
December, 2010 Page 1 of 11

INTRODUCING AJAX

John Sadd

Fellow and OpenEdge Evangelist

Document Version 1.0

December 2010

Introducing AJAX John Sadd

December, 2010 Page 2 of 11

DISCLAIMER

Certain portions of this document contain information about Progress Software Corporation’s

plans for future product development and overall business strategies. Such information is
proprietary and confidential to Progress Software Corporation and may be used by you solely in
accordance with the terms and conditions specified in the PSDN Online (http://www.psdn.com)
Terms of Use (http://psdn.progress.com/terms/index.ssp). Progress Software Corporation
reserves the right, in its sole discretion, to modify or abandon without notice any of the plans
described herein pertaining to future development and/or business development strategies.

Any reference to third party software and/or features is intended for illustration purposes only.
Progress Software Corporation does not endorse or sponsor such third parties or software.

This document accompanies one of a series of presentations on extending your

OpenEdge application by creating a rich browser-based user interface. Other sessions

in this series introduce specific control libraries that provide a rich user experience,

based on AJAX. So in this session I talk a little about what is going on under the

covers when you use a framework or library that uses AJAX.

Perhaps the trickiest thing to understand is that AJAX isn’t a language or a new

technology, but really more of a technique for combining other existing technologies

to achieve a very significant goal. What the word stands for tells us something about

what makes it up. The A is for asynchronous, meaning that you can send requests

to the server without blocking until a response comes back. This is a key aspect of an

AJAX client, but it’s not absolutely required. You can have synchronous AJAX

requests, as I’ll show you a little later.

The J is for JavaScript. This is the key element of an AJAX user interface definition.

You can have JavaScript embedded in an HTML page in a browser, or a page can

reference external JavaScript files. Either way, it’s the essential programming

element. The second A is just for and, to make the acronym pronounceable.

The final X is for XML, as a data representation. This is not the the only choice either.

You can create AJAX front ends that receive and parse data as JSON, JavaScript

Object Notation, or as HTML, or in other formats. I’ll use XML for the example in this

session, but if you look at the ExtJS sessions in this series, for example, you’ll see

that that support library uses JSON. The key value of AJAX is that it runs in the

browser, but it makes the UI you build to run in the browser act more like a desktop

application.

So what are the key technologies used in an AJAX client?

First, as mentioned, there’s JavaScript, which can be embedded in the HTML for a

page, or coded in separate script files.

Then there’s CSS, the Cascading Style Sheet language that lets you format the UI

details however you like.

http://www.psdn.com/
http://psdn.progress.com/terms/index.ssp

Introducing AJAX John Sadd

December, 2010 Page 3 of 11

The key element for parsing retrieved data is the DOM, the Document Object Model,

which lets you in effect walk the widget tree of a response containing data to locate

data elements as you need them for display or client-side UI logic.

Finally, the one unique element is an object with the name XMLHttpRequest. This is

the object that the browser needs to support in order for an AJAX client to function.

So what makes an AJAX client different from the traditional interaction between a

browser client and server? In a typical HTML client, the user fills in values on an HTML

form, submits a request to the server, and then blocks waiting for a response. That’s

the synchronous part. Then the response comes back in the form of a complete

replacement for the HTML page, which is a lot of overhead and can make the user

interface experience very clunky and visually broken up:

By contrast, an AJAX front end has two key advantages. When the UI needs to

interact with the server, it sends an event to the part of the client that represents the

AJAX engine, basically the support for the XMLHttpRequest object. This sends a

request off to the server, but control is immediately returned to the UI, so that the

user can keep working for the typically short period until a response comes back.

That’s the asynchronous part. Then when the response comes back, it is not a full

replacement for the HTML page, but simply the data needed to fill in the right spots in

the form. This reduces network traffic, and provides a more seamless, natural flow to

the user experience.

Introducing AJAX John Sadd

December, 2010 Page 4 of 11

Take a look at what happens when the client needs data from the server. The UI code

in the browser sends a request via the XMLHttpRequest object. It’s aptly named,

because its job is to send requests to the server via HTTP, although not always using

XML.

The XMLHttpObject then routes the request to the Web server. This is basically the

same step whether the Web server is supporting WebSpeed to run OpenEdge

procedures, or using proxies to run .p’s as web services. OpenEdge supports both. In

either case, the Web services adapter or WebSpeed messenger routes the request to

an ABL procedure, and the response data comes back -- in the form of output

parameters in the case of a Web service request, or content posted to the webstream

in the case of WebSpeed.

The data is then sent back to the request object on the client. The JavaScript code in

the client must define a callback function to execute when a response comes back.

This function interacts with the UI to display returned data values or make whatever

changes are needed in the UI based on the response. That’s basically the complete

cycle, as illustrated here:

Introducing AJAX John Sadd

December, 2010 Page 5 of 11

Take a look at a concrete example to get a better idea of what’s involved. The

example uses WebSpeed to communicate with ABL procedures on the server,

supported by the Apache HTTP server. In OpenEdge Explorer, you can quickly review

a few settings that need to be correct. Drilling down to the WebSpeed group, you can

look at wsbroker1, and its configuration information, in particular a couple of agent

properties that need to be set right. The example accesses the OpenEdge sports2000

database, so you need to establish a connection to the database server. In addition,

the ProPath needs to hold the directory where the OpenEdge Architect project stores

the procedures that get run on the server.

Once that’s all checked out, you can start the WebSpeed broker.

Take a look at the ABL procedure that’s going to be run on the server when the client

needs data. It’s a variation on a simple procedure used in the example for the ExtJS

controls library. That library uses JSON as its standard data exchange format, but you

can do the same thing just as easily with XML. Here is a description of what the ABL

statements are doing.

/* getcustomers_param.p */

{src/web2/wrap-cgi.i}

OUTPUT-CONTENT-TYPE ("text/xml").

DEFINE TEMP-TABLE ttCust LIKE Sports2000.Customer.

TEMP-TABLE ttcust:SERIALIZE-NAME = "customers".

FIND Sports2000.Customer WHERE Customer.CustNum =

 INTEGER(get-value("piCustNum")).

CREATE ttCust.

BUFFER-COPY Customer TO ttCust.

TEMP-TABLE ttCust:WRITE-XML("stream", "webstream", true).

Introducing AJAX John Sadd

December, 2010 Page 6 of 11

The wrap-cgi include file provides hooks to the WebSpeed support the procedure

needs, and the next statement confirms that the output format to the web stream is

going to be XML.

The procedure defines a temp-table and sets its SERIALIZE-NAME, which is in effect

the header for the returned XML data, to customers.

Then it takes advantage of a standard WebSpeed function, get-value, which extracts

an input parameter by name from the URL passed from the client, and uses that to

find a specific customer.

It copies that one row to the temp-table, and the built-in ABL WRITE-XML function

converts the temp-table data to XML and sends it back over the webstream.

That simple procedure represents all the business logic that would be on the backend

of the application. The other half is defined in the OpenEdge Architect WebSamples

project. The example is an HTML file with some embedded Javascript, which lets the

user enter a customer number, pass it to the Web server, and get some customer

data back for display.

Take a look at some of the elements of this example. At the top is a script tag

identifying the embedded JavaScript.

<!--

Program AjaxCustWebParam.html

Uses WebSpeed to run getcustomers_param.p,

 passing in the selected customer number.

-->

<html>

<head>

<script type="text/javascript">

At the end of the file, there is a simple data entry form, defined in HTML, that defines

a CustNum field with a label, and says that on change of the value in that field, it runs

the function LoadXMLdoc.

<!-- This is the little data entry form where CustNum is captured: -->

<form action="javascript:void(0)">

<fieldset style="width:600px">

<legend>Please Select a Customer</legend>

<label for="custnum">Customer Number:</label>

<input type="text" name="custnum" id="custnum"

 onchange="loadXMLDoc()" />

</fieldset>

</form>

<pre id="custinfo" style="width:400px"></pre>

</html>

There’s also a section defined using the pre tag (for pre-formatted data) called

custinfo where the data that comes back gets formatted and displayed.

Looking back at the remainder of the file, here’s the definition for the JavaScript

function loadXMLdoc, which gets run when the user enters a customer number.

Introducing AJAX John Sadd

December, 2010 Page 7 of 11

/* This is run on leave of the custnum field in the form: */

function loadXMLDoc()

{

if (window.XMLHttpRequest)

 {// code for IE7+, Firefox, Chrome, Opera, Safari

 xmlhttp=new XMLHttpRequest();

 }

else

 {// code for IE6, IE5

 xmlhttp=new ActiveXObject("Microsoft.XMLHTTP");

 }

The first thing the function has to do is to create an instance of the XMLHttpRequest

object. This reveals the first interesting wrinkle in the programming required when

you’re using AJAX without the support of one of the control libraries that are built on

it. Not all browser versions support the object in the same way. AJAX has been

around long enough now that pretty much all modern browsers support it, but at it

happens, Microsoft did not support the object until Internet Explorer version 7. So

this code checks to see if the object is defined by the browser, and if it is, creates an

instance of it in the usual way. For older versions of IE, it instead creates it as an

ActiveX control, which is how Microsoft supported the behavior before IE7. This is a

good example of one of the key services that any controls library built on AJAX

provide: allowing for various differences in browsers that would give you major

headaches if you tried to write all the supporting code yourself.

The next code fragment shows an essential feature of the XMLHttpRequest object.

The object defines an onreadystatechange property. When a request is passed

through the object, there are several intermediate states that it goes through,

numbered 0 through 3. You don’t need to worry about these, and in fact some

browsers don’t even report all of them, but the important thing is that when the

response from the server is complete and is ready to process, the state gets set to 4,

so the function checks for that. The second key property here is the status. Basically

there are just two status values you care about: 200 means success, and the familiar

HTML error 404 means failure. If both of these properties have the appropriate value,

the function proceeds with its work.

xmlhttp.onreadystatechange=function()

 {

 if (xmlhttp.readyState==4 && xmlhttp.status==200)

 {

Then the code looks at the response that comes back as an XML document, and saves

that off as a string called custXML.

/* This is the XML document that comes back

 through the webstream: */

 var custXML = xmlhttp.responseXML.documentElement;

Next the code constructs another string that formats the customer number, name and

address that get returned in the XML response into a form with labels that we can

then display in the HTML:

var custRec =

 '<table>' +

 '<tr>' +

Introducing AJAX John Sadd

December, 2010 Page 8 of 11

 '<th align="left">Customer Number: </th>' +

 '<td>' +

 document.getElementById("custnum").value +

 '</td>' +

 '</tr>' +

 '<tr>' +

 '<th align="left">Customer Name:</th>' +

 '<td>' +

 custXML.getElementsByTagName("Name")[0].

 firstChild.nodeValue +

 '</td>' +

 '</tr>'+

 '<tr>' +

 '<th align="left">Address:</th>' +

 '<td>' +

 custXML.getElementsByTagName("Address")[0].

 firstChild.nodeValue +

 '</td>' +

 '</tr>';

Note the use of the DOM function getElementById, an example of the role the DOM

plays in helping you parse the response that comes back as a single complex

document from the server.

As the final step in processing the response, the custinfo slot in the display is filled in

with this formatted information showing the three customer fields being displayed.

 document.getElementById("custinfo").innerHTML = custRec;

That’s the end of what happens when the readystate is 4 and the status of 200

indicates success. The next statement in the loadXMLdoc function is this one, which is

executed when the user first enters a custnum value and tabs out of that field in the

form.

/* This captures the custnum entered and submits it to WebSpeed: */

var custval = document.getElementById("custnum").value;

The custnum value – which was defined in this bit of the code we looked at earlier --

is retrieved from the form. Then comes the key step in using the XMLHttpRequest

object, the open method, which sets up the HTTP request.

xmlhttp.open("GET",

 "cgi-bin/cgiip.exe/WService=wsbroker1/getcustomers_param.p?piCustNum="

 + custval, true);

xmlhttp.send();

Open takes three parameters. The first can be GET or POST, and for now I’ll just say

that GET is sufficient for most cases. The second is the URL of the service you want

to run on the backend. In this case, using WebSpeed, it’s the location of the

WebSpeed broker relative to the cgi-bin directory for the Apache Web server, plus the

name of the ABL procedure relative to WebSpeed’s ProPath, plus in this case the

Introducing AJAX John Sadd

December, 2010 Page 9 of 11

parameter being passed in, named piCustNum, attached to the custval value

retrieved from the input form.

Now piCustNum is a little misleading as a name for the value, first because it’s not

actually passed as an INPUT parameter to the ABL procedure, and second, because as

part of the URL, it’s just passed as a string, not an integer. As a reminder, here’s how
that value is handled in the ABL procedure on the backend. The WebSpeed get-value

function retrieves it from the URL, and the ABL INTEGER function converts it from a

string to an integer to use in the FIND statement.

The third parameter to the open method is true if you want the request to be

asynchronous, and false otherwise. Normally you’ll set this to true to take advantage

of that feature of AJAX. Once the request is set up, the send method makes the HTTP

request. Then the embedded function that acts as the event handler for the state

change event waits for the state to go to 4, to process the response. And that’s the

end of loadXMLdoc.

For clarity, and in caser you want to copy and paste this code as the starting point for

your own example, the entire HTML file is repeated here:

<!--

Program AjaxCustWebParam.html

Uses WebSpeed to run getcustomers_param.p,

 passing in the selected customer number.

-->

<html>

<head>

<script type="text/javascript">

/* This is run on leave of the custnum field in the form: */

function loadXMLDoc()

{

if (window.XMLHttpRequest)

 {// code for IE7+, Firefox, Chrome, Opera, Safari

 xmlhttp=new XMLHttpRequest();

 }

else

 {// code for IE6, IE5

 xmlhttp=new ActiveXObject("Microsoft.XMLHTTP");

 }

xmlhttp.onreadystatechange=function()

 {

 if (xmlhttp.readyState==4 && xmlhttp.status==200)

 {

 /* This is the XML document that comes back

 through the webstream: */

 var custXML = xmlhttp.responseXML.documentElement;

 /* And this is a little formatted display of

 custnum, name, and address: */

 var custRec =

 '<table>' +

 '<tr>' +

 '<th align="left">Customer Number: </th>' +

 '<td>' +

 document.getElementById("custnum").value +

 '</td>' +

 '</tr>' +

 '<tr>' +

 '<th align="left">Customer Name:</th>' +

 '<td>' +

 custXML.getElementsByTagName("Name")[0].

 firstChild.nodeValue +

Introducing AJAX John Sadd

December, 2010 Page 10 of 11

 '</td>' +

 '</tr>'+

 '<tr>' +

 '<th align="left">Address:</th>' +

 '<td>' +

 custXML.getElementsByTagName("Address")[0].

 firstChild.nodeValue +

 '</td>' +

 '</tr>';

 document.getElementById("custinfo").innerHTML = custRec;

 }

 }

/* This captures the custnum entered and submits it to WebSpeed: */

var custval = document.getElementById("custnum").value;

xmlhttp.open("GET",

 "cgi-bin/cgiip.exe/WService=wsbroker1/getcustomers_param.p?piCustNum="

 + custval, true);

xmlhttp.send();

}

</script>

</head>

<!-- This is the little data entry form where CustNum is captured: -->

<form action="javascript:void(0)">

<fieldset style="width:600px">

<legend>Please Select a Customer</legend>

<label for="custnum">Customer Number:</label>

<input type="text" name="custnum" id="custnum"

 onchange="loadXMLDoc()" />

</fieldset>

</form>

<pre id="custinfo" style="width:400px"></pre>

</html>

Now that the coding is complete, let’s see how all this works. If I enter the HTML file

name as a URL, which the HTTP server can find relative to its htdocs directory, the

little data entry form defined at the end of the HTML file comes up. I enter a customer

number and tab out, which runs the loadXMLdoc JavaScript function.

Let’s quickly review what happens now. The loadXMLdoc JavaScript function in the

code creates an XMLHttpRequest object, opens it with the parameters we saw, and

does the send, which initiates an HTTP request to the server. The WebSpeed

messenger sends that on to a running OpenEdge instance, which runs the right ABL

procedure, and sends the output back on the webstream. The request object picks

that up and fires the callback function with a state of 4 and a status of 200. And the

callback, which in my example is the unnamed event handler function embedded in

loadXMLdoc, takes the response data, formats it, and puts it up in the HTML form in

the browser. Here's the formatted output:

Introducing AJAX John Sadd

December, 2010 Page 11 of 11

If I enter another customer number and tab out, the same thing happens again. But

what comes back from the server is not the whole HTML page with new customer

data embedded in it. It’s only the customer data itself, so there’s no distracting page

refresh in the UI. The new data is just plugged into the page that was already there.

In conclusion, with AJAX, your user interface can interact with the server

asynchronously, so that the user isn’t always blocked waiting for a response. The UI

can fill in data as it comes back without having to refresh the entire form. And you

can code the client using HTML, supported by Cascading Style Sheets, to define the

UI, plus JavaScript to define the client-side event handling logic, including the

XMLHttpRequest object, and operations support by the DOM to parse the data that

comes back from the server. On the OpenEdge side, you can code any business logic

you need, using either WebSpeed or Web services as a way to run procedures and

pass parameters in and data back out. Add to this the support for advanced UI

controls provided by the third-party frameworks and libraries built on top of AJAX,

and you have a powerful environment for defining a zero footprint, browser-

independent user interface that rivals the behavior of a fat client desktop UI. That’s

the essential value of AJAX.

