
December, 2010 Page 1 of 10

INTRODUCING JSON

John Sadd

Fellow and OpenEdge Evangelist

Document Version 1.0

December 2010

Introducing JSON John Sadd

December, 2010 Page 2 of 10

DISCLAIMER

Certain portions of this document contain information about Progress Software Corporation’s

plans for future product development and overall business strategies. Such information is
proprietary and confidential to Progress Software Corporation and may be used by you solely in
accordance with the terms and conditions specified in the PSDN Online (http://www.psdn.com)
Terms of Use (http://psdn.progress.com/terms/index.ssp). Progress Software Corporation
reserves the right, in its sole discretion, to modify or abandon without notice any of the plans
described herein pertaining to future development and/or business development strategies.

Any reference to third party software and/or features is intended for illustration purposes only.
Progress Software Corporation does not endorse or sponsor such third parties or software.

This paper accompanies another in a series of presentations on extending your

OpenEdge application by creating a rich browser-based user interface. Another two-

part session introduces AJAX, which stands for Asynchronous JavaScript and XML.

Along the way I pointed out that XML is not the only data representation you can use

with AJAX, and in this session I introduce you to the other principal format for passing

complex data across the wire as a string, called JSON. JSON stands for JavaScript

Object Notation, and you can learn about it at the website www.json.org:

The significant statement here is that JSON is a subset of the JavaScript Programming

language, which determines how its syntax is defined, but in fact it can be used with

just about any programming language. The website provides you with a complete

definition of its syntax, which is quite straightforward. The phrase Object Notation

means that it’s a notation, that is, a simple string representation, of what JavaScript

understands as an object, a representation of a complex set of data as a hierarchy of

names and values. In the next screenshot you can see here some of the many links to

various code libraries that support the creation and parsing of JSON in many different

programming languages.

http://www.psdn.com/
http://psdn.progress.com/terms/index.ssp

Introducing JSON John Sadd

December, 2010 Page 3 of 10

Because JSON is, as it were, native to JavaScript, and because it’s instructive to show

an AJAX example that uses JSON, you can take a quick look at how JSON is

represented and accessed in JavaScript.

This next page shows you an example of JSON syntax.

An object is defined by curly braces. An array of objects is defined by square

brackets. A data member name is always in quotation marks, followed by a colon. Its

value is also in quotation marks, unless it’s a number or a boolean value, or the value

null; and multiple members of an object are separated by commas. As in XML,

because the notation is simply a character string, every data value is represented as a

string, including numbers, and the values true and false for booleans. There’s no

Introducing JSON John Sadd

December, 2010 Page 4 of 10

official date representation, so languages need to provide a way to convert a string to

a date. And that’s about all there is to it.

There are two major differences from XML. In JSON, all names and character values

are quoted, but there’s no need for a closing tag repeating the name of every

member, as there is for elements in XML, so typically JSON is a good deal more

compact than XML, which can be a factor in which representation you choose when

you’re sending data. The following representations of a row in the Customer table in

XML and in JSON illustrate the potential different in the length of the data

representation in those two formats. Here is the XML:

And here is the JSON:

Introducing JSON John Sadd

December, 2010 Page 5 of 10

In the same web page, you can see how invididual values in a JSON data object are

accessed from JavaScript, using a dot between levels of a data hierarchy, and

bracketed subscripts to identify an element of an array. This is instead of using the

DOM to extract values from XML.

The next point the documentation makes here is that because JSON is a subset of

JavaScript, you can use the standard JavaScript eval method to parse it. But that can

be dangerous, as the supposed JSON data could contain badly formed constructs or

even malicious code that your application would then execute. So JavaScript provides

an intrinsic JSON object with two important methods. The first is a parse method,

which turns a JSON string into a proper JavaScript object. The optional reviver

function can be used, for instance, to turn date strings into proper date values.

The second basic method is stringify, which does what the name implies, turning a

JavaScript object into a character string which can then be passed across the wire:

Introducing JSON John Sadd

December, 2010 Page 6 of 10

Now take a look at how the AJAX example used in earlier videos can be adapted to

use JSON instead. Here is the ABL procedure used in the AJAX presentation:

/* getcustomers_param.p

 Server-side application to run to test Ajax / WebSpeed programs

 AjaxClientWebParam.html and

 AjaxCustWebParam.html

*/

{src/web2/wrap-cgi.i}

output-content-type ("text/xml").

define temp-table ttCust like Sports2000.Customer.

temp-table ttcust:serialize-name = "customers".

find Sports2000.Customer where Customer.CustNum =

 INTEGER(get-value("piCustNum")).

create ttcust.

buffer-copy Customer to ttcust.

temp-table ttCust:write-xml("stream", "webstream", true).

This paper requires a JSON version of that simple .p that returns a row from the

Customer table. Thanks to the support for both XML and JSON in OpenEdge, this is a

very simple matter. You first need to define JSON as the output content type. The
serialize-name gives a name to the top-level member of the JSON, just as it does to

the top-level node in XML. Then instead of using the ABL write-xml method, which

converts any temp-table or ProDataSet to an XML stream, you use the equivalent
write-json method, which converts the same proprietary OpenEdge data format to

standard JSON. That’s all you have to do to send JSON back over the webstream

instead of XML:

/* getcustomersJSON_param.p

 Server-side application to run to test Ajax / WebSpeed programs

 AjaxCustWebParamJSON.html

*/

{src/web2/wrap-cgi.i}

output-content-type ("text/json").

define temp-table ttCust like Sports2000.Customer.

temp-table ttcust:serialize-name = "customers".

find Sports2000.Customer where Customer.CustNum =

 INTEGER(get-value("piCustNum")).

create ttcust.

buffer-copy Customer to ttcust.

temp-table ttCust:write-json("stream", "webstream", true).

Saved under a new name, this procedure variant becomes what you run on the

OpenEdge server using WebSpeed.

Next you need to make the right changes to the HTML example, shown in the paper

IntroducingAJAX, with its embedded JavaScript, which is what runs in the browser,

using AJAX to make a request to WebSpeed.

Introducing JSON John Sadd

December, 2010 Page 7 of 10

The first key statement in the XML version of the JavaScript is the following one. It

defines a string variable called custXML by referencing a property of the AJAX

XMLHttpRequest object called responseXML:

/* This is the XML document that comes back

 through the webstream: */

 var custXML = xmlhttp.responseXML.documentElement;

The browser is not going to be getting XML back this time, so in place of custXML, the

file needs a new definition of an object variable called custJSON:

 var custJSON = JSON.parse(xmlhttp.responseText);

It uses the intrinsic JSON object and its parse method, as shown in the JSON

documentation, to retrieve the JSON string using the property responseText, and

turn it into a proper JavaScript object. Just to show exactly what is coming back from

WebSpeed and the getcustomersJSON_param.p procedure, I put in an alert

statement to display the raw text that comes back before I parse it into a JavaScript

object:

alert("responseText: " + xmlhttp.responseText);

The XML version uses the DOM to parse XML, as shown here:

var custRec =

 '<table>' +

 '<tr>' +

 '<th align="left">Customer Number: </th>' +

 '<td>' +

 document.getElementById("custnum").value +

 '</td>' +

The JSON version is going to use JavaScript references to extract individual values

from the custJSON object:

var custRec =

 '<table>' +

 '<tr>' +

 '<th align="left">Customer Number: </th>' +

 '<td>' +

 custJSON.customers[0].CustNum +

 '</td>' +

So in the custJSON object, the code references the first and only instance of the

customers array – remember that customers is what was defined in the ABL

procedure as the serialize-name, the name of the top-level data member – and

from there its CustNum member value. And then it needs to do the same for the

other two fields in the display: the Name field from the customer temp-table, and the

Address field as well.

Introducing JSON John Sadd

December, 2010 Page 8 of 10

The last change needed is to make sure that the AJAX request is going to go to the

right ABL procedure on the backend. That’s the one where JSON was added to the

procedure name:

xmlhttp.open("GET",

 "cgi-bin/cgiip.exe/WService=wsbroker1/getcustomersJSON_param.p?piCustNum="

 + custval, true);

xmlhttp.send();

After saving the HTML under a new name, you can see whether the changes made all

work together. In Internet Explorer, it’s necessary to explain a complication to the

test that’s important for anyone using IE. Microsoft did not support the intrinsic JSON

object that the code sample uses until Internet Explorer 8. And even then, for the

sake of backward compatibility with applications that may have defined it on their

own, it’s not enabled by default. So to use the JSON object that the HTML file

references, you need to enable the IE8 Standards Document Mode in the browser.

One way to do that is in the browser Developer Tools under the browser’s Tools

menu.

Selecting Developer Tools reveals the Document Mode dropdown list. By default

the browser is set to Quirks mode. This means that the browser will interpret HTML,

CSS, and JavaScript so as to maintain compatibility with older applications that may

have used non-standard constructs to get around missing or inconsistent features in

the languages or the browser. Instead you need to select Internet Explorer 8

Standards, in order for the JSON object and its methods to be recognized.

Introducing JSON John Sadd

December, 2010 Page 9 of 10

Now you can see if the example works the way it should. Loading the JSON version of

the sample HTML file, the same little data entry form comes up that was used in the

AJAX examples. If you enter a customer number in the fill-in field and tab out, that

executes the loadXMLdoc function in the embedded JavaScript, which sets up its

own internal function to wait for a ready state of 4, and then opens and sends the

XMLhttpRequest to the server to run getcustomersJSON_param.p.

As you’ll remember, I added an alert to the JavaScript so that you can first look at the

JSON text that comes back:

Customers is the top-level member name, based on the serialize-name defined in

the ABL. The brackets define a top-level array of objects, and in this case there’s just

one object in the array, delimited by the braces. Each member of the object has a

quoted name, followed by a colon, and a value, which is also quoted unless it’s a

number or a boolean; and commas separate each member name-value pair.

Dismissing the alert box, you see the formatted fields from the customer data:

Introducing JSON John Sadd

December, 2010 Page 10 of 10

As before, if you now enter a new value, you get back just the data for the new

request as output from WebSpeed, not a refresh of the entire HTML page. So the

behavior is the same whether you use XML or JSON as the data exchange format with

the server.

That’s all for this session that introduced you to JavaScript Object Notation.

