RIA SERVICES INVOKE OPERATIONS

John Sadd

Fellow and OpenEdge Evangelist
Document Version 1.0

February 2011

Extending Your
OpenEdge Application

with an RIA User Interface

Using RIA Services with

Silverlight: | PR 0 GR ESS

Invoke Operations

John Sadd

pEEmmmEEEE———————

OpenEdge

SOFTWARE

PROGRESS

SOFTWARE
March, 2011 Page 1 of 24

RIA Services Invoke Operations John Sadd

DISCLAIMER

Certain portions of this document contain information about Progress Software Corporation’s
plans for future product development and overall business strategies. Such information is
proprietary and confidential to Progress Software Corporation and may be used by you solely in
accordance with the terms and conditions specified in the PSDN Online (http://www.psdn.com)
Terms of Use (http://psdn.progress.com/terms/index.ssp). Progress Software Corporation
reserves the right, in its sole discretion, to modify or abandon without notice any of the plans
described herein pertaining to future development and/or business development strategies.
Any reference to third party software and/or features is intended for illustration purposes only.
Progress Software Corporation does not endorse or sponsor such third parties or software.

The videos and papers in this series on using Silverlight with RIA Services have shown
examples of passing a ProDataSet as a parameter and converting it to an entity class
that can provide data to a Silverlight user interface. This paper and the two-part video
it accompanies show you an example of how to call an ABL procedure that doesn’t
pass a ProDataSet or temp-table, but instead passes one or more scalar or array
values as input and output parameters. Earlier examples in the series show the Query
and Update attributes as annotations in the DomainService class. The Query example
just has a ProDataSet as an ABL oUTPUT parameter. The AppObject proxy expresses
this as an ADO.NET DataSet, and the DomainService query method itself defines it as
an enumerable collection of custorder objects, as shown here:

[Query]
public IEnumerable<CustOrder> GetCustOrders ()
{
try
{
_appObj.GetCustOrders (out CustOrderDS) ;

An example such as that one could be extended to have one or more INPUT
parameters as well, specifying filter criteria for example. But the Query form can't
have any output parameters other than the DataSet, or alternatively a temp-table.

The update example in the RIA Services series passes in just a changed row to return
to the server, as shown here:

[Update]

public void UpdateCustOrder (CustOrder changeRow)

{
DataRow updateRow = FindCustomer (changeRow.CustNum) ;
if (updateRow != null)
{

updateRow ["CustNum"] = changeRow.CustNum;

March, 2011 Page 2 of 24

http://www.psdn.com/
http://psdn.progress.com/terms/index.ssp

RIA Services Invoke Operations John Sadd

The associated submit method passes this as an ADO.NET change set back to the
server. The Update and Submit form in fact doesn’t allow additional parameters
beyond the change set. As a reminder, the submit method code below shows both
the submit call with the object-oriented change set parameter and then the

AppObject proxy call that passes the DataSet form of that change set through the
proxy to the ABL UpdateCustOrders procedure:

public override bool Submit (ChangeSet changeSet)
{
bool result = true;
try
{
foreach (ChangeSetEntry changeRow in changeSet.ChangeSetEntries)
{
if (changeRow.Entity is CustOrder)

{

“ustOrder origEntity = (CustOrder)changeRow.OriginalEntity;
DataRow newRow = CreateCustOrder (origEntity);
CustOrderDS.Tables["ttCustomer"] .Rows.Add (newRow) ;
newRow.AcceptChanges () ;

}
result = base.Submit (changeSet) ;
if (changeSet.HasError)

return false;

_appObj.UpdateCustOrders (ref CustOrderDS) ;

There is also a general purpose attribute named Invoke for making a call that doesn't
involve an entity, but needs to pass some combination of input and output
parameters, which can be scalar values or arrays of scalar values. That’s what is
covered in this paper and the two-part video that concludes the RIA Services series.

As in the earlier code samples in the series, this one defines an ABL service as a
stand-alone non-persistent procedure, which takes a customer number as input,
retrieves the corresponding SalesRep record from the database, and returns the
SalesRep name as output:

e
File : GetSalesRep.p
Notes : Returns the SalesRep RepName for the given customer number.
__ */
DEFINE INPUT PARAMETER piCustNum AS INTEGER.

DEFINE OUTPUT PARAMETER pcSalesRepName AS CHARACTER.

FIND WHERE = piCustNum.
FIND WHERE =
pcSalesRepName =

This is a somewhat simplified case. If your ABL procedure has a single ouTpPUT
parameter, and doesn’t need to return the ABL RETURN-VALUE to the client, then
ProxyGen maps the one oUTPUT parameter to the return value of the Invoke
operation in the DomainService class, which this paper shows how to define. The

March, 2011 Page 3 of 24

RIA Services Invoke Operations John Sadd

procedure could still have one or more INPUT parameters, and the process would be
the same. However, if the procedure has multiple INPUT-OUTPUT Or OUTPUT
parameters, then there’s an additional code construction that’s needed, and an
example of that is shown in the second of the two videos, and described in the second
part of this paper.

So again, the newly-created the ABL procedure needs to be added to the same proxy
as the other procedures that represent services on the Customer and Order tables.
Opening the proxy that was built and extended before, I can add this next procedure
to it. Like the others, it's in the AppServerContent folder, because that’s what gets
published to the AppServer’s ProPath. Selecting the .r file for the new procedure, I
add that to the proxy:

.+ Prony Generator for Open Clients - C:\Web - Dﬂl
File SubfppObject Frocedurs Took Options Help
>
BE@E s
CustOrderspp AppObject Procedures
Mon-persistent Procedures (2] [|
CwebWorkspacehS e .
Cwebiwomkspacehs Add Non-persistent Procedures for CustOrderApp P] o3
Propath Selection [T \wabworkspase!SiverightS amplst | = Use Path in Hame:
File Fileer [I” Perform Recursive Add
e il [[2°5 EwiabwokspecesSiveightS ey] et alesFien
I settings
Persistent Frocedures I AppServeCantent &I
£ CustDrderProject
N Help
3 CustDidersNS
() SaveRiead
4] | M

0 directories selected: T files selected [2Procedures A

Once again I re-generate the proxy, and now I have a new version with three
separate procedures defined.

Next I have to add a reference to it in the DomainService class. Back in Visual Studio,
I re-open the CustOrderDomainService class. Down at the bottom of the file, I add
support code for this first non-entity-passing method, which will run GetsalesRep in
the proxy, and which as I said uses an attribute named Invoke to signal the behavior
that needs to be supported. The Invoke attribute is expressed as an annotation in
brackets, and the new public method has the same name as the ABL procedure that
it's going to run. (This is just a naming convention I use for this example; there’s no
need to use the same name, and in fact you might prefer not to.)

[Invoke]
public string GetSalesRep (int inputCustNum)
{

The method just takes the input parameter that will be passed to the ABL procedure,
the customer number. I need to define a variable to hold the output parameter that
comes back from the ABL procedure. Then in the same AppObject instance used by

March, 2011 Page 4 of 24

RIA Services Invoke Operations John Sadd

other methods in the DomainService, the GetSalesRep method needs to invoke the
ABL procedure through the proxy. This call takes the parameters of the ABL
procedure: the customer number as input and the SalesRep name as output. So the
DomainService method returns the SalesRep name as its return value:

string outRepname;
_appObj.GetSalesRep (inputCustNum, out outRepname) ;
return outRepname;

That's the end of the new method in the DomainService. After saving and compiling
the DomainService, I do a Build to regenerate the DomainContext class in the
solution. Once that's done, I need to update the user interface to display the
SalesRepName that’s returned from OpenEdge. Back in the XAML for the
CustOrderPage, I need to add a button that will trigger a request to retrieve the
SalesRep name. In the Toolbox, I select a Button control:

CustOrderProject - Microsoft Yisual Studio
File Edi Project Buld Debug Team Data Tools Test ‘window Help
R e e N § RS R S e e S || % |getsalesren R r s b e - o

R ax IF2| 2= = 2 |63 &g o 35 U <[Publih: |Crests Publish Settings e

oolbox - =X
5 CustrderProject Contrals = =@ o

& Fointer B [Models
BusyIndicator [CustOrderProject. Controls) - [[Shared

CustombataForm {CustOrderProject. Controls)
Errorindow (CustOrderProject)

LoginForm (CustOrderPrajsct Loginll)

Loginkeegistrationiiindon {CustOrderProject. ., [Resources
B [Services

4] AutherticationService.cs

—] CustOrderDomainService.cs

RegistrationForm {CustOrderProject.LoginLT) 4] UserRegistrationService .cs ¥

5 Comman Siverliht Controls (ytlen Submit Changes P [
7

LoginStatus {CustOrderPraject. LoginUJl)
MainPage (CustOrderProjecty

& @@ E @ E

K Fointer a0y Y0y] Solution Explorer

Border
suzon &

CheckBox

DataGrid CustomerGrid

“ePProperties o Events
ComboBox

{ (] = [c]
N o cr -

I3 =

CanllserSortCal

Celstyle Resowrce.,

3
infx/2006/xaml/presal
Clip

o
o
o
CipboardCopyM... [1 ExcludeHead:
o
=]
v

HrEiEusrmEo

RadieBLtton
ColumrHe aderH Nah
Rectangle

ColumnHeaders Resource..,

StackPanel

EO®

[catlection) .. |

I drag and drop that onto the page, and move it over to the left, underneath the
Customer grid. The screenshot below shows that the XAML now includes the Button
and reflects its initial property settings:

March, 2011 Page 5 of 24

RIA Services Invoke Operations John Sadd

CustOrderProject - Microsoft Visual Studio

File Edt View Project Buid Dsbug Team Data Format Tools Test Window Help
H SHd 8 aR9-e-S-5 b [|| 8 |gersalesrep R e el -
2 | 16303 &l L3 4 5 G [publishe | create Pubish Settings % -

CustOrderPage.xam* X

Haol2=la @
Bl [Models
[Shared
4] CustOrder.cs
] RegistrationData.cs
- #] User.cs
o obi
[Resources

[Services J
4] AuthenticationService.cs
~] CustOrderDomainSer vice.cs
] UserRegistrationService.cs T
»

e g iaChanes) :
(1024 x 68

el 3 salution Explorer [[R
e ~ 1 x
Button | buttonl

“fProperties - Events

=t __Seav:h x
B XAML | 4
sURIUdLAar LU AU . i g . . t Pl Eutton -

<sdk:DataGrid)

=]

<Button Conter o
</arid> DakaConkext: O Endrg..

=]

=]

=]

ContertTermpiate ResoUre..,

c
[<Button content B "33 talali t " Lrser
</navigation:Page> Effect
100% - 4
& Button {button1) Fage/arid/Eutton -

W Error List

FlowDirection LeftTaRight

Portable User |

FontFarmily

I change the button name to SalesRepButton in the Properties tab, and change the
label - that's the Content property -- to Get SalesRep. I can resize the button as
well to make room for the new label:

CustOrderProject - Microsoft Yisual Studio =10 1]
Fie Edt view Project Buld Debug Team Data Format Tools Test Window Help
R = N ey - RN |13 getsdlesren JREREe e O

2 | [3 &l (3 4 5 G |f Publish: | Creste Publish Settings e & -
CustOrderPage xaml* X

HoleElale
= [Modsls

[Shared
H 4] CustOrder.cs

] RegistrationData.cs

H] User,cs
i obj
[Resources

Bl [Services J
4] Autherticationservice cs

CustOrderDomanarvics.cs
UserRegistrationService.cs T
»

Submit Changes

Button SalesRepButton

A Properties -/ Events

T Er—

GetSalesRep 4
‘]

4

g - T content +

<sdk:DataGrid AutoGenerateColumns="True” Height="18@" HerizontalAlignmen v T

<Button Content="Submit Changes" Heig 3" Horizontalalignme eft” Marg — o

<Button Content="Get SalesRep” Height HorizontalAlignment 1

</Grid> DataContext @ Binding...
v}
v}
=]

</navigation:Page> Effect

100% - 4| | FlowDirection
PagefGridfButton

LeftToRight
Portatle User ~ |

FortFarity

B Error List

Now I want what ABL would call a fill-in field to display the SalesRep name that’s
retrieved. Once again in the Toolbox, I select a TextBox control, and drag that onto
the page, and move it over next to the button. I name it RepnameBox.

March, 2011 Page 6 of 24

RIA Services Invoke Operations

WVew Pt Buid Debug Tesm Dua Fomat Teok Test Window e

Al9-o-8-0

b oot

ST

CustOrderPage.xani® %

[omsmasn]

Qoesn AT @AM |

- ||| getsdestep

Publih; | create Publsh Setting

Submit Changes

JRFEE R RO

AalsElale

Modeis

.
=3 Solution Explarer

o

5] Button (salesRepButton) Page/adfesten

FontFaiy

scat

4] Custordsomanser

<] UserRegistrationService.cs ¥
s H

@ (3 shared
) e

vice.cs

Buttan SalesRegButton

Hprupeties S Events

Got Selesfiep |

ContertTempiare (1

0 LeftToRight
0 Portablessr vl

John Sadd

The value displayed is the control’s Text property. The supporting code for the UI

sets that at runtime when a SalesRep name is retrieved for a Customer.

If I double-click on the button, I get the skeleton for a Click event handler for it. Here
I want to retrieve the customer number from the currently selected row in the grid to
use as the input parameter to my call:

|| @ [getssemep

Create Publish Settings % & |

ERl ¢ CustOrderProject. Views CustOrderPage

epButton_Clck{object sender, RoutedEventargs e)

CODomainContext . SubmitChanges (OnsubmitCompleted, null);

rivate void OnsubmitCompleted(SubmitOpe

if (submitop.HasError)
{

essageBox. Show(string. Format (submitOp. Error.Message));

submitop.MarkerrorasHandled

3

)5

rivate void SalesRepButton_Click(object sende

r, RoutedEventargs e)

Rl ol i e P S A

I start with the same statement used in the SelectionChanged event that retrieves

Orders for a selected customer. SelectedCust is a CustOrder entity from the

CustomerGrid, and the current row is the selectedItem property:

private void SalesRepButton Click(object sender, RoutedEventArgs e)

{

CustOrder selectedCust

= (CustOrder)CustomerGrid.SelectedItem;

Now what comes next is a little tricky. Remember that the user interface C# support

code doesn’t make calls directly to the DomainService. It uses the generated

DomainContext class as a client-side intermediary. If I open that class once again in
the Generated_Code folder (which I exposed in an earlier video by pressing the

March, 2011

Page 7 of 24

RIA Services Invoke Operations John Sadd

Show All Files button) you can take a look at the code generated to support
GetSalesRep. Look at the comments for the GetSalesRep operation:

/// <summary>

/// Asynchronously invokes the 'GetSalesRep' method of the DomainService.

/// </summary>

/// <param name="inputCustNum">The value for the 'inputCustNum' parameter

of this action.</param>

/// <param name="callback">Callback to invoke when the operation

completes.</param>

/// <param name="userState">Value to pass to the callback. It can be

<c>null</c>.</param>

/// <returns>An operation instance that can be used to manage the

asynchronous request.</returns>

public InvokeOperation<string> GetSalesRep (int inputCustNum,
Action<InvokeOperation<string>> callback, object userState)

{

Dictionary<string, object> parameters = new Dictionary<string,
object> () ;

parameters.Add ("inputCustNum", inputCustNum) ;

this.vValidateMethod ("GetSalesRep", parameters);

return ((InvokeOperation<string>) (this.InvokeOperation ("GetSalesRep",
typeof (string), parameters, true, callback, userState)));

}

First there’s a reminder that calls to the DomainService are made asynchronously, so
the code has to be a two-step process of making the request and then processing the
response. The first parameter is my input parameter, the customer number. Then I
have to name a callback method that’s run when the request completes. Then there’s
an optional user state value that I'll just set to null; this is a pattern we've seen
before. Most importantly, you can see that the call itself returns an InvokeOperation
object.

Looking at this generated code in the DomainContext confirms what the call in the
user interface support class needs to look like. I have to define an InvokeOperation
object of type string, representing the one output parameter, which I call invokeOp.
I assign that to the result of the method in the DomainContext called GetSalesRep.
The first parameter to the method in the DomainContext is the customer number. To
get to that, I start with the selectedCust in the CustomerGrid, which is an instance
of the custorder entity, and so has values for all the fields that are defined as
properties in the entity class. I want the CustNum property, of course. You can see the
code assist is reminding me that the next parameter is a callback method:

March, 2011 Page 8 of 24

RIA Services Invoke Operations John Sadd

CustoOrderProject - Microsoft Visual Gtudio

Fle Edit View Refactor Project Buld Debug Team Data Todks Test Window Hel
F" il 5] 389 - LI b [ovs)| o S5 D .
P R A I D83 a1 5 ublish: | Create Publish Settings & & -

M CuscOrderPage.xanl.cs® X

FI i CustorderProject. Views. CustOrderPage SalesRepbutton_Click{object sender, RoutedEventArgs)

=4 Properties
B [References
B [Assets

- [Bin
i [Controls

7 Generated_Code
| Models
} CustOrderProject Web.g.cs

[Helpers
[Libs

CoDomainContext. SubmitChanges(OnsubmitConpleted, null);
}

private void OnsubmitCompleted(SubnitOperation submitOp)
if (submitop.HasError)

HessageBox. Show(string. Format(submitOp. Error. Message));
submit0p.MarkErrorAsHandled();

)
1 [Models -
’ J__________JJJ

Private [L2 of2 ¥ InvokeOperation <string> CustOrderDomainContext. GetSalesRep(int inputCusthium, Action< InvokeOperation<strings> callback, obid

cust] Asynchronously invokes the 'GetSalesRep” method of the dorain service.
nvd callback: Calback to invoke when the aperation completes.
CoDomainContext.GetSalesRep(selectedCust. Custiium,

I call that callback onSRB_Completed — SRB for SalesRepButton. I can just use null
in place of a user state, and that’s the end of the click event handler:

private void SalesRepButton Click(object sender, RoutedEventArgs e)
{
CustOrder selectedCust = (CustOrder)CustomerGrid.SelectedItem;
InvokeOperation<string> invokeOp =
CODomainContext.GetSalesRep (selectedCust.CustNum,
OnSRB_Completed, null);
}

Now I need to code the callback method, onsSRB_Completed, which takes the
InvokeOperation object as input:

private void OnSRB Completed(InvokeOperation<string> invokeOp)
{
if (invokeOp.HasError)
{
MessageBox.Show (string.Format ("Method Failed: {0}",
invokeOp.Error.Message)) ;
invokeOp.MarkErrorAsHandled () ;
}
else
RepnameBox.Text = invokeOp.Value;
}

The method uses the same HasError check used in other callbacks like this one.
Otherwise, if there’s no error, all the code needs to do is assign the Text property of
the RepnameBox TextBox to the value property of the Invoke operation, which is a
string. The value property is the return value that the ABL procedure’s output
parameter is mapped to.

Just to clean up the display, I make a small change to the SelectionChanged event
handler that gets fired every time the user selects a different customer in the grid. I
clear the Text value of the TextBox, until the user clicks the Get RepName button

again:

March, 2011 Page 9 of 24

RIA Services Invoke Operations

John Sadd

private void CustomerGrid SelectionChanged(object sender,
SelectionChangedEventArgs e)
{

RepnameBox.Text = "";

OrderGrid.ItemsSource = selectedCust.Orders;

CustOrder selectedCust = (CustOrder)CustomerGrid.SelectedItem;

Of course, the code could trigger the GetRepName method from this

SelectionChanged event handler, so that the value is immediately displayed
whenever a new Customer row is selected, but that’s just part of the user interface

design, so feel free to make a change like that in your own examples.

Now I can run the test page for the project. I select the CustOrder page, select a
Customer, and click the Get SalesRep button. Here’s the SalesRep name for that

Customer:

/7 CostOrdberPasge Page - Windows Internet Explores

Cugthum Name Address City State CrediLimit
1 Lift Tours 278 North Drive | Buriington | MA 66700
2 Urpen Frisbest Rattipolky 33 Osle Uusma 27600
Heops Suite 415 Atlants | GA 75000
4 Go Fishing Ltd Unit 2 Hamow Middlesex 15000
5 Match Boint Tencis A Homer Bl Boston | MA 11600
et Salesflen | |Pit, Dirk K. Submit Changes

Custhum Orderbum Carrier OrderDate Salesiep
2 54 Standard Mail 10/4/1957 12:00:00 AM DWP

125 FiyByNight Courier | 12/20/1997 12:00:00 &AM DKP

171 Standard il 11/30/1997 12:00:00 AM DHP

I can select another Customer, and you can see that the SalesRep name was cleared

by the line of code that I added to the selectionChanged event handler:

March, 2011

Page 10 of 24

RIA Services Invoke Operations

John Sadd

Application Name

Custhum Name Address cay State Creditimi

1 Lift Tours 275 Moeth Drive Burington MA 56700
Urpen Prisbeet Rattipolku 33 sl Uusima 27600

3 Heos. Suite 415 atlacts GA 75000

4 Ga Fashing Ltd Unit 2 Harrew Middiesex 15000
Match Pnint Tenses G5 HomerPl Foston WA 11000

=] 4 | A e

| et Saieshes |
Custium Orderfbum Carri
4 21

4 6030

| Submit Changes

OrderOate. Salesfen
Standard Mad | 2/8/1998 12:00:00 AM 515

2/3/1538 12:00:00 &M BSB

So I click the button again, and I see the SalesRep for customer 4, so everything’s

working:

/7 Cirstirderiage Page - Winduws Inberne Explarer

8 DustOrdeiPage Page

Application Name

Custhum Name

] Lift Tours

2 Urpen Frisbeet
3 Heops:

4 G Fishing Ltd

Match Bnint Ten

OTT'I&--- Rocakhost 52873 CustrdsrProgectT

i Favorbes | ol 9 suggested Skes v B | Web Sice Gallery

Address City State Credituma
276 Morth Drive Burington M 56700
Rettipolku 33 Delo Uusima 27600
Suite 415 Atlarts GA 75000
unit 2 Harrow Mdlesex 25000

£5 Homer Bl

Beston WA 11000

=1 5 | = | P e 2

4 sa30

|_Get Swiashen | | Sman , Spke Lo | Subenit Changes
Custhum Orderféum Carrier OrderDate Salesfen
4 31 Standard Mad | 2/8/1998 12:00:00 AM 5.5

3/3/1598 13:00:00 AM BZE

This example has shown you how to call an ABL procedure with any nhumber of INPUT
parameters, and exactly one non-entity OUTPUT parameter. As a review, and to allow
you to copy code from this paper, here are the complete code elements used in this

first Invoke example:

March, 2011

Page 11 of 24

RIA Services Invoke Operations John Sadd

First, the ABL procedure:

K e
File : GetSalesRep.p
Notes : Returns the SalesRep RepName for the given customer number.
__ */
DEFINE INPUT PARAMETER piCustNum AS INTEGER.

DEFINE OUTPUT PARAMETER pcSalesRepName AS CHARACTER.

FIND WHERE = piCustNum.
FIND WHERE =
pcSalesRepName =

Next, the DomainService method:

[Invoke]

public string GetSalesRep (int inputCustNum)

{
string outRepname;
_appObj.GetSalesRep (inputCustNum, out outRepname) ;
return outRepname;

Next, the click event handler for the new button in CustOrderPage.xaml.cs:

private void SalesRepButton Click(object sender, RoutedEventArgs e)

{

CustOrder selectedCust = (CustOrder)CustomerGrid.SelectedItem;

InvokeOperation<string> invokeOp =
CODomainContext.GetSalesRep (selectedCust.CustNum,
OnSRB_Completed, null);

Next the completion event handler for the client event handler:

private void OnSRB Completed(InvokeOperation<string> invokeOp)
{
if (invokeOp.HasError)
{
MessageBox.Show (string.Format ("Method Failed: {0}",
invokeOp.Error.Message)) ;
invokeOp.MarkErrorAsHandled() ;
}
else
RepnameBox.Text = invokeOp.Value;

}

And finally, the one-line change to reset the Text property in the selectionChanged
event handler:

private void CustomerGrid SelectionChanged (object sender,
SelectionChangedEventArgs e)
{
RepnameBox.Text = "";
CustOrder selectedCust = (CustOrder)CustomerGrid.SelectedItem;
OrderGrid.ItemsSource = selectedCust.Orders;

March, 2011 Page 12 of 24

RIA Services Invoke Operations John Sadd

As I said at the outset, the first example is somewhat simplified, because it needs to
return only a single scalar output parameter. In the second part of the paper I create
a slightly more complex example to show how to return multiple output parameters
as an object with two or more properties.

As before, I need to create a new stand-alone ABL procedure for a new service, which
in this case goes beyond the previous one in that it takes the customer number as
input, but also takes the CreditLimit from the client as an INPUT-OUTPUT parameter,
and returns it, possibly modified, along with the SalesRep name. So in effect this
procedure has two input parameters and two output parameters. I have also added a
very simplistic bit of business logic here that says that if the CreditLimit hasn’t been
changed in the database, and if the customer Balance is less than half the
CreditLimit, then the code increases the CreditLimit by twenty percent and returns

that value:
K
File : GetRepAndCL.p
Notes : Returns the SalesRep RepName and adjusts CreditLimit.
__ */
DEFINE INPUT PARAMETER piCustNum AS INTEGER.
DEFINE INPUT-OUTPUT PARAMETER pdCreditLimit AS DECIMAL.
DEFINE OUTPUT PARAMETER pcSalesRepName AS CHARACTER.
FIND WHERE = piCustNum.
IF (pdCreditLimit =) AND
(< (/ 2)) THEN
pdCreditLimit = *1.2.
FIND WHERE =
pcSalesRepName =

After saving the new procedure to the AppServerContent directory, I need to add it to
the same proxy as the other procedures in the series. I add the procedure, and now I
have four entry points in the proxy, each a stand-alone ABL procedure.

Let me take a moment to make sure it's clear how you would return the ABL RETURN-
VALUE to the client if you needed to. You can right-click on an ABL .r file in ProxyGen'’s
Procedures tab, and select Customize...

Formsort Frcacire: |

March, 2011 Page 13 of 24

RIA Services Invoke Operations John Sadd

The Customize dialog has an option to Return ABL RETURN-VALUE:

 Prony Generator for Open Clients - C = [a]
File SubAppObject Procedurs Tools Options Help
B A
icia—
e =
Procedurs | Parameters | =
Procedure to un [AppServerContent-UpdateCustOirders. T
Method Name [UpdateCustOrders Cancel
Deseription
Help
T Retum ABL RETURNVALUE
Select the Return ABL RETURN-VALUE check box =
¥ Use &ppDbject Unknown Setting ¥ Use AppObject Beforemage Setting
I | Use fppOibiect Terma-Tatle Gelfing

If you click that checkbox on, then the RETURN-VALUE is returned as a string with the
name retValue, and you have to add that to the set of output parameters for the
procedure. However, I'm not going to do that here.

When I click the Generate button, and then just OK the proxy properties dialog, I
get a new version of the .NET proxy with four separate procedures defined.

Now I go back to the DomainService class I've been working with, to add support for
the new procedure. As a reminder, here’s the Invoke operation I added in the

previous video.

[Invoke]

public string GetSalesRep (int inputCustNum)

{
string outRepname;
_appObj.GetSalesRep (inputCustNum, out outRepname) ;
return outRepname;

Note that because the underlying ABL procedure that is being invoked here through
the proxy just returns a single output parameter, and no ABL RETURN-VALUE, the
DomainService method can just define its return type as the return type of the ABL
parameter — CHARACTER Or string in this case — and simply return that one value.

In this second example, it's not going to be quite that simple. The ABL procedure
returns two values, the INPUT-0OUTPUT CreditLimit and the output SalesRep name.
To represent that in the DomainService, I need to define a class with a property for
each of those values. The class then becomes the return type for the other
DomainService methods.

So before I define the new Invoke method, I define the class that encapsulates all its
output parameters. There’s a rule that all DomainService operations must use

March, 2011 Page 14 of 24

RIA Services Invoke Operations John Sadd

serializable types for parameters and return types, so I add the Serializable
attribute as an annotation in front of the parameter class:

[Serializable]

public class GetRepAndCLParams

{
public decimal inoutCreditLimit { get; set; }
public string outRepname { get; set; }

The first property defined in the class represents the CreditLimit, the INPUT-OUTPUT
parameter. The second one represents the ouTPUT SalesRep name. That's all that’s
needed in the class definition. Remember that because the call is asynchronous, the
input parameters have already been passed to the request. Here I need to specify
only the output parameters that come back to the completion event handler, including
the output value for any input-output parameters.

Now I can define the class that invokes the ABL procedure through the proxy. Its
return type is not a simple scalar type, but an object of the type I just defined. As
I've done before, I give the method the same name as the ABL procedure, which is
just my naming convention. There are two input parameters, the customer number
and the current credit limit as held in the client:

[Invoke]
public GetRepAndCLParams GetRepAndCL
(int inputCustNum, decimal inoutCreditLimit)

{

Because my return type is now a class, I have to create an instance of the class to
return. The first two parameters are accounted for as input to this method, but I still
need to define a local variable to hold the third parameter when it comes back.

GetRepAndCLParams outParams = new GetRepAndCLParams () ;
string outRepname;

Next I invoke GetRepAndCL in the running AppObject instance. The first parameter is
the customer number. The second is the credit limit, which is passed using the ref
mode in C# to correspond to what ABL terms INPUT-OUTPUT. The third parameter is
the output parameter.

try
{
_appObj.GetRepAndCL (inputCustNum, ref inoutCreditLimit,
out outRepname) ;

Now I populate the parameter object I created, setting first the credit limit, in case
that was modified on the server, and then the SalesRep name:

outParams.inoutCreditLimit = inoutCreditLimit;
outParams.outRepname = outRepname;

March, 2011 Page 15 of 24

RIA Services Invoke Operations John Sadd

The standard catch block completes the additions to the DomainService class:

catch (System.Exception e)

{
throw new Exception (e.Message);

}

return outParams;

As I've noted elsewhere, my exception handling code in these examples is very
minimal, to keep the code brief, but even this simple catch block is useful because it
will at least return an exception message to the client.

I can compile what I've just added here, and then do a Build again, to make sure
everything gets regenerated properly. Once that’s done, I can take another look at
the generated DomainContext class to confirm what the user interface support code
needs to pass to it. As I did before, I can look at the comments to check what I need
to pass:

/// <summary>
/// Asynchronously invokes the 'GetRepAndCL' method of the DomainService.
/// </summary>
/// <param name="inputCustNum">The value for the 'inputCustNum' parameter
of this action.</param>
/// <param name="inoutCreditLimit">The value for the 'inoutCreditLimit'
parameter of this action.</param>
/// <returns>An operation instance that can be used to manage the
asynchronous request.</returns>
public InvokeOperation<GetRepAndCLParams> GetRepAndCL (int inputCustNum,
decimal inoutCreditLimit)
{
Dictionary<string, object> parameters = new Dictionary<string,
object>();
parameters.Add ("inputCustNum", inputCustNum) ;
parameters.Add ("inoutCreditLimit", inoutCreditLimit);
this.ValidateMethod ("GetRepAndCL", parameters);

return
((InvokeOperation<GetRepAndCLParams>) (this.InvokeOperation ("GetRepAndCL",
typeof (GetRepAndCLParams), parameters, true, null, null)));

You can see that I just have to pass all the input parameters (including of course the
input-output credit limit), followed by the callback method name, followed by a null
for the user state. Remember that the call is asynchronous, so I pass all the inputs
here and process the outputs later.

Having confirmed the signature of the call, I create a call to the DomainContext
method in the user interface support code, CustOrderPage.xaml.cs. Starting with
the click event handler for the Get SalesRep button, I can make some changes to run
the new ABL procedure rather than the simpler one with the one oUTPUT parameter:

private void SalesRepButton Click(object sender, RoutedEventArgs e)

{

CustOrder selectedCust = (CustOrder)CustomerGrid.SelectedItem;

March, 2011 Page 16 of 24

RIA Services Invoke Operations John Sadd

First I add a simple sanity check here so that the code doesn’t blow up if I click the
button before I select a customer. (Be aware that my examples are very simplified in
ways like this, so that I don't have to explain any more code than necessary.)

if (selectedCust != null)
{

Next I comment out the invoke operation for GetSalesRep, and in its place, I invoke
the new one with two output parameters:

/* InvokeOperation<string> invokeOp =
CODomainContext.GetSalesRep (selectedCust.CustNum,
OnSRB Completed, null); */

InvokeOperation<GetRepAndCLParams> invokeOp =
CODomainContext.GetRepAndCL (selectedCust.CustNum,
selectedCust.CreditLimit, OnSRB CL Completed, null);

Note that the type of the invoke operation is now my new parameters class. In the
DomainContext, I invoke the GetRepAndCL method that I just looked at. The input
parameters come from the currently selected Customer in the grid, the CustNum and
the CreditLimit. I name my event handler for the completion event

OnSRB_CL Completed, adding CL for CreditLimit.

Next I implement the new completion event handler. It's instructive to compare it
with the simpler method, which as a reminder is shown again here:

private void OnSRB Completed(InvokeOperation<string> invokeOp)
{

if (invokeOp.HasError)

{

MessageBox.Show (string.Format ("Method Failed: {0}",

invokeOp.Error.Message)) ;
invokeOp.MarkErrorAsHandled () ;

}

else
RepnameBox.Text = invokeOp.Value;

First I add cL to the method name. Next I have to replace the string type with the
parameter object type:

private void OnSRB CL Completed(InvokeOperation<GetRepAndCLParams> invokeOp)
{

After the standard error check, instead of the value parameter of the invoke
operation being a single value, it's now an object with a property of its own for each
property in the parameters class. So I set the Text property of the SalesRep name
TextBox to that property:

March, 2011 Page 17 of 24

RIA Services Invoke Operations

John Sadd

if (invokeOp.HasError)

{
MessageBox.Show (string.Format ("Method Failed: {0}",

invokeOp.Error.Message)) ;

invokeOp.MarkErrorAsHandled() ;

}

else

{
RepnameBox.Text = invokeOp.Value.outRepname;

Next I need to re-display the CreditLimit value that’s returned, in the grid. So I
identify again the object that represents the currently selected row, the
selectedItem. I set the CreditLimit cell in that row to the INPUT-OUTPUT value that
was passed back from OpenEdge. Once again the Invoke operation’s value parameter

is an object, which also holds the CreditLimit property:

CustOrder selectedCust = (CustOrder)CustomerGrid.SelectedItem;
selectedCust.CreditLimit = invokeOp.Value.inoutCreditLimit;

To review, when the user selects a Customer in the grid and clicks the Get SalesRep
button, that click event fires the event handler in CustOrderPage.xaml.cs. The
event handler runs the version of the GetRepAndCL method in the client’s
DomainContext class, passing the input parameters and the name of the completion

CustOrderProject - Microsoft Visual Studio =)
Filz Edit Wiew Refactor Project Build Debug Team Data Toolks Test ‘Window Help
R - Ry Y e = A= S e || [getrepand - | A G e B -
P b A I 2 | &) G o 3 e 5 G o[Publsh: | create publish Settings @ 4 .

S 1 CustOrderProject.Wisws CustOrderPags OnSRE_Completed(IrvoksOpsration <string > invokeop)

private void SubmitButton Click(object sender, RoutedEventargs e)

if (CODomainContext.HasChanges -= true)
coDomainContext . SubmitChanges (OnsubmitCompleted, null);
)
}

private void OnsubmitCompleted(SubnitOperation submitop)

if (submitOp.HasError)
{

MessageBox.Show(string. Format (submitOp.Error.Message));
submitOp.MarkErrorAstandled();

private void SalesRepButton Click(object sender, Routedeventirgs e)

CustOrder selectedCust = (CustOrder)CustomerGrid.SelectedItem;
if (selectedcust = null)
{
/* Invokeoperation<string> invokeop =
COoDemainContext.GetSalesRep(selectedCust.Custium,
OnsRB_Completed, null); =/

InvgkeOperation<G: AndCLParams> invokeOp =
ndCL(selectedCust.Custhum,
selectedCust.CreditLinit, OnSRE_CL Completed, null);

B e EEES
) Solution ‘CustOrderProject’ (2 projects) =
E- (& CustOrderProject
(=l Properties
il References

(4 Contrals
-+ [Generated_Code
[[} Models
o CustOrderProject. Web.g.cs
- [Helpers

The DomainContext invokes the method that was just defined in the DomainService
running on the Web server, asynchronously, which in turn invokes the ABL procedure

via the AppObject proxy instance:

March, 2011

Page 18 of 24

RIA Services Invoke Operations

John Sadd

CustOrderProject - Microsoft Yisual Studio

File Edit Wiew Refactor Project Build Debug Team Data Tools Test Window Help

= 2100 o o)) A oot s])

CuskOrderDomainService.cs > el

o=

@ S| %2R - - S5 b Dby || (3 [getrep || o G e BB -

"iXCustOrdErPru]ect‘WEb‘SEN\CES.CustOrderDUma\nSeMEE @ GetRepAndCL{Nt inpubCusthum, dedmal inoutCreditLimit)

EE el ey)

[Invoke]

public string GetSalesRep(int inputCustNum)

{ .
string outRepname;
_appObj.GetsalesRep(inputCustium, out outRepname);
return outRepname;

}

[Invoke]
public GetRepAndCLParams GetRepAndCL
(int inputCusthum, decimal inoutCreditlimit)
{
GEtRepAndlLParans ou
string outRepname;

_app0bj.GetRepAndCL(inputCusthum, ref inoutCreditlimit,
out outRepname);

outParams.outRepname = outRepname;

catch (System.Exception e}
{

throw new Exception(e.Message);
}

return outParams;

Ln201

o, CustOrderProject
=4 Properties
<3 References
[Assets
i Bin
3 Controls
Generated_Code
Modsls
) CustOrderProject.Web.g.cs
- [Helpers

. L =

4 3

e Solution *CustOrderProject’ {2 projects) j

0 EEEE

Propeties

When the request completes, the new completion method OnSRB_CL Completed runs,
taking the invoke operation initiated by GetRepAndCL with its parameter object as
input. The parameter object defines the output parameters, and the method copies
the SalesRep name to its TextBox and the CreditLimit value back to the grid:

CustOrderProject - Microsoft ¥isual Studio

File Edit View Refackor Project Build Debug Team Data Tools Test Window Help

VOl CustOrderPane. zaml.cs® X i nl o
=

=

fglralr S £ @9 - - 80| b b 1| getrepand S e B - -
HEE R B = 2|0k 3 el (3 g 5 52 o[F Publish: |creats Publish Settings S i -

Solution Explarer

4 CustOrderPraject. Views. CustOrderPage - | % OnSRE_CL_Canpleted{invokeCperation<GetRepAndcL Params > inv <

2l2EEEA

}

private void OnSRE_Completed(InvokeOperation<strings invekeOp)

{

if (invokeOp.HasError)

MessageBox. Show(string. Format("Method Failed: {8}", invokeOp.Error.Message));
invokeOp.MarkErrorasHandled();

}

else
RepnameBox.Text = invokeOp.Value;

}

private void OnSRB_CL_Completed(InvokeOperation<GetRepAndCLParams> invokeOp)
{
if (invokeOp.HasErrer)
{
MessageBox.Show(string. Format(“Method Failed: (0}", invokeOp.Error.Message));
invokeOp. MarkErrerastandled ();
H
else

{

RepnameBox.Text = invokeOp.Value.outRepname;
Custorder selectedCust = (CustOrder)CustomerGrid.SelectedItem;
selectedCust.Creditlimit = invokeOp.Value.inoutCreditLimit;

B & CustOrderProject
=4 Properties
|~=l References
[Asssts
| Ein
Cantrals
Generated_Code
i Models
] CustOrderProject. Web.g.cs

Helpers
T F ke
4

o) Solution ‘CustOrdarProect’ (2 projacts) j

23] solution Explorer [REEE g

> @ x

This example can reuse the Get SalesRep button and its TextBox, so there’s no need

to make any changes to the user interface itself.

If I run with the new methods compiled and and the project re-built, then when the
test page comes up, I can select the CustOrder page, and Customer 2. I see the

March, 2011

Page 19 of 24

RIA Services Invoke Operations John Sadd

Orders that are retrieved by the other user interface event, SelectionChanged of the
Customer grid:

£ CustOrderPage Page - Windows Inbernet Explorer =10l x|
O w [e e oo #)cuznnd ETER: ED 2
i Favortes | 5 @ suggested Skes ~ B | Wb Shee Gallery

8 CustorderPage Page T e B - s Pages Sefetys Tooss e

Application Name

Custum Naea Lddress Cay Stata Craditiimit

1 Lift Tours 275 Morth Drvwe Burfington MA 5700

2z Urpon Frisbeet Rattipolku 33 Osko Uusima 22600

3 Heans. Suite 415 Atlarts GA TE000

4 Go Feshing Ltd unit 2 Harrew Maddiesex 15000
Match Point Tecsis 65 HomecBl Boston A 11000 4

Get Salesien Submit Changes

Custhium Ordarfium Carrier Order(iate Salesfep

2 [Standacd Mad 10/4/1997 12:00:00 AM | DKP 3
125 FiyByNight Courier | 12/20/1537 12:00:00 AM | DKFP

z 171 Standard Mail 11/30/1997 12:00:00 AM | DKF 5

Now I undo the little changes I made to this row in the update presentation, removing
the t from the end of the name, and changing the street number back to 3. Note the

before value of the CreditLimit, 22600:

7 CurstOrerPasge Page - Windows Inbernet Eplorer o xf

L« S0 O B2 L EED mn
i Fevorbes | s @ supgested Shes = B | 'Web Shee Gallery v
8 CustorderPage Fage K e E) - 0 v Poges Sofetyr Tods e »

Application Name

Custtium Name Address city Sute Credittima
1 Lift Tours 276 North Drwe Burkington Ma, 6700
2 Urpon Frisbes. [Feattipolk 3afE== Uusima 22600
3 Heops Suite 415 Atlarts GA 75000
4 GaFahingltd Unit 2 Harow Maddlnsex 15000
Matrh Point Tennis 66 HomerFl Rostin WA 11000 E
Gt Saleshen Subenit Changes
Custhum Orderium Carrier OrderDate Salesfen
N Standaed Ml 10/4/1997 12:00:00 AM | DKP 3
125 FiyByNight Courier | 12/20/1997 12:00:00 AM | DKP
z 171 Standard Mal 11/30/1997 12:00:00 &M | kP 5

Now I click the Get SalesRep button. This invokes the new GetRepAndCL method, and

in turn the new ABL procedure of the same name, which not only retrieves the
SalesRep name but updates the credit limit if it satisfies the business logic on the
backend:

March, 2011 Page 20 of 24

RIA Services Invoke Operations John Sadd

£ CumstrderPage Page - Windows Internel Explorer

g__’.‘_,h... Pe—m— prr—— T T ———— E‘E""P—. Al

i Favorioe | 3 8 suggested Stes » B ‘Wb Shoe Gallery

Custhum Name Address city seate CrecitLimit
1 Lift Towrs 278 North Drive Burington | MA& 66700
2 Urpen Frisbes Ratipolku 3 Osls Vusima
3 Heogs Suite £15 stlanta GA 75000
4 Go Fishing Ltd unit 2 Marow | Middlesex | 15000
5 Mabeh Dnint Tansin 66 Homae 8 Peston | MA 1100
Get Salesfen | |Pitt, Dtk K. SJEHN"H""DES

Custhum Cwderfium. Carrier ‘OrderDate SalesRep .
= Click the Submit Changes bution
2 54 Standard Mail 10/4F1957 12:00:00 AM DF

125 FlyBiyNight Courier | 12/20/19%

100 AM | DRP

17 Standard Mail 11/30/1997 12:00:00 AM DRP

And after clicking the Get SalesRep button, the SalesRep name is displayed, and
apparently the Balance for this Customer is less than half the CreditLimit, so the
CreditLimit has been increased.

Now, the business logic didn't update the database, it just returned the new
CreditLimit value to the client. If I now decide I want to save that new value, along
with the other changes I made, I can press the Submit Changes button that was
added to the application in the update example, and those changes are all sent back
to the server in a change set and saved to the database. To verify that, I can get out
of the CustOrder page, and then reselect it, and see that all the values for Customer 2
have been re-retrieved, confirming that they were saved to the database:

e irinTagt Taet R AT |
) = [oo o orrcomoramrromarezsae speiumcrers =1 <) P = ol
i Fovorbes | o5 B Suggested Shes = B | Wb Shce Gallery

8 custinderage Fage B w) - v Pagee Safetye Toose e 7

Application Name

CustNum Name Address cay State Cradituimit
1 Lift Teurs 276 Morth Drive Burlington M 65700
[Urpen Priskes Rettipolku 3 Osh Uuzima 27120
3 Hoops: Suite 415 Atlarts GA 75000
4 Ga Feshing Ltd Unit 2 Harrow Mddlesex 15000
Match Bnint Te EiHnmerFl Bnstnn M 11000 o
Gt Salesien Submit Changes

If I select Customer 4, and click the Get SalesRep button, I get the SalesRep but no
change to the CreditLimit. The grid doesn’t display the Balance value, but if I
superimpose the little FOR EACH Customer result shown below, you can see that,
whereas the Balance for Customer 2 satisfies the criterion of being less than half the

March, 2011 Page 21 of 24

RIA Services Invoke Operations

John Sadd

CreditLimit, Customer 4 does not, so there was no change to the CreditLimit value
that was passed back. A more responsive user interface that makes all this clearer is

left as a Silverlight exercise for the reader.

Application Name

03, £

437,63

1,193 36

[Cust Husmn Blarme
Custhum Name Address ity Stake Crudituimit
L Ll Toas
1 Lift Tours 275 Morth Drve | Burlington Ma E5700 Lifme
E Uipon Fitibas
2 Urpen Prisbee Rattipolku 3 Osk Uusima 27120 a
3 Hoops Suite 415 alarts GA 75000 1 GoFihigLid
4 o Fishing Ltd Unit 2 Harrow Maddluses 3
Match Point Teonis G5 Homer Bl Boston MA 11000 & Fu
| Gat Salssiep | | Sman , Spke Louse Submit Chang: 7 Aetokica valn Ky
e @ Game Sal Maich
Custhium Qrderfium Carrier OrderDate Saleshen »
4 21 Standand Masl | 2/8/198 12:00:00 AM | 515
4 6030 2/3/1598 12:00:00 &M | BAE

14,235.04

1,202, 66
1,112, 44
0,254, 00

1,242, 14

The complete code for all the pieces of this second example is repeated here. First,

the ABL procedure:

FIND Customer WHERE Customer.CustNum = piCustNum.

IF (pdCreditLimit = Customer.CreditlLimit) AND
(Customer.Balance < (Customer.
pdCreditlLimit = Customer.Cred

itLimit * 1.2.

—~

pcSalesRepName = Sales

ep.RepName.

reditLimit / 2)) THEN

FIND Salesrep WHERE Salesrep.SalesRep = Customer.SalesRep.

/* __
File : GetRepAndCL.p
Notes : Returns the SalesRep RepName and adjusts CreditLimit.
DEFINE INPUT PARAMETER piCustNum AS INTEGER.
DEFINE INPUT-OUTPUT PARAMETER pdCreditLimit AS DECIMAL.
DEFINE OUTPUT PARAMETER pcSalesRepName AS CHARACTER.

Next, the parameter class that defines the output parameters in the DomainService

class:

[Serializable]

public class GetRepAndCLParams

{
public decimal inoutCreditLimit { get;
public string outRepname { get; set; }

set;

}

March, 2011

Page 22 of 24

RIA Services Invoke Operations John Sadd

Next, the Invoke method in the DomainService class that invokes the ABL procedure
through the proxy:

[Invoke]

public GetRepAndCLParams GetRepAndCL
(int inputCustNum, decimal inoutCreditLimit)

{
GetRepAndCLParams outParams = new GetRepAndCLParams () ;
string outRepname;

try

{
_appObj .GetRepAndCL (inputCustNum, ref inoutCreditLimit,

out outRepname) ;

outParams.inoutCreditLimit = inoutCreditLimit;
outParams.outRepname = outRepname;

}

catch (System.Exception e)

{
throw new Exception (e.Message);

}

return outParams;

And finally, the modified click event handler in CustOrderPage.xaml.cs, and its
completion event handler:

private void SalesRepButton Click(object sender, RoutedEventArgs e)
{
CustOrder selectedCust = (CustOrder)CustomerGrid.SelectedItem;
if (selectedCust != null)
{

/* InvokeOperation<string> invokeOp
CODomainContext.GetSalesRep (selectedCust.CustNum,
OnSRB Completed, null); */

InvokeOperation<GetRepAndCLParams> invokeOp =
CODomainContext.GetRepAndCL (selectedCust.CustNum,
selectedCust.CreditLimit, OnSRB CL Completed, null);

private void OnSRB_CL Completed(InvokeOperation<GetRepAndCLParams>
invokeOp)
{
if (invokeOp.HasError)
{
MessageBox.Show (string.Format ("Method Failed: {0}",
invokeOp.Error.Message)) ;
invokeOp.MarkErrorAsHandled() ;
}
else
{
RepnameBox.Text = invokeOp.Value.outRepname;
CustOrder selectedCust = (CustOrder)CustomerGrid.SelectedItem;
selectedCust.CreditLimit = invokeOp.Value.inoutCreditLimit;

March, 2011 Page 23 of 24

RIA Services Invoke Operations John Sadd

This brings me to the end of the series of presentations on using Silverlight with WCF
RIA Services. I hope this information has been useful. Though there’s much to learn
about all the controls and capabilities that Silverlight supports, the basic thread of
retrieving and updating data from an OpenEdge application via a set of proxies, entity
class definitions, and DomalnService classes should be pretty clear to you. At this
point the rest is up to you. Thanks for watching and reading.

March, 2011 Page 24 of 24

