INTRODUCING JSON

John Sadd

Fellow and OpenEdge Evangelist
Document Version 1.0
December 2010

Extending Your OpenEdge
Application with an RIA

User Interface

Introducing JSON PRO G R ES S

John Sadd

p—-—

OpenEdge

FOoFTWARE

PROGRESS

SOFTWARE
December, 2010 Page 1 of 10



Introducing JSON John Sadd

DISCLAIMER

Certain portions of this document contain information about Progress Software Corporation’s
plans for future product development and overall business strategies. Such information is
proprietary and confidential to Progress Software Corporation and may be used by you solely in
accordance with the terms and conditions specified in the PSDN Online (http://www.psdn.com)
Terms of Use (http://psdn.progress.com/terms/index.ssp). Progress Software Corporation
reserves the right, in its sole discretion, to modify or abandon without notice any of the plans
described herein pertaining to future development and/or business development strategies.
Any reference to third party software and/or features is intended for illustration purposes only.
Progress Software Corporation does not endorse or sponsor such third parties or software.

This paper accompanies another in a series of presentations on extending your
OpenEdge application by creating a rich browser-based user interface. Another two-
part session introduces AJAX, which stands for Asynchronous JavaScript and XML.
Along the way I pointed out that XML is not the only data representation you can use
with AJAX, and in this session I introduce you to the other principal format for passing
complex data across the wire as a string, called JSON. JSON stands for JavaScript
Object Notation, and you can learn about it at the website www.json.org:

/2 150N - Windows Internet Explorer

@ -‘ = [ b v =l

7 Favorites | 95 @ Suggested Sites v

o

*3 |l X ﬁ Google
£ wieb Slice Gallery +

© 0n | | Zi v B) - 0 v Page+ Safety - Toos - @r 7

Introducing JSON

Arabic Bulgarian Chinese Czech Dutch English Esperanto French German Greek Hebrew Hungarian Indonesian
Italian Japanese Korean Persian Polish Portuguese Russian Slovenian Spanish Turkish Vietnamese

JSON (JavaScript Object Notation) is a lichtweight data-interchange format. Itis easy for humans to read and waite. Itis

object
easy for machines to parse and generate| It is based on a subset of the JavaScript Programming Language, Standard ECMA-

1

262 3rd Edition - December 1999. JSON 1 a text format that is completely language independent buf uses conventions that
are familiar to programmers of the C-family of languages. inchuding C. C++. C# Java, JavaScript. Petl. Python. and many
others_ These properties make JSON an ideal data-interchange language.

JSON is built on two structures:
+ A collection of name/value pairs. In various languages. this is realized as an object, record. struct, dictionary. hash
table, keyed list, or associative array.

« An ordered list of values. In most languages. this is realized as an array. vector, list, or sequence.

These are universal data structures. Virtually all modern programming languages support them in one form or another. Tt
makes sense that a data format that is interchangable with programming languages also be based on these structures

Tn ISON_thew talce an fhece forme-

members

pair

array

elements

value

{ members }

pair
pair , members

string : value

8]
[ elements |

value
value , elements

string.

The significant statement here is that JSON is a subset of the JavaScript Programming
language, which determines how its syntax is defined, but in fact it can be used with
just about any programming language. The website provides you with a complete
definition of its syntax, which is quite straightforward. The phrase Object Notation
means that it's a notation, that is, a simple string representation, of what JavaScript
understands as an object, a representation of a complex set of data as a hierarchy of
names and values. In the next screenshot you can see here some of the many links to
various code libraries that support the creation and parsing of JSON in many different
programming languages.

December, 2010 Page 2 of 10


http://www.psdn.com/
http://psdn.progress.com/terms/index.ssp

Introducing JSON

N
@“v [ ricp: o json.ora/ B E R ﬁGuDg\E pl-
5 Favorites | 5 @ Suggested Stes © @] Web Sice Gallry
Qa0 | | Zi v B - o v Pager Safetyr Tookr @+
+ TSON_checker. + TRISON. + Zend_JSON. =
o JSON parser. o Java: « JSONRPC
+ json-c + orgjson + Solar Json.
o M's JSON parser. o Jackson JSON Processor. + SCA SDO.
. YA « Json-lib. + Comparison of php json Hbraries.
* cJSON. « JSON Tools. » Pike:
+ Jansson. « json-simple + Public Parser JSON.
o is0n + Stringtree + Public Parser JSON2
o LibU. « SOJO. « PL/SQL:
. O + Restlet + plisom
c Emmm o i o Librairie-JTSON.
+ zoolib. « json-taglib. + PowerShel:
» JOST. + XStream + PowerShell
o CAJUN. » JsonMarshafler. » Prolog:
+ HBISON. + Flexjson. + SWIProlog HTTP support
- C& « JON tools. o Python:
+ JSON checker. + google-gson. + The Python Standard Library
+ Jayrock. + Aro + simplejson.
+ JsonNET - LINQ to JSON. « Pivot + pyson.
+ JSONSharp. + jsonii. + YajlPy.
o LitJSON. o JavaScript * Qt
+ JSON for NET. o isonlis. (Chinese) + QJson.
o JsonFx. T R
+ JsonExSerializer iy ) - + tjson Ll
o Clofure: o Lasso: + JSON Dictionary.
+ clojure-json. + ISON. + Rebol
o AP for json. o Bm e
« ColdFusion: » Common Lisp: « RPG:
» ColdFusion & » Common Tisn JSON + JSON Ultilities LI

John Sadd

Because JSON is, as it were, native to JavaScript, and because it's instructive to show
an AJAX example that uses JSON, you can take a quick look at how JSON is

represented and accessed in JavaScript.

This next page shows you an example of JSON syntax.

{2 150N in Javascript - Windows Internet Explarer _lol x|
@T\,v [ et . on. orgis.huml B EEESS E L~
Sy Favorites | 73 @ Suggested Sites = @] Weh Sice Galery ~

ol »
43 350N in Javascript | %3 - B - ) o= - Page - Safety - Took - (@~

JSON in JavaScript

subset of Java. but it is not It is a Scheme-like language with C-like syntax and soft objects. JavaScript was standardized in the ECMA Script Language
Specification, Third Edition.

JSON is a subset of the object literal notation of JavaScript. Since JSON is a subset of JavaScript. it can be used in the language with no muss or fuss_

var myJSONObject = {"bindings"

cEvent": "PRIVMSG" "newURI", "regex": "“http://.*"},
{"ircEvent": "PRIVMSG", : "deleceURI, "regex": "“delete.*"},
{"ircEvent": "PRIVMSG", "method": "randomURI", "regex": "“random.*"}

}:: %

"method®, and "regex” members.

Members can be retrieved using dot or subscript operators.

myJSONObject.bindings[0] .method // "newURI"

In this example, an object is created containing a single member "bindings", which contains an array containing three objects, each containing "ircEvent™,

JavaScript is a general purpose programming language that was introduced as the page scripting language for Netscape Navigator. It is still widely believed to be a

An object is defined by curly braces. An array of objects is defined by square
brackets. A data member name is always in quotation marks, followed by a colon. Its
value is also in quotation marks, unless it's a number or a boolean value, or the value
null; and multiple members of an object are separated by commas. As in XML,
because the notation is simply a character string, every data value is represented as a
string, including numbers, and the values true and false for booleans. There’s no

December, 2010

Page 3 of 10



Introducing JSON John Sadd

official date representation, so languages need to provide a way to convert a string to
a date. And that’s about all there is to it.

There are two major differences from XML. In JSON, all names and character values
are quoted, but there’s no need for a closing tag repeating the name of every
member, as there is for elements in XML, so typically JSON is a good deal more
compact than XML, which can be a factor in which representation you choose when
you're sending data. The following representations of a row in the Customer table in
XML and in JSON illustrate the potential different in the length of the data
representation in those two formats. Here is the XML:

P custuml.xml - Notepad Ol x|

Fle Edit Format Wiew Help
=l

<?xm] wersion="1.0"7=»
<Custamers xmins:xsi="http:/ Awww. w3, org 2000 >MLschema-instance>
<CUSTOmersRows
<CUSTHUM=>10<CUsTHUm
<Country>United Kingdom</Countrys>
<NamexJust Joggers LimitedsMames
<addrass>Fairwind Trading Est</address>
<address2s>shoe Lane</address2:s
<City>Ramsbottom</Citys>
<State>5ussex</state;r
<postalcode»BLD SMD</PostalCodes
<CONTact>George Lacey< Contacts
<Phone=070 682 2887</Phones
<ZalesRep>sLs</Salesheps
<Creditlimit>22000. 00« /Creditlimits
<Balance>1222.11</Balances
<TErms=Net30<,/Tarms:
<Discount =200 sCcount
<COmments />
<Fax,/>
<Emailaddress &
</ CLUSTOMErsRows
< CUsTOmers:

] 20

And here is the JSON:

-lolx]

File Edit “ew Insert Format Help
DR SR s ¢[=|o] B

{Moustomerst™: [
{
"Custlhan™: 10,

"Country™: "United Kingdom"™,
"Herne ™ : "Just Joggers Limited"™,
"iddress™: "Fairwind Trading Est"™,
"hiddressZ2": "Shoe Lane"™,

"City™: "Ramskhottom™,

MEtate®: "3ussex",

"PostalCode™: "ELO SMD",
"Contact™: "George Lacey'™,
"Phone®: ™O70 682 887",
"SalesRept: MSLET,

"CreditLimic™: ZZ0O0O0.00,
"Balance™: 1222.11,

"Terms™: "MNetc3O™,
"Discount®™: 20,
"CommentsT: T,
"FaxT: v,
"Emailiddress'": "
i
1}
For Help, press Fi //:

December, 2010 Page 4 of 10



Introducing JSON John Sadd

In the same web page, you can see how invididual values in a JSON data object are
accessed from JavaScript, using a dot between levels of a data hierarchy, and
bracketed subscripts to identify an element of an array. This is instead of using the
DOM to extract values from XML.

/2 150N in JavaScript - Windows Internet Explorer _ (0] x|

@T»' O heoudinmun. tsomeraiss. i EIEZERIR B 2|

¢ Favarites

9 @ Suggested Sites - @] Web Slice Gallery -

»
Q) 350N in Javascript | | - B - (0 fm - Page - Safety - Tooks -
Members can be retrieved using dot or subscript operators.
myJSONObject .bindings [0] .method /f "newURI"™

To convert a JSON text into an object, you can use the eval () function. eval () mvokes the JavaScript compiler. Since JSON is a proper subset of JavaScript,

the compiler will correctly parse the text and produce an object structure. The text must be wrapped in parens to avoid tripping on an ambiguity in JavaScript's
syntax.

var myObject = eval (' (' + myJSONtext + '}'):

The eval function is very fast. However, it can compile and execute any JavaScript program, so there can be security issues. The use of eval is indicated when
the source is trusted and competent. It is much safer to use a JSON parser. In web applications over XMLHttpRequest, communication is permitted only to the
same origin that provide that page. so it is trusted. But it might not be competent. If the server is not rigorous in its JSON encoding, or if it does not scrupulously

validate all of its mputs, then it could deliver invalid JSON text that could be carrying dangerous script. The eval function would execute the script, unleashing its
malice.

To defend against this, 2 JSON parser should be used. A JSON parser will recogaize only JSON text, rejecting all scripts. In browsers that provide native JSON
support, JSON parsers are also much faster than evz1. It is expected that native JSON support will be included in the next ECMAScript standard.

var myObject = JSON.parse (myJSONtext, reviver);

The optional rewiver parameter is a function that will be called for every key and value at every level of the final result. Each value will be replaced by the result
of the reviver function. This can be used to reform generic objects into instances of pseudoclasses, or to transform date strings into Date objects.

myData = JSON.parse (text, function (key, value) {
wvar type;
if (value && typeof value == 'object’')
type = value.type;
if (typeof type === 'string' && typeof window[type] = 'function') {
return new (window[type]) (value);

[

The next point the documentation makes here is that because JSON is a subset of
JavaScript, you can use the standard JavaScript eval method to parse it. But that can
be dangerous, as the supposed JSON data could contain badly formed constructs or
even malicious code that your application would then execute. So JavaScript provides
an intrinsic JSON object with two important methods. The first is a parse method,
which turns a JSON string into a proper JavaScript object. The optional reviver
function can be used, for instance, to turn date strings into proper date values.

The second basic method is stringify, which does what the name implies, turning a
JavaScript object into a character string which can then be passed across the wire:

72 350N in Javascript - Windows Internet Explorer =] |
@‘ )= [ reto:fpmmms son.orgis el =l (B[4 % | [*W cooae L~
¢ Favories |5 (@ suggested Stes = @] Web Slice Galery =
Q) 350N in JavasSeript | | 0 - B - 0 @ - Page - Safety - Tooks - @~
T (value i typeor value — ‘object’) =)
type = value.type
if (cypeof type === 'string' && typeof window[type] === 'function') {
return new (window(type]) (value);

1

¥

return value;
3

A JSON stringifier goes in the oppostte direction, converting JavaScript data structures info JSON text. JSON does not support eyclic data structures, so be
careful to not give cyclical structures to the JSON stringiier.

var myJSONText = JSON.stringify(myObject, replacer);

Ifthe stringi £y method sces an object that contains a coJSCH method, it calls that method, and stringifies the value returned. This allows an object to determine
its own JSON representation

The scringatier method can take an optional array of strings. These strings are used to sclect the properties that will be included in the JSON text.

The scringatier method can take an optional replacer fanction. Tt will be called after the coasoN method (f there is onc) on cach of the values in the structure.
It will be passed each key and value as parameters, and th= will be bound to object holding the key. The value retured will be stringified.

Values that do not have a representation in JSON (such as functions and undefined) are excluded.
Nonfinite numbers are replaced with nu11. To substitute other vaues, you could use a replacer function likce this:

function replacez (key, valuc)
if (typeof value === 'number' && !isFinite(value)) {
return String(value);
¥
return value;

December, 2010 Page 5 of 10



Introducing JSON John Sadd

Now take a look at how the AJAX example used in earlier videos can be adapted to
use JSON instead. Here is the ABL procedure used in the AJAX presentation:

/* getcustomers param.p
Server-side application to run to test Ajax / WebSpeed programs
AjaxClientWebParam.html and
AjaxCustWebParam.html
*/

{src/web2/wrap-cgi.i}

output-content-type ("text/xml").

define temp-table ttCust like

temp-table ttcust:serialize-name = "customers".

find where =
INTEGER (get-value ("piCustNum")) .

create ttcust.

buffer-copy to ttcust.

temp-table ttCust:write-xml ("stream", "webstream", true).

This paper requires a JSON version of that simple .p that returns a row from the
Customer table. Thanks to the support for both XML and JSON in OpenEdge, this is a
very simple matter. You first need to define JSON as the output content type. The
serialize-name gives a name to the top-level member of the JSON, just as it does to
the top-level node in XML. Then instead of using the ABL write-xml method, which
converts any temp-table or ProDataSet to an XML stream, you use the equivalent
write-json method, which converts the same proprietary OpenEdge data format to
standard JSON. That's all you have to do to send JSON back over the webstream
instead of XML.:

/* getcustomersJSON param.p
Server-side application to run to test Ajax / WebSpeed programs

AjaxCustWebParamJSON.html

*/

{src/web2/wrap-cgi.i}

output-content-type ("text/json").

define temp-table ttCust like

temp-table ttcust:serialize-name = "customers".

find where =
INTEGER (get-value ("piCustNum")) .

create ttcust.

buffer-copy to ttcust.

temp-table ttCust:write-json("stream", "webstream", true).

Saved under a new name, this procedure variant becomes what you run on the
OpenEdge server using WebSpeed.

Next you need to make the right changes to the HTML example, shown in the paper

IntroducingAJAX, with its embedded JavaScript, which is what runs in the browser,
using AJAX to make a request to WebSpeed.

December, 2010 Page 6 of 10



Introducing JSON John Sadd

The first key statement in the XML version of the JavaScript is the following one. It
defines a string variable called custXML by referencing a property of the AJAX
XMLHttpRequest object called responseXML:

/* This is the XML document that comes back
through the webstream: */
var custXML = xmlhttp.responseXML.documentElement;

The browser is not going to be getting XML back this time, so in place of custXML, the
file needs a new definition of an object variable called custJSON:

| var custJSON = JSON.parse (xmlhttp.responseText) ;

It uses the intrinsic JSON object and its parse method, as shown in the JSON
documentation, to retrieve the JSON string using the property responseText, and
turn it into a proper JavaScript object. Just to show exactly what is coming back from
WebSpeed and the getcustomersIJSON_param.p procedure, I put in an alert
statement to display the raw text that comes back before I parse it into a JavaScript
object:

| alert ("responseText: " + xmlhttp.responseText);

The XML version uses the DOM to parse XML, as shown here:

var custRec =
'<table>' +
'<tr>' +
'<th align="left">Customer Number: </th>' +
'<td>' o+
document.getElementById( "custnum" ).value +
'</td>t o+

The JSON version is going to use JavaScript references to extract individual values
from the custJSON object:

var custRec =
'<table>' +
'<tr>' o+
'<th align="left">Customer Number: </th>' +
'<td>' o+
custJSON. customers[0] .CustNum +
'</ed>t o+

So in the custJSON object, the code references the first and only instance of the
customers array - remember that customers is what was defined in the ABL
procedure as the serialize-name, the name of the top-level data member - and
from there its CustNum member value. And then it needs to do the same for the
other two fields in the display: the Name field from the customer temp-table, and the
Address field as well.

December, 2010 Page 7 of 10



Introducing JSON John Sadd

The last change needed is to make sure that the AJAX request is going to go to the
right ABL procedure on the backend. That's the one where JSON was added to the
procedure name:

xmlhttp.open ("GET",
"cgi-bin/cgiip.exe/WService=wsbrokerl/getcustomersJSON param.p?piCustNum="
+ custval, true);

xmlhttp.send() ;

After saving the HTML under a new name, you can see whether the changes made all
work together. In Internet Explorer, it's necessary to explain a complication to the
test that’s important for anyone using IE. Microsoft did not support the intrinsic JSON
object that the code sample uses until Internet Explorer 8. And even then, for the
sake of backward compatibility with applications that may have defined it on their
own, it’s not enabled by default. So to use the JSON object that the HTML file
references, you need to enable the IE8 Standards Document Mode in the browser.

One way to do that is in the browser Developer Tools under the browser’s Tools
menu.

e i =14 =< P Pl
Favortes ] wdstes v B et
B - »
8 bk Page | | =~ @& - o v Page v Safety | Took -
" Fisopen Last Browsing Session =]
Pogr-up Bodker
24 Manage idd-ons
3¢ Work Offine
.m&uymmm‘
# Full Screen F11
Tookars L
Explorer Bars.
Selectithe Developer Tools manu |:="T‘
A
Shype Fug-In
27 Inkenet Opbiors:

Selecting Developer Tools reveals the Document Mode dropdown list. By default
the browser is set to Quirks mode. This means that the browser will interpret HTML,
CSS, and JavaScript so as to maintain compatibility with older applications that may
have used non-standard constructs to get around missing or inconsistent features in
the languages or the browser. Instead you need to select Internet Explorer 8
Standards, in order for the JSON object and its methods to be recognized.

December, 2010 Page 8 of 10



Introducing JSON John Sadd

7 il Poge - Windaves Inbernet Enplorer = (=TE)
|« 1S ey =4 < [ &l
=lolx| »

' Fie Fnd Dbl Wiew Outine Bnages Cache Tooks Valfate | Erowser Mode: EE Dooument Mode: Quiks =™ Page » Safuty - Took- @
i_";"_l_jﬁi |§m|F - | [ v oo Page Cofait) ke =l

i It Esplre 7 Sandas &
*r £l Sty Trace [nberrst Explo s Al ?

A= K 1€

B <hoai> :

zctInternet Explorer 8 Standards

Now you can see if the example works the way it should. Loading the JSON version of
the sample HTML file, the same little data entry form comes up that was used in the
AJAX examples. If you enter a customer number in the fill-in field and tab out, that
executes the loadXMLdoc function in the embedded JavaScript, which sets up its
own internal function to wait for a ready state of 4, and then opens and sends the
XMLhttpRequest to the server to run getcustomersJSON_param.p.

As you'll remember, I added an alert to the JavaScript so that you can first look at the
JSON text that comes back:

7 ity ottt aprcustsebp TS ONRAR - Wisdors ISR E =T
@I_\-ls- tocshast © n =4 < 2
§ Favorkes | 55 @ suggested Stes ~ B Web Skoe Galdery ~

& titpocshosjatmtwebparamTSON | ] B~ - - Peme ey Toke @

»

Plaase Selact a Customer

Customer Number: |3

N

“Diaczun’ 10, |
“Commants” “This custames i now OFF redk hold.”,
Fae =,
“Emadaddress™
1
I

Customers is the top-level member name, based on the serialize-name defined in
the ABL. The brackets define a top-level array of objects, and in this case there’s just
one object in the array, delimited by the braces. Each member of the object has a
quoted name, followed by a colon, and a value, which is also quoted unless it’s a
number or a boolean; and commas separate each member name-value pair.

Dismissing the alert box, you see the formatted fields from the customer data:

December, 2010 Page 9 of 10



Introducing JSON

8 betp: focabact | sjacustmebparamSON berl

Please Sclect a Customer
‘Custonyes Number: [

Costomer Number: 32
Costomer Name Hoopa
Address

John Sadd

As before, if you now enter a new value, you get back just the data for the new
request as output from WebSpeed, not a refresh of the entire HTML page. So the
behavior is the same whether you use XML or JSON as the data exchange format with

the server.

That’s all for this session that introduced you to JavaScript Object Notation.

December, 2010

Page 10 of 10



