
September, 2010 Page 1 of 21

CREATING AND DEPLOYING ABL WEB SERVICES

John Sadd

Fellow and OpenEdge Evangelist

Document Version 1.0

August 2010

Creating and Deploying ABL Web Services John Sadd

September, 2010 Page 2 of 21

DISCLAIMER

Certain portions of this document contain information about Progress Software Corporation’s

plans for future product development and overall business strategies. Such information is
proprietary and confidential to Progress Software Corporation and may be used by you solely in
accordance with the terms and conditions specified in the PSDN Online (http://www.psdn.com)
Terms of Use (http://psdn.progress.com/terms/index.ssp). Progress Software Corporation
reserves the right, in its sole discretion, to modify or abandon without notice any of the plans
described herein pertaining to future development and/or business development strategies.

Any reference to third party software and/or features is intended for illustration purposes only.
Progress Software Corporation does not endorse or sponsor such third parties or software.

This document accompanies two of the presentations that present different aspects of

extending an OpenEdge application to take advantage of today’s tools for building

Rich Internet Applications. The first of the two sessions, entitled Installing and

Configuring the Tomcat Web Server and the OpenEdge Web Services Adapter

shows how to install the Apache Tomcat Web Server to use with the OpenEdge

WebServices Adapter, in preparation for running OpenEdge procedures as services

from other applications. The second session, on Deploying and Running an ABL

Procedure as a Web Service, completes the process of exposing an ABL procedure

as a Web service for access from other applications.

OpenEdge Web services are one way to invoke ABL data management and business

logic procedures from a separately defined user interface. There are many choices

you can make among third party Web servers that act as a Java Servlet Engine, which

can then host the OpenEdge Web Services Adapter to allow other applications to run

ABL procedures as Web services. One of the most popular is Tomcat, one of the

Apache projects. And since OpenEdge now ships with a script to help you configure

Tomcat, this document and the presentation it accompanies show you how to install

Tomcat and use that OpenEdge install script to get you started.

At the URL apache.tomcat.org, you can select the latest Tomcat release from the

Downloads area.

http://www.psdn.com/
http://psdn.progress.com/terms/index.ssp

Creating and Deploying ABL Web Services John Sadd

September, 2010 Page 3 of 21

If you scroll down to see the download options, you can select the zip file from the

Core list, and save that zip file to a folder on your machine where you want to install

Tomcat.

Once the download is done, you need to define a couple of environment variables for

the configuration script to use. In Windows Explorer, you can right-click on the My

Computer node, select Properties, and then the Advanced tab, and Environment

Variables.

The first new one you need is to establish the home directory for the Tomcat install.

The code name, if you will, for Tomcat, which is also the name of a batch file you use

to start and stop the web server, is catalina, so the script identifies the home
directory as CATALINA_HOME. You assign this the value of the folder under your

Tomcat installation directory where you will extract the zip file. The second new
environment variable establishes the JAVA_HOME directory for the configuration file to

use. And that is the jre sub-directory under wherever you installed OpenEdge.

Creating and Deploying ABL Web Services John Sadd

September, 2010 Page 4 of 21

That takes care of the two new environment variables the script needs. Once that’s

done you can extract the contents of the zip file. After that has completed, you need
to open a batch window, which can be a proenv window as shown here, to run the

script from. Change to the bin directory under the OpenEdge install.

Enter OE_TC, for OpenEdge Tomcat. This is the name of the .bat file shipped with

OpenEdge that does the configuration for you. Note that this script also operates on

the Tomcat install zip file directly, if it hasn't been extracted already. The script does

all the work to configure Tomcat as your Web server, including establishing the

OpenEdge Web Services Adapter (WSA) as a Web application in Tomcat.

The WSA is a program supplied with OpenEdge that runs as a Java Servlet in the Web

server. It provides the connectivity between the OpenEdge AppServer and the

procedures.

Creating and Deploying ABL Web Services John Sadd

September, 2010 Page 5 of 21

The script does all the work to configure Tomcat as your Web server, including

standard Web service requests that others will use to access your ABL procedures.

After confirming that you want to configure Tomcat now, enter the directory where

you downloaded the Tomcat zip file.

Once the configuration script runs to completion, switch to the bin directory under

the Tomcat install directory. The .bat file that starts and stops Tomcat is called

catalina.bat, so to start the web server, you type catalina start. The Web server

startup information comes up in a separate window, and after a few seconds, it

should display INFO: Server startup in (so many) milliseconds.

Creating and Deploying ABL Web Services John Sadd

September, 2010 Page 6 of 21

You can minimize that window, but don’t close it for as long as you want the Web

server to run.

Back in the proenv window, you can see that the catalina script has run to

completion and confirmed some of the relevant environment variables.

The OE_TC script that comes with OpenEdge is also designed to set up Tomcat for use

as the Web server for WebSpeed as well, but the Apache HTTP Server is a more

popular choice for WebSpeed, so this session doesn’t go into the WebSpeed side of

the configuration script, and the presentations in this series that focus on WebSpeed

use the Apache Web server.

In any case, you can quickly verify that Tomcat is running. Unless you configure it

otherwise, it runs on port 8080, so if you enter that port number on localhost as a

URL, you see a confirmation page downloaded from the Apache site that the web

server is set up successfully:

Creating and Deploying ABL Web Services John Sadd

September, 2010 Page 7 of 21

If you then add wsa and the default OpenEdge Web Services Adapter wsa1 to that

URL, you get a confirmation message from the WSA that you’re communicating with it

as well:

Now that Tomcat is installed and configured, you can go back into OpenEdge Explorer
and take a look at the properties for the default Web Services Adapter, wsa1. If you

expand the Web Services Adapter group for OpenEdge and select wsa1, then under

Configuration, you can see the URL used to access the WSA.

Creating and Deploying ABL Web Services John Sadd

September, 2010 Page 8 of 21

You can verify that it’s set to 8080, or whatever port number your web server uses,

and also set more advanced properties. Back on the main wsa1 page, you can then

select the Control link, and confirm that the WSA is enabled and active.

Creating and Deploying ABL Web Services John Sadd

September, 2010 Page 9 of 21

In the second part of this two-part session I show how to deploy an ABL procedure as

a Web Service and invoke it from another ABL test procedure. I start with about the
simplest possible ABL procedure, called testcust.p. This is also used in a similar

example from another session to verify that the OpenEdge default AppServer is

running properly.

/* TestCust.p:

 Test procedure for AppServer and WebServices call. 10/07 */

DEFINE INPUT PARAMETER pCustNum AS INTEGER NO-UNDO.

DEFINE OUTPUT PARAMETER pCustName AS CHARACTER NO-UNDO.

DEFINE NEW GLOBAL SHARED VARIABLE giCallCount AS INTEGER NO-UNDO.

giCallCount = giCallCount + 1.

IF pCustNum = 1 THEN

DO:

 pCustName = "Test Name".

 RETURN "Success!".

END.

ELSE DO:

 pCustName = "No Name".

 RETURN "Failure!".

END.

It takes a customer number as input, and passes back a string as if it were a
customer name from the database, along with a RETURN-VALUE from the ABL RETURN

statement.

So how do you set this up to be called as a Web service? First, you need to make your

ABL procedures accessible through an OpenEdge AppServer to make them callable as

Web services.

Creating and Deploying ABL Web Services John Sadd

September, 2010 Page 10 of 21

The AppServer is designed to handle requests that come directly from OpenEdge

clients. To adapt it to receive requests as Web services, you need to insert a Web

server into the mix. As shown earlier, this example uses the Apache Tomcat Web

server. The Web server holds the Web Services Adapter (WSA), a program supplied

with OpenEdge that runs as a Java Servlet in the Web server. The OpenEdge Proxy

Generator, ProxyGen for short, generates the Web Service Application Descriptor

(WSAD) and a test WSDL (Web Service Descriptor Language document) to use in

deploying and testing the service. At runtime, a request comes in from a Web service

client into the Web server, in the form of a SOAP request. The request is routed to the

AppServer and your ABL procedure, and output returned to the caller as another

SOAP message. All the message construction and formatting is taken care of for you.

You start ProxyGen from the OpenEdge Start group, and under the File menu, select

New.

What you’re defining is called an application, and for a non-persistent procedure --

one without multiple named internal entry points -- you define an AppObject. The
example uses one called testcust. You need to adjust the Propath so that the

compiled ABL code will be found, which is here in the WebSamples folder. Next you

need to define what Procedures are part of the AppObject.

Creating and Deploying ABL Web Services John Sadd

September, 2010 Page 11 of 21

There’s only one, and it’s a non-persistent procedure, so you select Add, and the r-

code for the test procedure:

You add that to the AppObject. One more thing you need to do in this example is

allow for the ABL RETURN-VALUE that testcust.p uses. This is under the Customize

option for the procedure.

Creating and Deploying ABL Web Services John Sadd

September, 2010 Page 12 of 21

Check on the option to return the ABL RETURN-VALUE. It can’t be returned implicitly,

as it is from one ABL procedure to another procedure that calls it directly, so it will be
passed as an additional output parameter called result.

Now you need to generate the proxy for this new AppObject.

This creates all the pieces reviewed in the diagram of what a Web service call

requires. ProxyGen can create proxies for many different kinds of external access to

an OpenEdge session, but this one is a Web service.

Creating and Deploying ABL Web Services John Sadd

September, 2010 Page 13 of 21

The procedure is deployed where the standard AppServer, asbroker1, can run it, so

you need to specify that here. You tell ProxyGen where the generated output should

go, and enter any values for the Author and Version. You want the service to run

without binding the AppServer session it gets run on, so make sure the Session

Model is set to Session-Free.

Now you enter information specific to the Web Service proxy type. Every service has

to have a namespace that uniquely identifies it. In this example I use one that

identifies it as a Progress service, under my username. This becomes part of the

identification of the service when it’s called. You also need to specify the URL that

identifies the port number the Web server will be running on.

Creating and Deploying ABL Web Services John Sadd

September, 2010 Page 14 of 21

Since this example uses Tomcat as the Web server, that runs on port 8080. And the

service will be deployed on the default Web Services Adapter for OpenEdge, wsa1.

There’s no specific SOAP Action needed, so that can be left set to Blank.

The WSDL Style tells ProxyGen which of several XML formats to use for the
parameters to the request. The Doc/Literal style uses a standard XML format to

represent all of the parameters as a single XML element. If you choose this style,

ProxyGen does the necessary formatting for you, and the Web service consumer is

informed that this is the style to expect, so there’s no work for you to do. This is

generally the recommended choice.

By default ProxyGen furnishes a suffix of Obj foreach PortType name -- representing

a set of related operations that the Web service supports -- and Service for each

service name, so you can leave those as they are.

The Generate Test WSDL option gives you a WSDL definition document at

development time that you can inspect (using the WSDL Analyzer). You tell ProxyGen

where you want it to save the files it creates, and it’s done.

Creating and Deploying ABL Web Services John Sadd

September, 2010 Page 15 of 21

So that’s the job ProxyGen does, creating the descriptor files the Web server will use

to route a request to the right AppServer and the right ABL procedure. OpenEdge

Explorer reads the Web Service Mapping file that is part of what ProxyGen created,

and uses this to deploy the procedure as a service.

To examine the AppServer and Web Services Adapter, open OpenEdge Explorer from

the OpenEdge start menu, expand the OpenEdge group, and the list of AppServers.
The example specified in ProxyGen that it would be accessing testcust.p as a

service from the default broker, asbroker1, so you can just confirm that it’s active. If

it isn’t, you could activate it here.

Under the Web Services Adapter group, you can select the default Adapter, wsa1,

and activate it if needed. Next you need to deploy the new Web service to wsa1. To

do this you select the Deploy link. The one value you have to fill in is the Web

Service Mapping (WSM) file name that came from ProxyGen. There’s no Browse

button to use to locate the file, so you have to type in the pathname, and submit the

change.

You can then review the deployment information, which is everything that was

specified in ProxyGen.

Creating and Deploying ABL Web Services John Sadd

September, 2010 Page 16 of 21

Pressing Submit again, you see that Explorer confirms that the service has been

deployed, so it’s ready to enable.

Scrolling down in the wsa1 page, you can see a list of all the deployed services. If

there’s more than one deployed service, you can select one from the dropdown list

and click Select. Then you click the Status Enablement link.

Creating and Deploying ABL Web Services John Sadd

September, 2010 Page 17 of 21

You then click Enable to enable it to be run as a Web service.

This sequence shows the role Explorer plays: to read the output from ProxyGen and

use that to set up the procedure to be run on an AppServer, accessed through a Web

server using the OpenEdge Web Services Adapter.

Now I’ll show a simple example of how to get help in writing a procedure that will

invoke the Web service. Of course, you wouldn’t normally run an ABL procedure from

another ABL procedure as a Web service – you could just run it directly on the

AppServer – but this example does that just to test that it works. In ProxyGen, I had

checked the option that said to generate a test WSDL, the descriptor document. You

can use the test WSDL to help code a procedure that runs the Web service.

To access the test WSDL document, you can start a proenv window from OpenEdge,

and set your directory to where all the generated proxy elements are. There’s an

OpenEdge utility to interpret a WSDL document for you and generate sample code
and documentation, and it’s called: b-for-batch pro-for –progress wsdl and doc for

documentation, bprowsdldoc, and it takes the WSDL document that came out of

ProxyGen as an argument. This is the same tool you would use to analyze the WSDL

that describes a non-OpenEdge service that you wanted to run from an ABL

Creating and Deploying ABL Web Services John Sadd

September, 2010 Page 18 of 21

application. The utility generates a set of HTML files that provide detailed

documentation of the service for you. The top-level file is always named index.html,

so if you generate more than one of these for different services, make sure to put

them into different directories.

If you open index.html, it comes up in your browser. Remember that the call that’s

defined in my application is called a Port Type, and it has Obj as a generated

extension.

If you select the testcustObj link, you see detailed documentation for the service.

Scrolling down, there’s an example of how the procedure testcust would look as an

internal procedure in my AppObject, with its parameters. The result output

parameter represents the ABL RETURN-VALUE that I specified. And remember that in

reality, testcust is an external .p, so calling it won’t bind the AppServer session it

runs on; it’s just represented as an entry point in the Web service.

Creating and Deploying ABL Web Services John Sadd

September, 2010 Page 19 of 21

Scrolling down further, there are sample ABL statements for creating a server

instance to connect to the Web service, connecting to the service, and running the
testcust entry on that server. All this is very parallel to making an ordinary

AppServer call.

Looking down further, the example shows both the code you would write to invoke

the service as if it were a function and as if it were an internal procedure, even

though it’s actually a stand-alone .p.

Creating and Deploying ABL Web Services John Sadd

September, 2010 Page 20 of 21

So based on sample code like what the WSDL documenter tool generates, you can
create a test procedure such as the following to run testcust from an OpenEdge

client:

/* RunTestCust_WS.p:

 Test procedure to run TestCust.p as a Web service */

DEFINE VARIABLE pCustNum AS INTEGER NO-UNDO.

DEFINE VARIABLE result AS CHARACTER NO-UNDO.

DEFINE VARIABLE pCustName AS CHARACTER NO-UNDO.

DEFINE VARIABLE hWebService AS HANDLE NO-UNDO.

DEFINE VARIABLE hTestCustObj AS HANDLE NO-UNDO.

DEFINE VARIABLE lStatus AS LOGICAL NO-UNDO.

DEFINE NEW GLOBAL SHARED VARIABLE giCallCount AS INTEGER NO-UNDO.

giCallCount = 1.

pCustNum = 1.

Here’s the CREATE SERVER statement, and the CONNECT statement with the full

identifier for the service in its namespace.

CREATE SERVER hWebService.

lStatus = hWebService:CONNECT("-WSDL

'http://localhost:8080/wsa/wsa1/wsdl?targetURI=urn:services-progress-

com:john:testcust'").

MESSAGE "Connected? " lStatus VIEW-AS ALERT-BOX.

IF lStatus THEN

DO:

 RUN testcustObj SET hTestCustObj ON hWebService.

 MESSAGE "After RUN TestCustObj, handle is " hTestCustObj VIEW-AS ALERT-BOX.

 RUN testcust IN hTestCustObj(INPUT pCustNum, OUTPUT result, OUTPUT pCustName).

 MESSAGE "Status: " RESULT SKIP

 "Cust Name is " pCustName SKIP

 "Call count is " giCallCount

 VIEW-AS ALERT-BOX.

 hWebService:DISCONNECT().

END.

DELETE OBJECT hTestCustObj NO-ERROR.

DELETE OBJECT hWebService NO-ERROR.

Creating and Deploying ABL Web Services John Sadd

September, 2010 Page 21 of 21

When you run the test procedure, you get connected to the Web service, then see a

message confirming that you got a valid handle back, representing the running

instance of the service, and then get back the expected output values:

The call count of 1 verifies that my calling procedure and the called procedure are

running in separate OpenEdge sessions, so they’re looking at different copies of the

global variable that’s incremented in both places.

In conclusion, although there are a number of steps involved in setting up a

procedure to be invoked as a Web service, ProxyGen does most of the work for you,

and OpenEdge Explorer lets you easily deploy the services you create on an

OpenEdge Web Services Adapter. Once they’re set up, any other application running

in any language on any platform can invoke them over the Internet. That’s the value

of our Web services support in OpenEdge.

