

please read the manual OpenEdge Development: Object-Oriented

Programming, which is part of the OpenEdge documentation set, as well as the

detailed descriptions of the ABL syntax that supports classes, in the ABL reference

manual.

