
September, 2010 Page 1 of 20

USING A STATIC WEB PROJECT FOR AN EXTJS SAMPLE

John Sadd

Fellow and OpenEdge Evangelist

Document Version 1.0

August 2010

Using a Static Web Project for an ExtJS Sample John Sadd

September, 2010 Page 2 of 20

DISCLAIMER

Certain portions of this document contain information about Progress Software Corporation’s

plans for future product development and overall business strategies. Such information is
proprietary and confidential to Progress Software Corporation and may be used by you solely in
accordance with the terms and conditions specified in the PSDN Online (http://www.psdn.com)
Terms of Use (http://psdn.progress.com/terms/index.ssp). Progress Software Corporation
reserves the right, in its sole discretion, to modify or abandon without notice any of the plans
described herein pertaining to future development and/or business development strategies.

Any reference to third party software and/or features is intended for illustration purposes only.
Progress Software Corporation does not endorse or sponsor such third parties or software.

This paper accompanies two videos in a series of presentations that set up a

foundation for building a rich user interface on the desktop to communicate with an

OpenEdge ABL application running on the server. The first of the two videos is entitled

Defining a Static Web Project in Architect to Support the ExtJS Library. It’s

the first of two parts that finally get you all the way to creating the beginnings of a

user interface in a non-OpenEdge open source library. The library chosen for this

example is ExtJS, one of many that you can choose to build a browser-based UI that

can get data and execute business logic in an ABL application. In the first video and

the first part of this paper I show you where to download the library, and then define

a Web project in Architect to hold the content you build using that library.

The company that makes ExtJS also markets an HTML5-based framework for mobile

devices, and they’ve changed their name accordingly, to Sencha, so you’ll find their
website at www.sencha.com.

The product I’m going to introduce you to is their extended JavaScript library for

browser-based UI development, called ExtJS, which you can find in their product list.

ExtJS is what we would term a lightweight AJAX library. Lightweight doesn’t mean

that it doesn’t do much. In fact, ExtJS, as the name implies, is a set of JavaScript

http://www.psdn.com/
http://psdn.progress.com/terms/index.ssp

Using a Static Web Project for an ExtJS Sample John Sadd

September, 2010 Page 3 of 20

extensions that provide support libraries for a large number of very powerful user

interface controls, designed to be very full-featured as well as browser-independent,

so they can save you a tremendous amount of time coding a rich browser-based UI.

We categorize it as lightweight because the empasis is on the UI controls, and not on

providing a substantial framework for structuring your client-side application code. In

any case, you can see that there is both a commercially supported version of ExtJS,

and also a no-charge public release for it:

The fact that there’s a supported release may be of interest to you as you make a

decision among the many libraries that are available. The free public release means

that you can try out the library without any initial investment. There’s also an ExtJS

user interface design tool available (for a fee) to help you get started building a UI

and generating the supporting JavaScript code for it, which could also be a

consideration. In any case, you can download the Public Release from this page.

Once that’s done, you have a zip file with the name ExtJS-3.2.1, or whatever the

latest release is at the time you do this. You need to unzip that file. Then, to make all

the support code it contains available to your work, you can copy or move the top-

level folder to the directory where your Web server looks for static application files. In

the talks in this series on configuring WebSpeed, I installed the Apache HTTP server.

In that case, the target directory for static content is the Apache htdocs directory. I

also renamed the top-level installation folder to just ExtJS without the version

number, so that I can easily add this as part of the pathname of any references I

make to the library in my client-side application.

So below you can see the top level of all the support code that’s installed for ExtJS.

There’s extensive online documentation and examples which you can refer to.

Using a Static Web Project for an ExtJS Sample John Sadd

September, 2010 Page 4 of 20

Now I have an RIA library installed to provide support for a new user interface. If you

want to use a library such as this one, you need to create a special type of project in
Architect to hold the code you build for that interface. Under File -> New ->

Project, you need to create a non-OpenEdge project, since it’s not going to contain

any ABL code. It’s called a Static Web Project. It will hold HTML and supporting

JavaScript files with static content, that is, HTML that is not generated on the fly as

much WebSpeed content is, hence the term static web project.

What’s distinctive about this project type is that you can associate it with an HTTP
server for it to use. For this example I just call the project ExtJSSample.

Using a Static Web Project for an ExtJS Sample John Sadd

September, 2010 Page 5 of 20

The context root on this page of the wizard is the target directory that content will

be published to. If you watched the videos on Architect support for AppServer, it’s

very parallel to that. You develop content in Architect and then some portion of it gets

copied – published – to a directory where the AppServer agents in that case, or the

Web server in this case, will be able to find it to execute. This is illutsrated in this

screenshot:

So ExtJSSample – the default name is just the name of the project I chose --

becomes a subdirectory under htdocs, just like the ExtJS product folder. The Web

content folder name is the source that Architect publishes from – the folder in the

project where you develop static web content. That’s all you have to define for a new

static web project.

Now if you take a look at the properties of the new project, you can select Project

facets. A facet is an aspect of a project type, in effect a unit of functionality that

defines an aspect of the project’s behavior. Here you can see that the Static web

module facet is checked on because this was defined this as a static web project:

Using a Static Web Project for an ExtJS Sample John Sadd

September, 2010 Page 6 of 20

That facet defines this as a project with content that can be published as a static web

module. Note that this isn’t an OpenEdge project, so this isn’t where you put ABL

procedures and classes. The OpenEdge checkbox here is enabled, by the way, but it

probably shouldn’t be, and don’t think about checking that on, because it could cause

unwanted behavior.

Now we’ve got a Web content folder in the project to put code into that will be

published to the Web server. For this example I’m going to import a simple ExtJS

sample into the folder so you can get a small taste of what’s involved in coding with

ExtJS. So under the File menu I Import from the File System.

And then I specify a directory I set up where I have the sample code. Below you can
see first that there’s a javascript folder. ExtJS provides support for building

advanced user interfaces through coding in JavaScript, and using a set of libraries

that define the kinds of controls you want to put into your UI. This is where that code
would go. Then there’s a resources folder. This is where other supporting files such

as css files – Cascading Style Sheets – would go. Then you define HTML files to load

into the browser to make everything happen.

Using a Static Web Project for an ExtJS Sample John Sadd

September, 2010 Page 7 of 20

Viewcustomers.html is a simple HTML file that wraps the extended JavaScript code

to retrieve and display customers from an ABL procedure running on the server. We’ll

take a look at the code for all of this a little later.

The Import has brought the sample files into my project.

It’s worth mentioning here that I didn’t bring all of the ExtJS support code that I
installed into the project as well. All I did was to move it by hand to the same htdocs

folder where the Web server will find my project’s WebContent. I won’t be editing any

of that installation support code, so there’s no need to make it part of the project.

That would only slow down the development process when Architect is doing a build

or searching for content to publish.

The next thing to do is to define a new server to associate with the static web project.

Now in my environment I happen to have the Servers View open already, because in

another of these sessions I use it to define an AppServer connection, but if it isn’t

already open in your session, you can open it by selecting Show View from the

Window menu, and then under Other, and then Server, select the Servers View:

Using a Static Web Project for an ExtJS Sample John Sadd

September, 2010 Page 8 of 20

The screenshot below shows that view with the AppServer connection that I defined

elsewhere. In the same way as I did for the AppServer, I can right-click in the View,

and select New ->Server.

In this case I don’t want an AppServer connection. Instead I expand the Basic node,

and select HTTP Server. This is going to be a definition of my Apache HTTP Server

for Architect to associate with the static web project.

I just set the Server name to HTTPServer, and the way I associate it with my

Apache server is to point it at the htdocs directory that server uses, which is here

under the Apache install location:

Using a Static Web Project for an ExtJS Sample John Sadd

September, 2010 Page 9 of 20

Remember that this is the same location where I moved the ExtJS install, so it can be

found by the server even though it’s not part of the published content in the project.

This next screenshot shows the full pathname to that publishing directory that you

specify in the HTTP Server wizard:

In the following wizard page, the HTTP Port number default of 80 is correct, and I

don’t need a URL Prefix. Note that I leave the option checked to enable publishing to
this server. That will copy code from WebContent to the new folder under htdocs

whenever code in the source folder changes:

Using a Static Web Project for an ExtJS Sample John Sadd

September, 2010 Page 10 of 20

If you watched the AppServer videos, you’ve seen this next page of the new server

wizard before. For an AppServer, it looks for AppServer-enabled projects, those with

that facet checked on. In this case, an HTTP server looks for projects with the static

web module facet checked on, so it finds my new sample project. I add that to the list

of projects associated with this server, and the server definition is complete:

Below you can see the new server in the Servers View. I can expand it, and see the

one project that I have associated with the server. The last button in the Servers

View toolbar over on the right is the Publish button:

Using a Static Web Project for an ExtJS Sample John Sadd

September, 2010 Page 11 of 20

Pressing the Publish button immediately publishes anything it finds in the

WebContent project folder. Now that the initial publish is done, I can go back to the

htdocs folder in the Apache install, and see the ExtJSSample folder under it. This is

what I named as the context root back in the project definition. And here you can see
that the files in the project’s WebContent folder have been copied here:

One more thing to point out is that if you double-click on a server in the Servers

View, an Overview display comes up with a summary of all the settings that have

been defined, including ones that got defaulted. Here you can adjust whether new

and modified content is published automatically, for instance, and how frequently

Architect should check for it:

Using a Static Web Project for an ExtJS Sample John Sadd

September, 2010 Page 12 of 20

This brings us to the end of the content covered in the first part of this two-part video

session on preparing to use ExtJS. The second video session walks you through a few

of the highlights of the kind of code you need to write to use a library like ExtJS, and

shows you the output from a simple example.

Using a Static Web Project for an ExtJS Sample John Sadd

September, 2010 Page 13 of 20

In this part of the presentation on setting up to use the ExtJS library, I examine the

code for a very simple example and show you the output that results from running it.

The first code example shown below is viewcustomers.html. This HTML file is what

actually gets loaded into the browser. In reality it serves as a wrapper around the

extended JavaScript code that defines the UI, which could be embedded here, but is

better to reference as a separate file. I’ll say just a few things about this example.

<html>

<head>

<title>View Customers</title>

<link rel="stylesheet" type="text/css"

 href="/extjs/resources/css/ext-all.css">

<link rel="stylesheet" type="text/css" href="resources/stylesheets/myapp.css">

<script type="text/javascript" src="/extjs/adapter/ext/ext-base.js"></script>

<script type="text/javascript" src="/extjs/ext-all.js"></script>

<script type="text/javascript" src="javascript/viewcustomers.js"></script>

</head>

<body>

<div id="customergrid"></div>

</body>

</html>

Using a Static Web Project for an ExtJS Sample John Sadd

September, 2010 Page 14 of 20

The title is the title of the HTML page; that will show up as the label for the tab

where output is displayed if you run it from Architect.

Next is a link to one of the install files, ext-all.css, where standard support for

cascading style sheets is located. Notice that the pathname to this file starts with
extjs. That’s the installation folder that I renamed ExtJS and moved to htdocs, so

all pathnames here are relative to that directory.

Then there’s a reference to a specific stylesheet of my own, which in this case is just

a placeholder.

The next two references to ext-base.js and ext-all.js are a standard part of ExtJS

definitions, to JavaScript support code the library uses.

Following this there’s a reference to my own JavaScript file, viewcustomers.js,

which you’ve seen in the WebContent javascript directory.

Finally, the div tag is the HTML definition of where the customer grid defined in the

JavaScript gets placed in the overall UI. And that’s it. The rest of the work is done in

the JavaScript.

The next blocks of code show viewcustomers.js, where all the work of defining the

controls and the data access is done.

I’ll just point out a few of the elements of the JavaScript. There’s an example of a
reference to the extended libraries, named Ext. The namespace function lets me

define a namespace for all the elements of my application.

/* repoint the blank image to the local copy */

Ext.BLANK_IMAGE_URL = '/extjs/resources/images/default/s.gif';

/*

 * define the MYAPP namespace that contains all of our application functionality

 */

Ext.namespace('MYAPP');

When I open the code in the Architect editor, an error icon appears to the left of the

line that references Ext.namespace. Why is this here?

Using a Static Web Project for an ExtJS Sample John Sadd

September, 2010 Page 15 of 20

Well, one of the strange things about programming in JavaScript that takes some

getting used to for ABL developers, or developers in most other languages for that

matter, is that a great deal of the definition of a JavaScript class is done on the fly,

dynamically, in executable statements encountered as the file is evaluated. Here in

the code segment shown above, for instance, is the beginning of the definition of a

function in the MYAPP space called app, which defines two variables. The first defines

the URL to the webspeed broker, the same as I defined in Architect when I configured

wsbroker1. That’s how the JavaScript will communicate with the WebSpeed broker

that executes ABL procedures. The second variable APP has a function called init,

which actually defines the grid control. This definition all gets executed dynamically,

so the editor is really not able to help you determine whether your JavaScript is valid

or not. That’s just one of the realities about programming in JavaScript.

/* this defines an object named 'app' which is a result of the function call */

MYAPP.app = function() {

 var WEBSPEED_BASE = 'http://localhost/cgi-

bin/cgiip.exe/WService=wsbroker1/';

 var APP = {

 /*

 * this function should only be called once from the onReady()

method if

 * Ext. This initializes our application and creates the user

interface.

 */

 init : function() {

 /* make sure quick tips are initialized */

 Ext.QuickTips.init();

Further down, you can see the name of an ABL procedure that I’m going to invoke on

the webspeed broker’s URL, so I append the procedure name to the URL.

 var customerURL = WEBSPEED_BASE + 'getcustomers.p';

Using a Static Web Project for an ExtJS Sample John Sadd

September, 2010 Page 16 of 20

Then there’s an HTTPproxy definition, which will establish the connection to

WebSpeed, using its URL together with the name of the procedure to run.

 /* define a proxy to our customers url */

 var customerProxy = new Ext.data.HttpProxy({

 url : customerURL

 });

Then there’s a variable that represents a JsonStore, a place to hold data in the client

in the JSON format – JavaScript Object Notation. OpenEdge supports generating this

format directly from a temp-table or ProDataSet, as you’ll see when we look at
getcustomers.p. The root corresponds to what is identified in the ABL as the

serialize-name, basically a name for the top-level node in the data tree. And the

fields map to fieldnames in the temp-table I’ll populate with customers.

 /* define a local store for holding onto our customers */

 var customerStore = new Ext.data.JsonStore({

 proxy : customerProxy,

 root : 'customers',

 fields : ['Name', 'CustNum', 'Address', 'City',

'State']

 });

Finally we get to the one UI control in the application. It’s an ExtJS GridPanel, a grid

control. The renderTo property is set to customerGrid. That name is the id in the div

tag we looked at back in the html file. So this definition will create an instance of a

grid control that will get displayed where that simple HTML definition says to display

it. The store property is the customerStore defined just above.

 var customerGrid = new Ext.grid.GridPanel({

 renderTo : 'customergrid',

 height : 300,

 width : 500,

 store : customerStore,

Then there’s a series of column definitions for the grid. Each id maps to one of the

field names in the store, which in turn matches a field in the temp-table over in the

ABL we’ll look at in a moment.

 columns : [{

 id : 'Name',

 header : 'Customer Name'

 }, {

 id : 'CustNum',

 header : "Customer Number"

 }, {

 id : 'Address',

 header : "Address"

 }, {

 id : 'City',

 header : 'City'

 }, {

 id : 'State',

 header : 'State'

 }],

Using a Static Web Project for an ExtJS Sample John Sadd

September, 2010 Page 17 of 20

Then there are a couple of specialized property definitions, such as making the grid

single selection.

 sm : new Ext.grid.RowSelectionModel({

 singleSelect : true

 }),

 viewConfig : {

 forceFit : true

 }

 });

Finally here, the load function tells the store to load its data, which it does by

invoking the procedure at the end of the URL.

 customerStore.load();

 }

 };

 return APP;

}();

That’s the end of the init function in app. Ext.onReady gets called to create the UI,

and it invokes this init function to get everything rolling.

/*

 * invoke the 'init' method in our 'app' object. The second parameter is the

 * scope where the method is invoked

 */

Ext.onReady(MYAPP.app.init, MYAPP.app);

So that’s a simple but complete ExtJS UI definition.

Now I’ve been referring to WebSpeed here and the ABL procedures that get run in
that context, so it’s time to take a look at that. I open the WebSpeedSamples project

that I created in another of these presentations.

Using a Static Web Project for an ExtJS Sample John Sadd

September, 2010 Page 18 of 20

My static web project gives me a place to develop HTML and JavaScript code and

publish that code to the Web server. This WebSpeed project represents the other half

of the job. This is where I define ABL code that gets executed in the WebSpeed
broker. The wsbroker1 URL that I defined in the JavaScript example connects the two

together at runtime, but at development time they give me two different Architect

environments to work in, with different characteristics.

Here’s the ABL procedure that the JavaScript will invoke in WebSpeed:

{src/web2/wrap-cgi.i}

output-content-type ("text/json").

define temp-table ttCust like Sports2000.Customer.

temp-table ttcust:serialize-name = "customers".

for each Sports2000.Customer where Customer.CustNum < 10:

 create ttcust.

 buffer-copy Customer to ttcust.

end.

temp-table ttCust:write-json("stream", "webstream", true).

It uses the standard CGI wrapper include file that’s part of WebSpeed.

It defines the output content type as being Json.

Then it defines and populates a temp-table with a few customer records. Remember
the root property of the customerStore back in the JavaScript? That corresponds to

the serialize-name here in the ABL, a header for the data in the temp-table as it

gets converted to JSON.

Finally, the write-json built-in ABL function executes on the temp-table, and in a

single statement, converts the data in the temp-table to JSON format and writes it to
the webstream where it is returned to the customerStore defined in

viewcustomers.js. So once you get the support pieces set up, the process is really

very straightforward and well supported by the features of OpenEdge 10.

In my testing environment I also have the Server Monitor View open from my work

with AppServer, and in that view, which you could also open from the Open View

option on the Window menu, there’s a button to provide access to OpenEdge

Explorer from within Architect. You can drill down in Explorer to the WebSpeed node,
select the default WebSpeed broker, wsbroker1, then select Broker Control, and

Start WebSpeed.

Using a Static Web Project for an ExtJS Sample John Sadd

September, 2010 Page 19 of 20

Once I confirm that the broker is now active, I can go back to my static web project,

select the viewcustomers.html file that represents the top of my client application,

and run it:

I get prompted whether I want to run it as an OpenEdge Application or on a

Server. Of course I want to run it on my HTTP Server. My one HTTP Server is

displayed, and that’s the one I always want to use for files in this project. That’s as

much as I need to specify:

Using a Static Web Project for an ExtJS Sample John Sadd

September, 2010 Page 20 of 20

Now viewcustomers.html is loaded, invokes viewcustomers.js, which loads its

customerStore by running getcustomers.p in the webspeed broker, and voila. Below

you can see the HTML page displayed right here in Architect, with the Extended

JavaScript gridPanel control displayed in the customergrid slot in the HTML:

And that’s all there is to it.

This two-part session covers a lot of territory, and certainly there’s a lot to learn with

any of the RIA libraries and frameworks that are available. But I hope the key

message of this presentation is clear: that OpenEdge 10 provides the language

elements that you need share to data with many client-side environments, as JSON or

in other standard formats, and OpenEdge Architect lets you define the kinds of

projects and servers you need to use to do development of all the different pieces of a

distributed application with a modern user interface.

