
December, 2010 Page 1 of 13

INTRODUCING MICROSOFT SILVERLIGHT

John Sadd

Fellow and OpenEdge Evangelist

Document Version 1.0

December 2010

Introducing Microsoft Silverlight John Sadd

December, 2010 Page 2 of 13

DISCLAIMER

Certain portions of this document contain information about Progress Software Corporation’s

plans for future product development and overall business strategies. Such information is
proprietary and confidential to Progress Software Corporation and may be used by you solely in
accordance with the terms and conditions specified in the PSDN Online (http://www.psdn.com)
Terms of Use (http://psdn.progress.com/terms/index.ssp). Progress Software Corporation
reserves the right, in its sole discretion, to modify or abandon without notice any of the plans
described herein pertaining to future development and/or business development strategies.

Any reference to third party software and/or features is intended for illustration purposes only.
Progress Software Corporation does not endorse or sponsor such third parties or software.

This is one of a series of presentations on different technology choices you can make

to create a modern user interface for your OpenEdge application. This one introduces

Silverlight, a major UI technology from Microsoft. And perhaps the most evident

characteristic of Silverlight is the fact that it is a Microsoft technology. You can take a

look at the website at www.silverlight.net. Here you get a flavor for the wealth of

supporting materials for Silverlight, which reflects its status as a major Microsoft

initiative.

For instance, there is a link to a large collection of video tutorials somewhat like the

one this paper is based on.

http://www.psdn.com/
http://psdn.progress.com/terms/index.ssp

Introducing Microsoft Silverlight John Sadd

December, 2010 Page 3 of 13

And there are hundreds of them, as well as extensive documentation, technical

papers, user support groups, and so forth. So this is the first obvious message about

Silverlight: it’s a major technology with the power of Microsoft and Microsoft’s user

community behind it.

You can build all kinds of applications using Silverlight for the front-end, but there’s a

serious focus on graphical design, animation and media in a lot of Silverlight

applications and tutorials. Here at the website, for instance, there are a number of

sample applications you can run. One is a Microsoft application called Visit Solution

City, which integrates video into the app, a much-promoted strength of Silverlight as

a user interface platform. Again, this kind of thing may not be an important

requirement for your business application:

The next screenshots show another Silverlight front-end to a type of consumer

application you may have seen. This is one of those where you can build and price

your own virtual car. And again, you can see the extensive use of graphics and

animation here as part of the user interface.

Introducing Microsoft Silverlight John Sadd

December, 2010 Page 4 of 13

After you’ve selected a type of car, you can spin it around to see it from different

angles.

And you can select a different color, and see the car in that color. This is a typical

example of a highly design-oriented and graphical application. But Silverlight is a

powerful platform for developing more standard business applications as well, with

controls like grids that rival the look and feel of true desktop controls like those you

can get with a GUI for .NET application.

For example, below is a screen shot from an actual OpenEdge application built by one

of our application partners in OpenEdge 10.2B using Silverlight, and using WebSpeed

to communicate with ABL business logic on the backend. WebSpeed and Web services

are both options for an OpenEdge application in 10.2B, as are the native RIA services

that Microsoft supports. Other sessions and papers in this series discuss some of

these options.

Introducing Microsoft Silverlight John Sadd

December, 2010 Page 5 of 13

So apart from the Microsoft support, how does Progress Software position Silverlight

as a UI choice?

If an open-source library based on AJAX like ExtJS, with no client-side footprint at all,

represents one end of the spectrum, and a true desktop application platform like

OpenEdge GUI for .NET with Infragistics controls installed on the client machine

represents the other, then Silverlight can be seen as an intermediary between them.

It’s a browser plug-in, so it’s not zero footprint, but it requires only a quick and easy

plug-in install the first time the client machine runs a Silverlight application. It’s

browser-based rather than running natively on the desktop, and there may be some

limitations on the platforms it can run on, but it also provides user interface controls

and behavior that rival the desktop app and are more powerful than the AJAX

solutions.

So let’s take a look at a bit of what’s involved in building an application with

Silverlight. First of all, because this is a Microsoft product, you’re going to be doing

development in Visual Studio. So if this is an environment that is familiar to your

development staff, that can certainly be a factor in your choice.

You start by creating a New Project in Visual Studio:

Introducing Microsoft Silverlight John Sadd

December, 2010 Page 6 of 13

From a set of standard templates you can use as a starting point, select Silverlight,

and then a basic Silverlight Application:

Another series of presentations walks you through building a simple Silverlight

Business Application, which of course is likely to be more relevant to your needs, but

this simple example serves my purposes in introducing the components of the

Silverlight development environment. In this little demo all I do is put a calendar

control into the user interface. Visual Studio makes it easy to create a test

environment for your application, by creating a separate web project that’s parallel to

your Silverlight project. That’s what this next page of the wizard is doing:

Introducing Microsoft Silverlight John Sadd

December, 2010 Page 7 of 13

Visual Studio looks a lot like OpenEdge Architect with Visual Designer opened. There’s

a design canvas at the top, and user interface definition code at the bottom. The code

that defines the user interface is a Microsoft-specific extended XML that they call

XAML, pronounced “zammel”, for Extended Application Markup Language. Generally

you can expect that almost all of your user interface definition will be generated for

you as you lay out your controls in Visual Studio, or in another tool you’ll see in a

moment, but this is one of the parts of the development platform that you need to

become familiar with. Just as in Architect’s Visual Designer, there’s a Toolbox with all

the controls that Silverlight supports. You can see some of them here, including a

Calendar control:

If you drag it onto the design canvas, you can see the control in the WYSIWYG design

canvas, and at the same time the XAML statement to define the Calendar is added to

the code in the display pane below.

Introducing Microsoft Silverlight John Sadd

December, 2010 Page 8 of 13

If you move the calendar in the design window, you can see that the value of the

margin property in the code that defines where it is within its container is adjusted to

reflect the change.

There’s also a properties list, as you would expect. You can make a change here, for

instance to change the day of the week that’s displayed first on each line of the

calendar:

Introducing Microsoft Silverlight John Sadd

December, 2010 Page 9 of 13

That’s immediately reflected on the design canvas. Looking at the properties for the

calendar in the XAML, the property setting has been added there as well:

This illustrates that you can expect that most of the XAML your Silverlight application

uses will be generated for you. It’s worth mentioning that because of the emphasis

with Silverlight on a sophisticated user interface and graphical design, Microsoft

supports another tool called Expression Blend just for that purpose. It’s intended for

graphical designers who are building the user interface independently of the software

developers who are responsible for coding user interface control logic and business

logic. That’s part of what we can call a separation of concerns between UI and logic

that is an important part of the Silverlight platform. This is a screenshot from

Expression Blend:

Introducing Microsoft Silverlight John Sadd

December, 2010 Page 10 of 13

So beyond the declarative XAML user interface definition, what does the user interface

logic look like? If you double-click on the calendar control, you can see the skeleton

for an event handler in C#:

This illustrates another important consideration. If you choose to work with

Silverlight, then you’ll be doing all the coding beyond the UI definition in a Microsoft

language, C# or perhaps VB.NET. So the expertise of your development staff or the

people you would expect to hire to do the client-side development is a factor there

too.

Just to review quickly some of the various code elements that get generated for you

when you create a user interface like this:

The file app.xaml contains resource definitions that apply to the entire application,

across its pages. And there’s an accompanying C# file that has generated supporting

code for the application.

Introducing Microsoft Silverlight John Sadd

December, 2010 Page 11 of 13

MainPage.xaml is the UI definition code for the one page containing the calendar

control, and Mainpage.xaml.cs is the C# code file that was generated from double-

clicking on the calendar control, where you would define event handlers and any other

UI logic for the page:

Down below in the Solution Explorer are the files that support the web project where

you can test out an application. The principal one is the project TestPage html file.

You can take a quick look at that just to see one thing. Here is the line of code that

invokes another file called Silverlight.js :

This is the key to the intermediate nature of Silverlight as a UI solution. Silverlight.js

is a small JavaScript file that checks to see if the Silverlight plug-in is installed locally,

and if not, prompts the user to allow it to be downloaded. This is the step that all

Silverlight applications go through to make sure the required plug-in is there. The

plug-in is only about four megabytes and just takes a few seconds to download and

install, but it’s the essental part of the platform that differentiates it from zero-

footprint browser-based solutions.

Introducing Microsoft Silverlight John Sadd

December, 2010 Page 12 of 13

You can save everything that has been generated so far, and then build the solution.

This not only compiles the XAML and C# files, but generates a new file called

MainPage.g.cs that connects the XAML and C# together to operate as a single unit.

Finally, you can see what happens when you run the solution. This time, instead of

opening the html code, select View in Browser to run it:

And here in the browser is a page with the calendar control.

Introducing Microsoft Silverlight John Sadd

December, 2010 Page 13 of 13

In summary, Silverlight represents an intermediate type of solution between strictly

zero-footprint browser-based libraries that can run on virtually any client platform,

and heavyweight desktop solutions that require a client application and supporting

controls to be installed on the desktop. It has the support of Microsoft behind it, but

also requires that you have a depth of expertise in Microsoft languages and tools to

be able to work with it. For that commitment, you get a very powerful user interface

platform with a wide array of controls and support for advanced graphical capabilities

such as animation and integration of video into your interface.

Other presentations in this series walk you through a simple but more realistic

example of a Silverlight Business Application that is likely closer to what your

expectations will be for a modern user interface for your ABL application.

