
March, 2011 Page 1 of 24

RIA SERVICES INVOKE OPERATIONS

John Sadd

Fellow and OpenEdge Evangelist

Document Version 1.0

February 2011

RIA Services Invoke Operations John Sadd

March, 2011 Page 2 of 24

DISCLAIMER

Certain portions of this document contain information about Progress Software Corporation’s

plans for future product development and overall business strategies. Such information is
proprietary and confidential to Progress Software Corporation and may be used by you solely in
accordance with the terms and conditions specified in the PSDN Online (http://www.psdn.com)
Terms of Use (http://psdn.progress.com/terms/index.ssp). Progress Software Corporation
reserves the right, in its sole discretion, to modify or abandon without notice any of the plans
described herein pertaining to future development and/or business development strategies.

Any reference to third party software and/or features is intended for illustration purposes only.
Progress Software Corporation does not endorse or sponsor such third parties or software.

The videos and papers in this series on using Silverlight with RIA Services have shown

examples of passing a ProDataSet as a parameter and converting it to an entity class

that can provide data to a Silverlight user interface. This paper and the two-part video

it accompanies show you an example of how to call an ABL procedure that doesn’t

pass a ProDataSet or temp-table, but instead passes one or more scalar or array
values as input and output parameters. Earlier examples in the series show the Query

and Update attributes as annotations in the DomainService class. The Query example

just has a ProDataSet as an ABL OUTPUT parameter. The AppObject proxy expresses

this as an ADO.NET DataSet, and the DomainService query method itself defines it as

an enumerable collection of CustOrder objects, as shown here:

[Query]

 public IEnumerable<CustOrder> GetCustOrders()

 {

 try

 {

 _appObj.GetCustOrders(out CustOrderDS);

 …

An example such as that one could be extended to have one or more INPUT

parameters as well, specifying filter criteria for example. But the Query form can’t

have any output parameters other than the DataSet, or alternatively a temp-table.

The Update example in the RIA Services series passes in just a changed row to return

to the server, as shown here:

[Update]

 public void UpdateCustOrder(CustOrder changeRow)

 {

 DataRow updateRow = FindCustomer(changeRow.CustNum);

 if (updateRow != null)

 {

 updateRow["CustNum"] = changeRow.CustNum;

 …

 }

 }

http://www.psdn.com/
http://psdn.progress.com/terms/index.ssp

RIA Services Invoke Operations John Sadd

March, 2011 Page 3 of 24

The associated Submit method passes this as an ADO.NET change set back to the

server. The Update and Submit form in fact doesn’t allow additional parameters

beyond the change set. As a reminder, the Submit method code below shows both

the Submit call with the object-oriented change set parameter and then the

AppObject proxy call that passes the DataSet form of that change set through the

proxy to the ABL UpdateCustOrders procedure:

public override bool Submit(ChangeSet changeSet)

 {

 bool result = true;

 try

 {

 foreach (ChangeSetEntry changeRow in changeSet.ChangeSetEntries)

 {

 if (changeRow.Entity is CustOrder)

 {

 CustOrder origEntity = (CustOrder)changeRow.OriginalEntity;

 DataRow newRow = CreateCustOrder(origEntity);

 CustOrderDS.Tables["ttCustomer"].Rows.Add(newRow);

 newRow.AcceptChanges();

 }

 }

 result = base.Submit(changeSet);

 if (changeSet.HasError)

 return false;

 _appObj.UpdateCustOrders(ref CustOrderDS);

 }

 }

There is also a general purpose attribute named Invoke for making a call that doesn’t

involve an entity, but needs to pass some combination of input and output

parameters, which can be scalar values or arrays of scalar values. That’s what is

covered in this paper and the two-part video that concludes the RIA Services series.

As in the earlier code samples in the series, this one defines an ABL service as a

stand-alone non-persistent procedure, which takes a customer number as input,

retrieves the corresponding SalesRep record from the database, and returns the

SalesRep name as output:

/*--

 File : GetSalesRep.p

 Notes : Returns the SalesRep RepName for the given customer number.

 --*/

DEFINE INPUT PARAMETER piCustNum AS INTEGER.

DEFINE OUTPUT PARAMETER pcSalesRepName AS CHARACTER.

FIND Customer WHERE Customer.CustNum = piCustNum.

FIND Salesrep WHERE Salesrep.SalesRep = Customer.SalesRep.

pcSalesRepName = Salesrep.RepName.

This is a somewhat simplified case. If your ABL procedure has a single OUTPUT

parameter, and doesn’t need to return the ABL RETURN-VALUE to the client, then

ProxyGen maps the one OUTPUT parameter to the return value of the Invoke

operation in the DomainService class, which this paper shows how to define. The

RIA Services Invoke Operations John Sadd

March, 2011 Page 4 of 24

procedure could still have one or more INPUT parameters, and the process would be

the same. However, if the procedure has multiple INPUT-OUTPUT or OUTPUT

parameters, then there’s an additional code construction that’s needed, and an

example of that is shown in the second of the two videos, and described in the second

part of this paper.

So again, the newly-created the ABL procedure needs to be added to the same proxy

as the other procedures that represent services on the Customer and Order tables.

Opening the proxy that was built and extended before, I can add this next procedure

to it. Like the others, it’s in the AppServerContent folder, because that’s what gets

published to the AppServer’s ProPath. Selecting the .r file for the new procedure, I

add that to the proxy:

Once again I re-generate the proxy, and now I have a new version with three

separate procedures defined.

Next I have to add a reference to it in the DomainService class. Back in Visual Studio,

I re-open the CustOrderDomainService class. Down at the bottom of the file, I add
support code for this first non-entity-passing method, which will run GetSalesRep in

the proxy, and which as I said uses an attribute named Invoke to signal the behavior

that needs to be supported. The Invoke attribute is expressed as an annotation in

brackets, and the new public method has the same name as the ABL procedure that

it’s going to run. (This is just a naming convention I use for this example; there’s no

need to use the same name, and in fact you might prefer not to.)

[Invoke]

 public string GetSalesRep(int inputCustNum)

 {

The method just takes the input parameter that will be passed to the ABL procedure,

the customer number. I need to define a variable to hold the output parameter that

comes back from the ABL procedure. Then in the same AppObject instance used by

RIA Services Invoke Operations John Sadd

March, 2011 Page 5 of 24

other methods in the DomainService, the GetSalesRep method needs to invoke the

ABL procedure through the proxy. This call takes the parameters of the ABL

procedure: the customer number as input and the SalesRep name as output. So the

DomainService method returns the SalesRep name as its return value:

 string outRepname;

 _appObj.GetSalesRep(inputCustNum, out outRepname);

 return outRepname;

 }

That’s the end of the new method in the DomainService. After saving and compiling

the DomainService, I do a Build to regenerate the DomainContext class in the

solution. Once that’s done, I need to update the user interface to display the

SalesRepName that’s returned from OpenEdge. Back in the XAML for the

CustOrderPage, I need to add a button that will trigger a request to retrieve the

SalesRep name. In the Toolbox, I select a Button control:

I drag and drop that onto the page, and move it over to the left, underneath the

Customer grid. The screenshot below shows that the XAML now includes the Button

and reflects its initial property settings:

RIA Services Invoke Operations John Sadd

March, 2011 Page 6 of 24

I change the button name to SalesRepButton in the Properties tab, and change the

label – that’s the Content property -- to Get SalesRep. I can resize the button as

well to make room for the new label:

Now I want what ABL would call a fill-in field to display the SalesRep name that’s

retrieved. Once again in the Toolbox, I select a TextBox control, and drag that onto

the page, and move it over next to the button. I name it RepnameBox.

RIA Services Invoke Operations John Sadd

March, 2011 Page 7 of 24

The value displayed is the control’s Text property. The supporting code for the UI

sets that at runtime when a SalesRep name is retrieved for a Customer.

If I double-click on the button, I get the skeleton for a Click event handler for it. Here

I want to retrieve the customer number from the currently selected row in the grid to

use as the input parameter to my call:

I start with the same statement used in the SelectionChanged event that retrieves
Orders for a selected customer. SelectedCust is a CustOrder entity from the

CustomerGrid, and the current row is the SelectedItem property:

private void SalesRepButton_Click(object sender, RoutedEventArgs e)

 {

 CustOrder selectedCust = (CustOrder)CustomerGrid.SelectedItem;

Now what comes next is a little tricky. Remember that the user interface C# support

code doesn’t make calls directly to the DomainService. It uses the generated

DomainContext class as a client-side intermediary. If I open that class once again in

the Generated_Code folder (which I exposed in an earlier video by pressing the

RIA Services Invoke Operations John Sadd

March, 2011 Page 8 of 24

Show All Files button) you can take a look at the code generated to support

GetSalesRep. Look at the comments for the GetSalesRep operation:

/// <summary>

 /// Asynchronously invokes the 'GetSalesRep' method of the DomainService.

 /// </summary>

 /// <param name="inputCustNum">The value for the 'inputCustNum' parameter

of this action.</param>

 /// <param name="callback">Callback to invoke when the operation

completes.</param>

 /// <param name="userState">Value to pass to the callback. It can be

<c>null</c>.</param>

 /// <returns>An operation instance that can be used to manage the

asynchronous request.</returns>

 public InvokeOperation<string> GetSalesRep(int inputCustNum,

 Action<InvokeOperation<string>> callback, object userState)

 {

 Dictionary<string, object> parameters = new Dictionary<string,

 object>();

 parameters.Add("inputCustNum", inputCustNum);

 this.ValidateMethod("GetSalesRep", parameters);

 return ((InvokeOperation<string>)(this.InvokeOperation("GetSalesRep",

 typeof(string), parameters, true, callback, userState)));

 }

First there’s a reminder that calls to the DomainService are made asynchronously, so

the code has to be a two-step process of making the request and then processing the

response. The first parameter is my input parameter, the customer number. Then I

have to name a callback method that’s run when the request completes. Then there’s
an optional user state value that I’ll just set to null; this is a pattern we’ve seen

before. Most importantly, you can see that the call itself returns an InvokeOperation

object.

Looking at this generated code in the DomainContext confirms what the call in the

user interface support class needs to look like. I have to define an InvokeOperation

object of type string, representing the one output parameter, which I call invokeOp.

I assign that to the result of the method in the DomainContext called GetSalesRep.

The first parameter to the method in the DomainContext is the customer number. To
get to that, I start with the SelectedCust in the CustomerGrid, which is an instance

of the CustOrder entity, and so has values for all the fields that are defined as

properties in the entity class. I want the CustNum property, of course. You can see the

code assist is reminding me that the next parameter is a callback method:

RIA Services Invoke Operations John Sadd

March, 2011 Page 9 of 24

I call that callback OnSRB_Completed – SRB for SalesRepButton. I can just use null

in place of a user state, and that’s the end of the click event handler:

 private void SalesRepButton_Click(object sender, RoutedEventArgs e)

 {

 CustOrder selectedCust = (CustOrder)CustomerGrid.SelectedItem;

 InvokeOperation<string> invokeOp =

 CODomainContext.GetSalesRep(selectedCust.CustNum,

 OnSRB_Completed, null);

 }

Now I need to code the callback method, OnSRB_Completed, which takes the

InvokeOperation object as input:

private void OnSRB_Completed(InvokeOperation<string> invokeOp)

 {

 if (invokeOp.HasError)

 {

 MessageBox.Show(string.Format("Method Failed: {0}",

 invokeOp.Error.Message));

 invokeOp.MarkErrorAsHandled();

 }

 else

 RepnameBox.Text = invokeOp.Value;

 }

The method uses the same HasError check used in other callbacks like this one.

Otherwise, if there’s no error, all the code needs to do is assign the Text property of

the RepnameBox TextBox to the Value property of the Invoke operation, which is a

string. The Value property is the return value that the ABL procedure’s output

parameter is mapped to.

Just to clean up the display, I make a small change to the SelectionChanged event

handler that gets fired every time the user selects a different customer in the grid. I
clear the Text value of the TextBox, until the user clicks the Get RepName button

again:

RIA Services Invoke Operations John Sadd

March, 2011 Page 10 of 24

private void CustomerGrid_SelectionChanged(object sender,

 SelectionChangedEventArgs e)

 {

 RepnameBox.Text = "";

 CustOrder selectedCust = (CustOrder)CustomerGrid.SelectedItem;

 OrderGrid.ItemsSource = selectedCust.Orders;

 }

Of course, the code could trigger the GetRepName method from this

SelectionChanged event handler, so that the value is immediately displayed

whenever a new Customer row is selected, but that’s just part of the user interface

design, so feel free to make a change like that in your own examples.

Now I can run the test page for the project. I select the CustOrder page, select a

Customer, and click the Get SalesRep button. Here’s the SalesRep name for that

Customer:

I can select another Customer, and you can see that the SalesRep name was cleared

by the line of code that I added to the SelectionChanged event handler:

RIA Services Invoke Operations John Sadd

March, 2011 Page 11 of 24

So I click the button again, and I see the SalesRep for customer 4, so everything’s

working:

This example has shown you how to call an ABL procedure with any number of INPUT

parameters, and exactly one non-entity OUTPUT parameter. As a review, and to allow

you to copy code from this paper, here are the complete code elements used in this

first Invoke example:

RIA Services Invoke Operations John Sadd

March, 2011 Page 12 of 24

First, the ABL procedure:

/*--

 File : GetSalesRep.p

 Notes : Returns the SalesRep RepName for the given customer number.

 --*/

DEFINE INPUT PARAMETER piCustNum AS INTEGER.

DEFINE OUTPUT PARAMETER pcSalesRepName AS CHARACTER.

FIND Customer WHERE Customer.CustNum = piCustNum.

FIND Salesrep WHERE Salesrep.SalesRep = Customer.SalesRep.

pcSalesRepName = Salesrep.RepName.

Next, the DomainService method:

[Invoke]

 public string GetSalesRep(int inputCustNum)

 {

 string outRepname;

 _appObj.GetSalesRep(inputCustNum, out outRepname);

 return outRepname;

 }

Next, the click event handler for the new button in CustOrderPage.xaml.cs:

private void SalesRepButton_Click(object sender, RoutedEventArgs e)

 {

 CustOrder selectedCust = (CustOrder)CustomerGrid.SelectedItem;

 InvokeOperation<string> invokeOp =

 CODomainContext.GetSalesRep(selectedCust.CustNum,

 OnSRB_Completed, null);

 }

Next the completion event handler for the client event handler:

private void OnSRB_Completed(InvokeOperation<string> invokeOp)

 {

 if (invokeOp.HasError)

 {

 MessageBox.Show(string.Format("Method Failed: {0}",

 invokeOp.Error.Message));

 invokeOp.MarkErrorAsHandled();

 }

 else

 RepnameBox.Text = invokeOp.Value;

 }

And finally, the one-line change to reset the Text property in the SelectionChanged

event handler:

private void CustomerGrid_SelectionChanged(object sender,

 SelectionChangedEventArgs e)

 {

 RepnameBox.Text = "";

 CustOrder selectedCust = (CustOrder)CustomerGrid.SelectedItem;

 OrderGrid.ItemsSource = selectedCust.Orders;

 }

RIA Services Invoke Operations John Sadd

March, 2011 Page 13 of 24

As I said at the outset, the first example is somewhat simplified, because it needs to

return only a single scalar output parameter. In the second part of the paper I create

a slightly more complex example to show how to return multiple output parameters

as an object with two or more properties.

As before, I need to create a new stand-alone ABL procedure for a new service, which

in this case goes beyond the previous one in that it takes the customer number as
input, but also takes the CreditLimit from the client as an INPUT-OUTPUT parameter,

and returns it, possibly modified, along with the SalesRep name. So in effect this

procedure has two input parameters and two output parameters. I have also added a

very simplistic bit of business logic here that says that if the CreditLimit hasn’t been

changed in the database, and if the customer Balance is less than half the

CreditLimit, then the code increases the CreditLimit by twenty percent and returns

that value:

/*--

 File : GetRepAndCL.p

 Notes : Returns the SalesRep RepName and adjusts CreditLimit.

 --*/

DEFINE INPUT PARAMETER piCustNum AS INTEGER.

DEFINE INPUT-OUTPUT PARAMETER pdCreditLimit AS DECIMAL.

DEFINE OUTPUT PARAMETER pcSalesRepName AS CHARACTER.

FIND Customer WHERE Customer.CustNum = piCustNum.

IF (pdCreditLimit = Customer.CreditLimit) AND

 (Customer.Balance < (Customer.CreditLimit / 2)) THEN

 pdCreditLimit = Customer.CreditLimit * 1.2.

FIND Salesrep WHERE Salesrep.SalesRep = Customer.SalesRep.

pcSalesRepName = Salesrep.RepName.

After saving the new procedure to the AppServerContent directory, I need to add it to

the same proxy as the other procedures in the series. I add the procedure, and now I

have four entry points in the proxy, each a stand-alone ABL procedure.

Let me take a moment to make sure it's clear how you would return the ABL RETURN-

VALUE to the client if you needed to. You can right-click on an ABL .r file in ProxyGen’s

Procedures tab, and select Customize…

RIA Services Invoke Operations John Sadd

March, 2011 Page 14 of 24

The Customize dialog has an option to Return ABL RETURN-VALUE:

If you click that checkbox on, then the RETURN-VALUE is returned as a string with the

name retValue, and you have to add that to the set of output parameters for the

procedure. However, I'm not going to do that here.

When I click the Generate button, and then just OK the proxy properties dialog, I

get a new version of the .NET proxy with four separate procedures defined.

Now I go back to the DomainService class I’ve been working with, to add support for
the new procedure. As a reminder, here’s the Invoke operation I added in the

previous video.

[Invoke]

 public string GetSalesRep(int inputCustNum)

 {

 string outRepname;

 _appObj.GetSalesRep(inputCustNum, out outRepname);

 return outRepname;

 }

Note that because the underlying ABL procedure that is being invoked here through
the proxy just returns a single output parameter, and no ABL RETURN-VALUE, the

DomainService method can just define its return type as the return type of the ABL
parameter – CHARACTER or string in this case – and simply return that one value.

In this second example, it’s not going to be quite that simple. The ABL procedure
returns two values, the INPUT-OUTPUT CreditLimit and the output SalesRep name.

To represent that in the DomainService, I need to define a class with a property for

each of those values. The class then becomes the return type for the other

DomainService methods.

So before I define the new Invoke method, I define the class that encapsulates all its

output parameters. There’s a rule that all DomainService operations must use

RIA Services Invoke Operations John Sadd

March, 2011 Page 15 of 24

serializable types for parameters and return types, so I add the Serializable

attribute as an annotation in front of the parameter class:

[Serializable]

 public class GetRepAndCLParams

 {

 public decimal inoutCreditLimit { get; set; }

 public string outRepname { get; set; }

 }

The first property defined in the class represents the CreditLimit, the INPUT-OUTPUT

parameter. The second one represents the OUTPUT SalesRep name. That’s all that’s

needed in the class definition. Remember that because the call is asynchronous, the

input parameters have already been passed to the request. Here I need to specify

only the output parameters that come back to the completion event handler, including

the output value for any input-output parameters.

Now I can define the class that invokes the ABL procedure through the proxy. Its

return type is not a simple scalar type, but an object of the type I just defined. As

I’ve done before, I give the method the same name as the ABL procedure, which is

just my naming convention. There are two input parameters, the customer number

and the current credit limit as held in the client:

[Invoke]

 public GetRepAndCLParams GetRepAndCL

 (int inputCustNum, decimal inoutCreditLimit)

 {

Because my return type is now a class, I have to create an instance of the class to

return. The first two parameters are accounted for as input to this method, but I still

need to define a local variable to hold the third parameter when it comes back.

 GetRepAndCLParams outParams = new GetRepAndCLParams();

 string outRepname;

Next I invoke GetRepAndCL in the running AppObject instance. The first parameter is

the customer number. The second is the credit limit, which is passed using the ref

mode in C# to correspond to what ABL terms INPUT–OUTPUT. The third parameter is

the output parameter.

 try

 {

 _appObj.GetRepAndCL(inputCustNum, ref inoutCreditLimit,

 out outRepname);

Now I populate the parameter object I created, setting first the credit limit, in case

that was modified on the server, and then the SalesRep name:

 outParams.inoutCreditLimit = inoutCreditLimit;

 outParams.outRepname = outRepname;

 }

RIA Services Invoke Operations John Sadd

March, 2011 Page 16 of 24

The standard catch block completes the additions to the DomainService class:

 catch (System.Exception e)

 {

 throw new Exception(e.Message);

 }

 return outParams;

 }

As I've noted elsewhere, my exception handling code in these examples is very

minimal, to keep the code brief, but even this simple catch block is useful because it

will at least return an exception message to the client.

I can compile what I've just added here, and then do a Build again, to make sure

everything gets regenerated properly. Once that’s done, I can take another look at

the generated DomainContext class to confirm what the user interface support code

needs to pass to it. As I did before, I can look at the comments to check what I need

to pass:

/// <summary>

 /// Asynchronously invokes the 'GetRepAndCL' method of the DomainService.

 /// </summary>

 /// <param name="inputCustNum">The value for the 'inputCustNum' parameter

of this action.</param>

 /// <param name="inoutCreditLimit">The value for the 'inoutCreditLimit'

parameter of this action.</param>

 /// <returns>An operation instance that can be used to manage the

asynchronous request.</returns>

 public InvokeOperation<GetRepAndCLParams> GetRepAndCL(int inputCustNum,

 decimal inoutCreditLimit)

 {

 Dictionary<string, object> parameters = new Dictionary<string,

 object>();

 parameters.Add("inputCustNum", inputCustNum);

 parameters.Add("inoutCreditLimit", inoutCreditLimit);

 this.ValidateMethod("GetRepAndCL", parameters);

 return

 ((InvokeOperation<GetRepAndCLParams>)(this.InvokeOperation("GetRepAndCL",

 typeof(GetRepAndCLParams), parameters, true, null, null)));

 }

You can see that I just have to pass all the input parameters (including of course the

input-output credit limit), followed by the callback method name, followed by a null

for the user state. Remember that the call is asynchronous, so I pass all the inputs

here and process the outputs later.

Having confirmed the signature of the call, I create a call to the DomainContext

method in the user interface support code, CustOrderPage.xaml.cs. Starting with

the click event handler for the Get SalesRep button, I can make some changes to run
the new ABL procedure rather than the simpler one with the one OUTPUT parameter:

private void SalesRepButton_Click(object sender, RoutedEventArgs e)

 {

 CustOrder selectedCust = (CustOrder)CustomerGrid.SelectedItem;

RIA Services Invoke Operations John Sadd

March, 2011 Page 17 of 24

First I add a simple sanity check here so that the code doesn’t blow up if I click the

button before I select a customer. (Be aware that my examples are very simplified in

ways like this, so that I don’t have to explain any more code than necessary.)

 if (selectedCust != null)

 {

Next I comment out the invoke operation for GetSalesRep, and in its place, I invoke

the new one with two output parameters:

 /* InvokeOperation<string> invokeOp =

 CODomainContext.GetSalesRep(selectedCust.CustNum,

 OnSRB_Completed, null); */

 InvokeOperation<GetRepAndCLParams> invokeOp =

 CODomainContext.GetRepAndCL(selectedCust.CustNum,

 selectedCust.CreditLimit, OnSRB_CL_Completed, null);

 }

 }

Note that the type of the invoke operation is now my new parameters class. In the

DomainContext, I invoke the GetRepAndCL method that I just looked at. The input

parameters come from the currently selected Customer in the grid, the CustNum and

the CreditLimit. I name my event handler for the completion event
OnSRB_CL_Completed, adding CL for CreditLimit.

Next I implement the new completion event handler. It’s instructive to compare it

with the simpler method, which as a reminder is shown again here:

private void OnSRB_Completed(InvokeOperation<string> invokeOp)

 {

 if (invokeOp.HasError)

 {

 MessageBox.Show(string.Format("Method Failed: {0}",

 invokeOp.Error.Message));

 invokeOp.MarkErrorAsHandled();

 }

 else

 RepnameBox.Text = invokeOp.Value;

 }

First I add CL to the method name. Next I have to replace the string type with the

parameter object type:

private void OnSRB_CL_Completed(InvokeOperation<GetRepAndCLParams> invokeOp)

 {

After the standard error check, instead of the Value parameter of the invoke

operation being a single value, it’s now an object with a property of its own for each

property in the parameters class. So I set the Text property of the SalesRep name

TextBox to that property:

RIA Services Invoke Operations John Sadd

March, 2011 Page 18 of 24

 if (invokeOp.HasError)

 {

 MessageBox.Show(string.Format("Method Failed: {0}",

 invokeOp.Error.Message));

 invokeOp.MarkErrorAsHandled();

 }

 else

 {

 RepnameBox.Text = invokeOp.Value.outRepname;

Next I need to re-display the CreditLimit value that’s returned, in the grid. So I

identify again the object that represents the currently selected row, the
selectedItem. I set the CreditLimit cell in that row to the INPUT-OUTPUT value that

was passed back from OpenEdge. Once again the Invoke operation’s Value parameter

is an object, which also holds the CreditLimit property:

 CustOrder selectedCust = (CustOrder)CustomerGrid.SelectedItem;

 selectedCust.CreditLimit = invokeOp.Value.inoutCreditLimit;

 }

 }

To review, when the user selects a Customer in the grid and clicks the Get SalesRep

button, that click event fires the event handler in CustOrderPage.xaml.cs. The
event handler runs the version of the GetRepAndCL method in the client’s

DomainContext class, passing the input parameters and the name of the completion

method:

The DomainContext invokes the method that was just defined in the DomainService

running on the Web server, asynchronously, which in turn invokes the ABL procedure

via the AppObject proxy instance:

RIA Services Invoke Operations John Sadd

March, 2011 Page 19 of 24

When the request completes, the new completion method OnSRB_CL_Completed runs,

taking the invoke operation initiated by GetRepAndCL with its parameter object as

input. The parameter object defines the output parameters, and the method copies

the SalesRep name to its TextBox and the CreditLimit value back to the grid:

This example can reuse the Get SalesRep button and its TextBox, so there’s no need

to make any changes to the user interface itself.

If I run with the new methods compiled and and the project re-built, then when the

test page comes up, I can select the CustOrder page, and Customer 2. I see the

RIA Services Invoke Operations John Sadd

March, 2011 Page 20 of 24

Orders that are retrieved by the other user interface event, SelectionChanged of the

Customer grid:

Now I undo the little changes I made to this row in the update presentation, removing
the t from the end of the name, and changing the street number back to 3. Note the

before value of the CreditLimit, 22600:

Now I click the Get SalesRep button. This invokes the new GetRepAndCL method, and

in turn the new ABL procedure of the same name, which not only retrieves the

SalesRep name but updates the credit limit if it satisfies the business logic on the

backend:

RIA Services Invoke Operations John Sadd

March, 2011 Page 21 of 24

And after clicking the Get SalesRep button, the SalesRep name is displayed, and

apparently the Balance for this Customer is less than half the CreditLimit, so the

CreditLimit has been increased.

Now, the business logic didn’t update the database, it just returned the new

CreditLimit value to the client. If I now decide I want to save that new value, along

with the other changes I made, I can press the Submit Changes button that was

added to the application in the update example, and those changes are all sent back

to the server in a change set and saved to the database. To verify that, I can get out

of the CustOrder page, and then reselect it, and see that all the values for Customer 2

have been re-retrieved, confirming that they were saved to the database:

If I select Customer 4, and click the Get SalesRep button, I get the SalesRep but no

change to the CreditLimit. The grid doesn’t display the Balance value, but if I
superimpose the little FOR EACH Customer result shown below, you can see that,

whereas the Balance for Customer 2 satisfies the criterion of being less than half the

RIA Services Invoke Operations John Sadd

March, 2011 Page 22 of 24

CreditLimit, Customer 4 does not, so there was no change to the CreditLimit value

that was passed back. A more responsive user interface that makes all this clearer is

left as a Silverlight exercise for the reader.

The complete code for all the pieces of this second example is repeated here. First,

the ABL procedure:

/*--

 File : GetRepAndCL.p

 Notes : Returns the SalesRep RepName and adjusts CreditLimit.

 --*/

DEFINE INPUT PARAMETER piCustNum AS INTEGER.

DEFINE INPUT-OUTPUT PARAMETER pdCreditLimit AS DECIMAL.

DEFINE OUTPUT PARAMETER pcSalesRepName AS CHARACTER.

FIND Customer WHERE Customer.CustNum = piCustNum.

IF (pdCreditLimit = Customer.CreditLimit) AND

 (Customer.Balance < (Customer.CreditLimit / 2)) THEN

 pdCreditLimit = Customer.CreditLimit * 1.2.

FIND Salesrep WHERE Salesrep.SalesRep = Customer.SalesRep.

pcSalesRepName = Salesrep.RepName.

Next, the parameter class that defines the output parameters in the DomainService

class:

[Serializable]

 public class GetRepAndCLParams

 {

 public decimal inoutCreditLimit { get; set; }

 public string outRepname { get; set; }

 }

RIA Services Invoke Operations John Sadd

March, 2011 Page 23 of 24

Next, the Invoke method in the DomainService class that invokes the ABL procedure

through the proxy:

[Invoke]

 public GetRepAndCLParams GetRepAndCL

 (int inputCustNum, decimal inoutCreditLimit)

 {

 GetRepAndCLParams outParams = new GetRepAndCLParams();

 string outRepname;

 try

 {

 _appObj.GetRepAndCL(inputCustNum, ref inoutCreditLimit,

 out outRepname);

 outParams.inoutCreditLimit = inoutCreditLimit;

 outParams.outRepname = outRepname;

 }

 catch (System.Exception e)

 {

 throw new Exception(e.Message);

 }

 return outParams;

 }

And finally, the modified click event handler in CustOrderPage.xaml.cs, and its

completion event handler:

private void SalesRepButton_Click(object sender, RoutedEventArgs e)

 {

 CustOrder selectedCust = (CustOrder)CustomerGrid.SelectedItem;

 if (selectedCust != null)

 {

 /* InvokeOperation<string> invokeOp =

 CODomainContext.GetSalesRep(selectedCust.CustNum,

 OnSRB_Completed, null); */

 InvokeOperation<GetRepAndCLParams> invokeOp =

 CODomainContext.GetRepAndCL(selectedCust.CustNum,

 selectedCust.CreditLimit, OnSRB_CL_Completed, null);

 }

 }

private void OnSRB_CL_Completed(InvokeOperation<GetRepAndCLParams>

 invokeOp)

 {

 if (invokeOp.HasError)

 {

 MessageBox.Show(string.Format("Method Failed: {0}",

 invokeOp.Error.Message));

 invokeOp.MarkErrorAsHandled();

 }

 else

 {

 RepnameBox.Text = invokeOp.Value.outRepname;

 CustOrder selectedCust = (CustOrder)CustomerGrid.SelectedItem;

 selectedCust.CreditLimit = invokeOp.Value.inoutCreditLimit;

 }

 }

RIA Services Invoke Operations John Sadd

March, 2011 Page 24 of 24

This brings me to the end of the series of presentations on using Silverlight with WCF

RIA Services. I hope this information has been useful. Though there’s much to learn

about all the controls and capabilities that Silverlight supports, the basic thread of

retrieving and updating data from an OpenEdge application via a set of proxies, entity

class definitions, and DomaInService classes should be pretty clear to you. At this

point the rest is up to you. Thanks for watching and reading.

