
February, 2011 Page 1 of 52

USING RIA SERVICES WITH SILVERLIGHT

John Sadd

Fellow and OpenEdge Evangelist

Document Version 1.0

January 2011

Using RIA Services with Silverlight John Sadd

February, 2011 Page 2 of 52

DISCLAIMER

Certain portions of this document contain information about Progress Software Corporation’s

plans for future product development and overall business strategies. Such information is
proprietary and confidential to Progress Software Corporation and may be used by you solely in
accordance with the terms and conditions specified in the PSDN Online (http://www.psdn.com)
Terms of Use (http://psdn.progress.com/terms/index.ssp). Progress Software Corporation
reserves the right, in its sole discretion, to modify or abandon without notice any of the plans
described herein pertaining to future development and/or business development strategies.

Any reference to third party software and/or features is intended for illustration purposes only.
Progress Software Corporation does not endorse or sponsor such third parties or software.

This document accompanies a series of presentations introducing Microsoft's RIA

Services and their use with the Silverlight user interface framework.

INTRODUCTION

In the first video I show the overall architecture of the pieces you need to put

together to create a Silverlight user interface and populate it with data using WCF RIA

Services. I then give you a taste of the steps that I will go through in the remaining

videos in the series to build those pieces.

There’s another session in this RIA series that introduces Silverlight itself, and creates

a simple form with a calendar control. But if you want to communicate with an

OpenEdge backend, you need to be able to make calls to ABL procedures that return

data. You can do that with Web services, but Microsoft has defined a supporting

framework they call RIA Services to provide support for standard data read

operations, and for updates, creates, and deletes, including building the kind of

change set to return to the server that you may be familiar with from using

ProDataSets or ADO DataSets. This series introduces you to how to use those services

in OE 10.2B.

RIA Services provides a set of ASP.NET extensions to help you manage n-tier

applications more simply than with Web services. All this is built on the Windows

Communication Foundation, or WCF, which provides a unified programming model

under .NET for building distributed service-oriented applications. The data definition

part is built on the ADO.NET Entity Framework, which provides an object-oriented

mapping from relational tables to the object-oriented model that the client application

will expect. And finally, the Silverlight UI builds on the Windows Presentation

Foundation, or WPF, which extends the browser capabilities to enable you to create

a rich user interface that runs in the browser.

The problem with all this, of course, is that if you’re an OpenEdge developer without a

lot of experience working directly in .NET and other Microsoft technologies, then most

of these terms may not mean a lot to you. So the purpose of this paper and the video

series itself is to walk you through a concrete example of everything you have to do

to connect OpenEdge on the backend with Silverlight on the front-end in OpenEdge

10.2B. When we’re done, I hope you’ll be able to use what you’ve learned to build

http://www.psdn.com/
http://psdn.progress.com/terms/index.ssp

Using RIA Services with Silverlight John Sadd

February, 2011 Page 3 of 52

Silverlight Uis to some of your own data. I focus on all the steps involved in getting

the data binding and data retrieval parts to work. Given that foundation, you should

then be able to use and understand the Silverlight documentation to help you build

the advanced UI you need for your application. This diagram summarizes the tools

and technologies you need to use on the OpenEdge side to prepare for using

Silverlight and RIA Services:

First, you’ll want to use OpenEdge Architect to create a project that supports the

OpenEdge AppServer, one that publishes content to the area where your AppServer

runs. Then you can develop data definitions and application procedures that use those

definitions, and publish those procedures where they can be accessed by your

AppServer.

In part 2 of this paper and the second video in the RIA Services series I give you a

refresher on how to create an AppServer-enabled project that will automatically

publish ABL content to a folder where your test AppServer can find it. Your project

can use a pre-defined connection to an AppServer on your machine to test with. And

you can define which parts of your application get published to the AppServer’s

ProPath for testing. To do this yourself you’ll need a running AppServer on your

machine where the parts of Silverlight that run in the Web browser will be able to run

your ABL procedures, with all their data access logic and validation and other business

logic, so in the video I configure an AppServer in OpenEdge Explorer to make sure

that it’s running in state-free mode. State-free mode prevents me from locking up an

AppServer session while my application is running, and lets me make each call to

OpenEdge into a separate, discrete operation. And I make sure that my AppServer

agents are configured to use the database connection my user interface will need to

retrieve data, and to make sure that the AppServer’s ProPath includes the directory

where AppServerContent gets published, as shown here:

Using RIA Services with Silverlight John Sadd

February, 2011 Page 4 of 52

Finally on the OpenEdge side, you need to generate a .NET Open Client proxy that

describes your ABL procedures to .NET. My example uses the definition for a set of

related temp-tables and a ProDataSet that combines them, as shown here:

I create a new proxy in ProxyGen, that describes a data read procedure, and later

update procedures, for that data. Each ABL procedure becomes a part of an

AppObject that I later reference from the Silverlight support code. I make them ABL

procedures non-persistent .p’s so that my AppServer can run state-free. The first is a

procedure that returns a ProDataSet with a set of Customers and their Orders. When

I generate the proxy, I define the AppServer to run on, and some properties specific

to .NET, including a namespace to group all my related calls, as shown here:

Using RIA Services with Silverlight John Sadd

February, 2011 Page 5 of 52

ProxyGen then creates a DLL that I can incorporate into the Silverlight application.

That summarizes the OpenEdge work, which should be pretty familiar to you. On the

Silverlight side, you need to use Visual Studio to create a Silverlight Business

Application, and that's what I show you in the third section of this paper and in part

3 of the video series. The work on the Microsoft side of the example is summarized on

the left of this diagram:

In my example I create a new Visual Studio project, using the pre-defined Silverlight

Business Application template, which provides a lot of default behavior. It’s a

project to support reads and updates of my Customer and Order data. I explain a bit

about what the Business Application template provides for you. Some of the visual

and code elements are shown in this Visual Studio screenshot:

Using RIA Services with Silverlight John Sadd

February, 2011 Page 6 of 52

The first Silverlight element that needs to be defined in the project is called an entity

class, an object-oriented representation of a ProDataSet being passed in from

OpenEdge, and the tables that it contains. So in my example I add this to the Models

defined in the project. The entity class file is one or more classes that you need to

define in a .NET language like C#. In the example the entity class is an object

representation of the data for each of the two relational tables in the ProDataSet.

Visual Studio provides you with a starting point for the class, and in the third section

of this paper and the corresponding video I explain to you just how to represent each

table and each field in your tables, as well as the data-relation that defines how

they’re to be joined, so you wind up with your data defined in a class, like this:

The next big piece of the project is the DomainService class. This supports

structured operations to read, update, create, and delete data, providing standard

service interface types for these operations that you can pass a ProDataSet into. In

Using RIA Services with Silverlight John Sadd

February, 2011 Page 7 of 52

the fourth section of this paper and in parts 4 and 5 of the video series I create a

DomainService in the Services folder of my project. There’s a template for it that will

get me started. This class runa in the Web browser and acta as the intermediary

between the client and my proxy and ABL code on the backend. I add references to it

for the DLL that ProxyGen generated, as well as other standard Progress DLLs. There

will be a fair amount of C# code that I have to write to fill out the DomainService

class, a bit of which is shown below, but I explain the code as I go along in enough

detail that you should be able to follow suit with classes to support your own

application data.

When you build your project with its DomainService, Visual Studio generates what’s

called the DomainContext class, which is the client proxy that makes calls to the

DomainService in the Web server to provide support for all your client operations.

You can also use Visual Studio to build the user interface using its WYSIWYG

designer, which generates the data definition code they call XAML. And you can code

client logic like event handlers to respond to events that occur in the user interface. I

explain all of this in the fifth section of this paper and in part 6 of the video series. In

my example, I do a project build, which generates the DomainContext class. Then I

show you some selected bits of that class, even though it’s generated code you don’t

normally look at. There’s lot of support for standard operations like authentication,

and generated references to your data sets and operations like this query to get

Customers and Orders, as shown here:

Using RIA Services with Silverlight John Sadd

February, 2011 Page 8 of 52

Then on the user interface side, I show you how to edit the XAML to create a new

button on the Main Page of the user interface, and then how to create a whole new

page of your user interface as a new View in the project, built using the Silverlight

Page template. Then I show you how to grab controls from the Toolbox, such as a

datagrid, and drop them onto the UI, which generates the XAML you use as a starting

point for your user interface definition:

I show you how to define the code that loads data from OpenEdge into the client, and

how to set the data source for controls like the grid to display. And I show you how to

create an event handler to provide support for events that are triggered in the user

interface, such as selecting a customer in its grid:

Using RIA Services with Silverlight John Sadd

February, 2011 Page 9 of 52

And when I run what I wind up with, you’ll see a very simple user interface retrieving

and displaying data from OpenEdge, which you can then extend to take advantage of

all the advanced features that Silverlight provides:

So there’s a lot to it, but I do try to explain every step as I go along. The next section

of this document goes through all the pieces of the process that use the tools and

technologies of OpenEdge.

THE APPSERVER AND THE .NET PROXY

This section corresponds to the second in the series of video presentations introducing

WCF RIA Services and Silverlight. In this section I briefly review the support for

OpenEdge AppServer in Architect, so that I can define an ABL procedure to run on an

AppServer, and then generate a .NET proxy from ProxyGen that will serve as the

Using RIA Services with Silverlight John Sadd

February, 2011 Page 10 of 52

intermediary between the Silverlight Domain Service and OpenEdge, returning an ABL

ProDataSet to display in the Silverlight UI. To manage my ABL procedure from

OpenEdge Architect, I need to create a new OpenEdge project, where I will put the

ABL sample proceduress that are to be invoked from Silverlight. The key step in

making the project AppServer-aware is to add the AppServer Module to the project,

so that changes I make in Architect will be published to a directory in the AppServer’s

ProPath:

Continuing through the New Project wizard, I can select the connection object for

AppServer asbroker1 that I have defined in another session in the RIA series:

If there is already ABL code in the source directory named AppServerContent, I can

publish that to the AppServer immediately. In other pages of the wizard, I can

confirm the ProPath the project uses for development, which includes the

AppServerContent directory, the source folder for procedures to publish to the

Using RIA Services with Silverlight John Sadd

February, 2011 Page 11 of 52

AppServer. The sample procedures use the sports2000 database, so that must be

specified as a database connection.

Once the project definition is complete, if you double-click on the AppServer

connection in the Servers View, Architect brings up an Overview page where you

can review and modify many aspects of how the connection is configured. Under

Publish Location, for instance, I can confirm that I have set up this connection to

publish AppServer content from the source directory defined for the project the folder

named AppServerContent) to a folder called AppServerDeploy. This is in the

AppServer’s ProPath and so will be found when OpenEdge runs the procedures on

asbroker1. I can also review settings for the AppServer that are part of its launch

configuration, by selecting that from the same Overview page:

Here I can review the various settings that apply when I run a procedure from the

project, including its ProPath, where I can see the AppServerDeploy folder, as well as

other settings. In the Server Monitor View, which along with the Servers View is a

part of Architect’s AppServer perspective, I can start OpenEdge Explorer:

Using RIA Services with Silverlight John Sadd

February, 2011 Page 12 of 52

If I then open the properties of the default AppServer broker, then among other

things, I can verify that the operating mode of the AppServer is set properly. In this

case the default Operating Mode is still set, which is state-reset. This would mean

that a connection to the AppServer will bind the selected AppServer agent to the

client making the call, and reset the AppServer context on each connection. It’s

possible to work this way using Silverlight, but it’s almost always preferable to

configure your application so that you don’t bind an AppServer session. So I change

the operating mode to state-free:

This means that I can only run non-persistent procedures from the client, via the

proxies that I generate. But a non-persistent procedure can turn around and run

anything it needs to in the OpenEdge session on the back end, including persistent

procedures that it starts, or already running instances that it uses, all without binding

the AppServer agent’s session to the client. Observing this basic principle will also

simplifies defining the .NET proxies, as well as the Silverlight Domain Service classes

that the client uses to access the proxies. So it’s an especially good principle to follow

Using RIA Services with Silverlight John Sadd

February, 2011 Page 13 of 52

in this case, since in OpenEdge 10.2B it's necessary to code the Domain Service

classes by hand.

I can check the Agent properties as well, and confirm the database connection as a

part of the startup parameter list. This serves as a reminder that there are several

ways to set properties for AppServers: here in OpenEdge Explorer, in the Servers

View and the Server Monitor View in Architect, and in the launch configuration

settings from the Server View’s Overview page. To show another example of that,

rather than starting the AppServer from here in Explorer, I can do it from the Server

View in Architect, by pressing the start button in that view:

Once the AppServer is initialized, I can check its properties in the Server Monitor

View. If I pull up the tabs to show more information, I can see the AppServer status,

the number of agents, and more.

Now I’m ready to define the first procedure I want to run on the AppServer. I’ve got a

starting point for that procedure defined, which is called GetCustOrders.p. Again,

this is a non-persistent procedure with just a single entry point. At the top are

definitions for a customer table and a related table with orders, and a ProDataSet that

combines them. Below that is code that defines a simple query – no input parameters

yet – and fills the DataSet with data from the corresponding tables in the database.

I first make a simple change to the procedure to test out the code publishing

mechanism of the AppServer-enabled project. I remove the data definitions from the

procedure itself, and paste them into a separate ABL include file, called

DSCustOrders.i:

Using RIA Services with Silverlight John Sadd

February, 2011 Page 14 of 52

/*--

 File : DSCustOrders.i

 Purpose :

 Syntax :

 Description :

 Author(s) : john

 Created : Tue Nov 23 13:13:12 EST 2010

 Notes :

 --*/

/* *************************** Definitions ************************** */

DEFINE TEMP-TABLE ttCustomer BEFORE-TABLE ttCustomerBefore

 FIELD CustNum AS INT

 FIELD NAME AS CHAR

 FIELD Address AS CHAR

 FIELD City AS CHAR

 FIELD State AS CHAR

 FIELD CreditLimit AS DECIMAL

 INDEX CustNum IS UNIQUE PRIMARY CustNum.

DEFINE TEMP-TABLE ttOrder BEFORE-TABLE ttOrderBefore

 FIELD OrderNum AS INT

 FIELD CustNum AS INT

 FIELD OrderDate AS DATE

 FIELD Carrier AS CHAR

 FIELD SalesRep AS CHAR

 INDEX OrderNum IS UNIQUE PRIMARY OrderNum.

DEFINE DATASET CustOrders FOR ttCustomer, ttOrder

 DATA-RELATION CustOrd FOR ttCustomer, ttOrder

 RELATION-FIELDS (CustNum, CustNum).

Back in the procedure, I type in the name of the new include file, and save the

modified procedure in the AppServerContent directory:

/* Procedure GetCustOrders.p */

 {DSCustOrders.i}

 DEFINE OUTPUT PARAMETER DATASET FOR CustOrders.

 DEF VAR hCustOrders AS HANDLE.

 DEF VAR hqCust AS HANDLE.

 DEFINE QUERY qCust FOR Customer.

 hqCust = QUERY qCust:HANDLE.

 hqCust:QUERY-PREPARE("FOR EACH Customer WHERE Customer.CustNum < 100").

 DEFINE DATA-SOURCE dsCust FOR QUERY qCust.

 DEFINE DATA-SOURCE dsOrder FOR Order.

 DATASET CustOrders:EMPTY-DATASET().

 BUFFER ttCustomer:HANDLE:ATTACH-DATA-SOURCE(DATA-SOURCE dsCust:HANDLE).

 BUFFER ttOrder:HANDLE:ATTACH-DATA-SOURCE(DATA-SOURCE dsOrder:HANDLE).

 DATASET CustOrders:FILL().

Using RIA Services with Silverlight John Sadd

February, 2011 Page 15 of 52

I can confirm that the .p and .r files are in AppServerContent:

And I can quickly confirm that they were published to the AppServerDeploy folder as

well, so when the client runs this procedure on asbroker1, the agent’s propath will

find the procedure here:

Now I have an AppServer configured and started where all my ABL procedures can be

run. The next step in the process is to use the OpenEdge Proxy Generator to

generate a .NET proxy for the procedure, in the form of a DLL. ProxyGen uses the c-

sharp compiler installed under the Windows folder, as well as the xsd executable – for

generating service definitions – from the .NET SDK, to generate the proxy.

If you don’t already have the .NET Framework SDK installed, you’ll have to locate

the appropriate version at the Microsoft Download Center and install it.

Using RIA Services with Silverlight John Sadd

February, 2011 Page 16 of 52

OpenEdge 10.2B supports versions 2.0, 3.0, and 3.5, so you can install the latest of

those versions, 3.5, for use with OpenEdge 10.2B. By default, ProxyGen expects

version 2.0, so if you have that installed, there’s no need to upgrade. In any case,

SDK version 4.0 will not be supported until OpenEdge 11.

Once you’ve got the .NET SDK installed, you can generate your proxy. In ProxyGen, I

create a new proxy for the first sample procedure, and name the AppObject for the

proxy CustOrderApp. The AppObject can be used as a container for a number of

related procedure calls. In this case, as I explained, I’m restricting the calls to be

non-persistent, single-entry-point .p’s, and I add the first of those here. First I add

the SilverlightSample directory to the ProPath for the proxy:

That directory is under the folder where all the projects for the Architect sample

workspace called WebWorkspace are stored. Next I select the Procedures tab to

define the ProcObject for my first procedure, by right-clicking in that area and

selecting Add ->Non-persistent procedure:

Using RIA Services with Silverlight John Sadd

February, 2011 Page 17 of 52

In the AppServerContent directory, I select the r-code file GetCustOrders.r, and add

that to the proxy:

Then I click Close to finish, and click the Generate button here:

Using RIA Services with Silverlight John Sadd

February, 2011 Page 18 of 52

There are a number of choices for what type of proxy or service definition to

generate. I leave that choice set to .NET and fill in some additional information on the

General tab. The AppServer name isn’t the same as the AppObject name, so I have

to change that, by unchecking the default AppServer checkbox and changing it to

asbroker1:

Next I have to identify the output directory where the proxy will be saved. I locate the

SilverlightSample folder under my workspace, and make that the Output Directory.

Then I select the .NET tab to set properties specific to the .NET proxy.

First I give the proxy a namespace, just a way to make sure references are unique

relative to other sets of proxies. I name it CustOrdersNS, as a grouping for all calls

related to this data object. This also gives me a default DataSet namespace of

CustOrdersNS.StrongTypesNS, which I will reference later in the c-sharp code I

write as part of the Silverlight support code.

Using RIA Services with Silverlight John Sadd

February, 2011 Page 19 of 52

When I click OK, ProxyGen asks me to confirm the name of the proxy and where I’m

saving it. Here I need to explain an error that you may need to deal with when you

first generate a .NET proxy, which relates to the choice of which release of the .NET

Framework SDK you have installed on your machine. In OpenEdge 10.2B there is an

issue with ProxyGen using a utility called Pathfinder that expects to locate files under

the directory for SDK release 2.0. If you get a generation error, and look at the

ProxyGen log file, you may see the reference to Version 2.0, and an error message

that says that it couldn’t locate the xsd executable to run, such as this:

To avoid this problem, you can provide the pathnames to the compiler and xsd

generator to ProxuGen. To illustrate this, I go back to pressing the Generate button to

get the process started, and again select the .NET tab. But this time I don’t use the

default for the c-sharp compiler and xsd generator pathnames. I select Custom and

then click Advanced:

Using RIA Services with Silverlight John Sadd

February, 2011 Page 20 of 52

In front of the default executable names I need to place the correct pathnames where

they can be found. Here for instance I’ve located my system’s csc.exe file, in the 3.5

directory under WINDOWS:

I copy that pathname, and paste it in front of csc in the ProxyGen Advanced .NET

Options dialog:

Using RIA Services with Silverlight John Sadd

February, 2011 Page 21 of 52

Next you need to identify where the xsd executable is located. If you don't what its

location is you can search for its path in the registry, by running regedit, and

following the path indicated at the bottom of this screenshot to find the value of the

Installation Folder. This tells you what the pathname is:

If you then enter that pathname back in the Advanced .NET Options dialog,

everything should be defined correctly, and when you press OK the proxy will be

generated successfully.

Using RIA Services with Silverlight John Sadd

February, 2011 Page 22 of 52

For my example, if I look in the SilverlightSample folder, I see a directory called

CustOrdersNS, which is the name of my namespace, and in that is the

CustOrderApp.dll file that is my .NET proxy, along with two other Progress dll’s that

I will need to reference from the c-sharp code that I’ll be working on next:

At this point, I’ve got the AppServer project defined in Architect, so that I can develop

ABL procedures to run from Silverlight. I’ve configured and started that AppServer

broker, and I’ve generated the .NET proxy for my first Silverlight call. The next step is

to code a c-sharp class that will define my ProDataSet to the DomainService that will

run in the Web server on behalf of the Silverlight client.

CREATING THE ENTITY CLASS

In this section of the paper and the video it accompanies, the third in the video

series, I show how to create the C# Entity Class that represents the ABL ProDataSet

data on the .NET side of the project. The diagram below shows an overview of the

pieces that I need to assemble in order to load the Silverlight presentation with data

from an ABL procedure on the OpenEdge Appserver. The key parts where RIA

Using RIA Services with Silverlight John Sadd

February, 2011 Page 23 of 52

Services is concerned are the DomainService that runs in the Web server, and its

proxy on the client side, called the DomainContext.

The OpenEdge .NET runtime in the next diagram represents the connection to the

the .NET proxy I generated--which runs in the Web server--and which routes client

requests back to ABL procedures running in the OpenEdge AppServer.

The .NET proxy accepts the parameters from a client-side request and passes them to

the right ABL procedure. One of those parameters, in this first sample the only one,

corresponds to a ProDataSet in my ABL procedure that holds data from two related

temp-tables. The .NET proxy represents that ProDataSet internally as an ADO.NET

DataSet.

I need a C-sharp class that represents that data to Silverlight as an object, defined in

the entity class. Using OpenEdge 10.2B, you have to create the class file by hand,

though once you see how a sample looks, it can act as a template for any number of

different ProDataSets. This is part of what it is expected that ProxyGen will generate

starting in OpenEdge 11. The entity class is an object-oriented representation of the

data defined in the ProDataSet include file.

Using RIA Services with Silverlight John Sadd

February, 2011 Page 24 of 52

To get started, I create a new project in Visual Studio 2010 to hold all the files on the

.NET side of the project.

Instead of selecting just the basic Silverlight Application, I’m going to select a

different template called Silverlight Business Application. This does a lot more to

get you started in building the client side and web server support for a typical

business application:

I replace the default name with a name of my own, CustOrderProject, and click OK

to get the beginnings of the application generated. In the screenshot below you can

see some of what got generated as the starting point for a Silverlight Business

Application. There’s a MainPage that has already got Home and About buttons on it,

and you can see a fragment of the XAML that defines the UI in the code pane. You

can also see that Visual Studio automatically created a Web project to go along with

the client project.

Using RIA Services with Silverlight John Sadd

February, 2011 Page 25 of 52

Drilling down in the client project, I can look at what’s been generated in the Views,

and see these XAML files for the pages that the default buttons on the MainPage link

to:

Under the Login group, there are additional starting XAML files for login and

registration pages. So you see that the business template gives you a quick starting

point that you can expand to get the beginnings of a real working application.

Expanding the project entry for the XAML file for the MainPage, you can see the c-

sharp code-behind file for the MainPage, containing the code that brings up the

sample pages the buttons link to.

Using RIA Services with Silverlight John Sadd

February, 2011 Page 26 of 52

If I just run what I've been given to start with, you can see the Home and About

pages that are defined in the Silverlight Business Application template:

It isn’t much, but it’s instructive to look at and to then expand on in your own

application. Clicking Login, I get the skeleton of a login dialog:

Using RIA Services with Silverlight John Sadd

February, 2011 Page 27 of 52

I start coding what I need to add to that to get a working application to retrieve and

display customers and orders by right-click the Models group in the Web project, and

selecting Add, and New Item:

I select the template just named Class from all the alternatives I can add to the

project. This is going to become my entity class, containing the object-oriented

definition of my ProDataSet. I call the class CustOrder.cs. I’m given several general
using statements to start with, a namespace that places my new class in the

CustOrderProject.Web project, and the beginnings of a class definition:

Using RIA Services with Silverlight John Sadd

February, 2011 Page 28 of 52

I need a couple of additional using statements: as shown in the code fragment

below:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Web;

using System.ComponentModel.DataAnnotations;

using System.ServiceModel.DomainServices.Server;

The first is System.ComponentModel.DataAnnotations. The data annotations in C#

are enclosed in square brackets, and they provide special information to the compiler,

such as which fields in the data represent unique key values. The second one,

System.ServiceModel.DomainServices.Server, provides access to additional

annotations such as [Include], which links the Customer data to the Order data for

each Customer, and [Association], which defines the relationship between the two

tables.

Within the class definition itself, I need to name every field in the ttCustomer temp-

table that I want exposed to the user interface. The first, the CustNum, is the key

field, so I identify it using that DataAnnotation. And then I define the field itself, as

a property.

namespace CustOrderProject.Web.Models

{

 public class CustOrder

 {

 [Key]

 public int CustNum { get; set; }

Data binding in .NET is basically binding against public properties of an object, so

each field is defined as a property, with an optional getter and setter. If there’s no

code to execute when the field is read or updated, then you can just use this simple

form, much as you can in object-oriented ABL. Otherwise you could define a block of

Using RIA Services with Silverlight John Sadd

February, 2011 Page 29 of 52

code to execute when the field is read or updated, along with a backing variable to

hold the value that’s returned or set.

I need to do the same for each of the other fields in the ttCustomer temp-table:

 public string Name { get; set; }

 public string Address { get; set; }

 public string City { get; set; }

 public string State { get; set; }

 public decimal CreditLimit { get; set; }

The basic data type mappings are straightforward. You can learn all the details of

data types and everything else you need to know about mapping ABL to .NET in the

OpenEdge product documentation.

Next I need to define the Order object and ttOrder fields as elements that are

contained in and associated with each Customer. This is where defining your data

definitions on the OpenEdge side is important, as you design Business Entities and

other parts of the application on the server side. In a real world application, it might
make more sense to consider a Customer and an Order to be separate entities, each

perhaps with its own complex data definition, Customers with multiple addresses,

say, and each Order with its OrderLines. But in this example I’m presuming that you

retrieve customers and their orders together, which is why there’s one ProDataSet

definition on the backend and one entity class definition here for CustOrder as a
single entity. I start defining the connection between them using the Include

annotation. Then I use another annotation, Association, to define the relationship

between the two tables. I name the association Cust_Order, and name the key fields

from each table that are joined to connect them, just as I did in the Data-Relation in

the ProDataSet definition:

 [Include]

 [Association("Cust_Order", "CustNum", "CustNum")]

Now I define what it is I’m associating with Customers, an enumeration of Order
objects that I call Orders. This is also a property of CustOrder with its own getter and

setter.

 public IEnumerable<Order> Orders { get; set; }

Finally, I need to define a constructor for the CustOrder class that’s executed each

time an instance of the class is created. It populates the Orders by creating, in turn, a
List object, which is a new instance of the Order objects that have a CustNum that

matches the CustNum of the customer. And that’s the end of the CustOrder entity

class:

 public CustOrder()

 {

 Orders = new List<Order>();

 }

 }

Using RIA Services with Silverlight John Sadd

February, 2011 Page 30 of 52

Now I need a class to define the Order object. Just as for the first class, it requires a

property definition for each field to be exposed, with Key annotations for key fields.

public class Order

 {

 [Key]

 public int OrderNum { get; set; }

 [Key]

 public int CustNum { get; set; }

 public System.DateTime OrderDate { get; set; }

 public string Carrier { get; set; }

 public string SalesRep { get; set; }

 }

Now I can save and compile the entire entity class file, and the first part of my C-
Sharp coding is done. The entire entity class source file code for CustOrder.cs is

repeated here:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Web;

using System.ComponentModel.DataAnnotations;

using System.ServiceModel.DomainServices.Server;

namespace CustOrderProject.Web.Models

{

 public class CustOrder

 {

 [Key]

 public int CustNum { get; set; }

 public string Name { get; set; }

 public string Address { get; set; }

 public string City { get; set; }

 public string State { get; set; }

 public decimal CreditLimit { get; set; }

 [Include]

 [Association("Cust_Order", "CustNum", "CustNum")]

 public IEnumerable<Order> Orders { get; set; }

 public CustOrder()

 {

 Orders = new List<Order>();

 }

 }

 public class Order

 {

 [Key]

 public int OrderNum { get; set; }

 [Key]

 public int CustNum { get; set; }

 public System.DateTime OrderDate { get; set; }

 public string Carrier { get; set; }

 public string SalesRep { get; set; }

 }

}

Using RIA Services with Silverlight John Sadd

February, 2011 Page 31 of 52

This may have looked like a lot, going through it for the first time, but if you use an

example like this one as a starting point, you can code or even generate yourself the

entity classes for a number of different data entities. In the next section I tackle the

DomainService class, which provides Silverlight with access to the data I’ve defined

here and in my .NET proxy.

BUILDING A DOMAINSERVICE CLASS

This section of the document corresponds to parts four and five of the RIA Services

video series.

Now that I’ve created the entity class that defines my data as an object, it’s time to

create the DomainService class. Remember that the ProDataSet from the ABL

procedure is transformed into an ADO.NET DataSet by the .NET proxy generated

earlier. That data needs to be moved in turn to an entity, an instance of the class

created in the previous section, for use by Silverlight. The DomainService class runs

in the Web server. It has access to the OpenEdge .NET proxy – I show you how that

connection is made in a moment – and also the EntityClass, so that’s how it runs in

tandem with the OpenEdge components on the backend. On the other side, when I’m

done coding the DomainService and I build the solution, Visual Studio will generate

the client part of accessing the data domain, called the DomainContext class. And

that in turn will be the connection to the Silverlight user interface.

Looking at the Services folder in my Web project, you see the Authentication and

User Registration services for which the Silverlight Business Application template

generates a default user interface and skeleton support code. The DomainService

class must be added to this group. I select Add, And New Item…

from all the different class templates I can choose from, I select Domain Service

Class. I don’t want the default name of DomainService1, partly because it’s

important to end the name with the word Service: when I do the build, the code

generator will locate every reference ending in Service, such as

CustOrderDomainService, and generate an appropriate reference ending in Context,

such as CustOrderDomainContext. So I name it CustOrderDomainService, and add it

Using RIA Services with Silverlight John Sadd

February, 2011 Page 32 of 52

to my project. There’s a checkbox in the dialog that appears labeled “Enable client

access”, and I need to make sure to leave that checked on, because that’s what

causes the DomainContext class to be generated, since that is what enables client

access to my data domain. I don’t need to add or change anything else here, so I just

click OK.

Back in the Solution Explorer for the Web project, I need to establish the connection

between the DomainService class and the OpenEdge proxy. I right-click, and select

Add Reference. I have to add References to the .NET proxy as well as a couple of

common Progress DLL’s that the Silverlight project needs.

I find the proxy and other DLLs in the CustOrdersNS folder of my SilverlightSample

project. Remember that CustOrdersNS is the namespace that I designated in

ProxyGen when I created the proxy, and this folder got created to hold the proxy DLL

and other related DLLs because of that. In this folder, you can see the DLL which is

the .NET proxy for my CustOrderApp Object, as well as two standard DLLs I need to

Using RIA Services with Silverlight John Sadd

February, 2011 Page 33 of 52

reference, one for Progress.Messages, and the other for references in the code that

will start Progress.Open4GL.

Back in Visual Studio, the Solution Explorer has opened up the References folder in

the Web project, and the three new references are there -- the one for the AppObject

proxy itself, and the two standard DLLs. The code shown is the starting point that’s
provided for me for the DomainService class. Some useful using statements have

been generated, along with an annotation that confirms that I selected Enable client

access, so the DomainContext class will be generated:

There are a few additional using statements I need. Remember that the using

statements effectively extend the search path for references in the code, just as you

can do in object-oriented ABL.

First I must explain something about how the AppObject instance – a running

instance of my proxy – is going to be created. I could simply create an instance of it

each time this DomainService is run, but that involves some overhead, of course.

Even though the AppObject on the OpenEdge side is non-persistent, so

Using RIA Services with Silverlight John Sadd

February, 2011 Page 34 of 52

GetCustOrders.p is run each time the client wants to retrieve Customers and Orders,

I can create a single instance of the AppObject in the Web server and leave it running

as long as the application domain remains active. This doesn’t bind anything on the

OpenEdge side, but it makes the DomainService more efficient. I do that by putting
the AppObject instance into a cache, and I need the using statements System.Web,

and System.Web.Caching for my cache references:

using System.Web;

using System.Web.Caching;

Next I need using statements for the Progress DLLs I added as References:

using Progress.Open4GL;

using Progress.Open4GL.Proxy;

The next needed statement is for System.Data, for references to the DataTables of

my entity class. I need a using statement for the Models folder where my entity class

file is located. And finally, a using statement for my CustOrdersNS namespace, and

remember that within that namespace, ProxyGen created for me a namespace called
StrongTypesNS for references to my ProDataSet:

using System.Data;

using Models;

using CustOrdersNS;

using CustOrdersNS.StrongTypesNS;

These using statements will qualify the references to everything I need in the code

that follows.

The class statement for the DomainService is generated for me. The first executable

statement I need to add defines a reference to my proxy AppObject, and it’s a
reference to the type CustOrderApp:

 public class CustOrderDomainService : DomainService

 {

 private CustOrdersNS.CustOrderApp _appObj = null;

Next I need an instance of the ADO.NET DataSet that will come back from the proxy

DLL on the OpenEdge side:

 CustOrdersDataSet CustOrderDS = null;

And now I start the CustorderDomainService constructor that gets run when the

class is instantiated. Inside a standard try block, I create a reference to the cache I

referred to, which is scoped to the HttpRuntime:

Using RIA Services with Silverlight John Sadd

February, 2011 Page 35 of 52

 public CustOrderDomainService()

 : base()

 {

 try

 {

 Cache COCache = HttpRuntime.Cache;

The next statement tries to retrieve an instance of my AppObject from the cache

using the Get method, and a key value that I’ve assigned. I’m just calling the object

I’m storing in the cache COAppObj, which is an arbitrary key value:

 _appObj = (CustOrderApp)COCache.Get("COAppObj");

If it isn’t there, then this is the first time the DomainService has been called, so I
assign a string to the URL of my OpenEdge AppServer, and I define the SessionModel

of my OpenEdge runtime properties to state-free, which is represented by the value

1:

 if (_appObj == null)

 {

 string urlString = "AppServer://localhost/asbroker1";

 RunTimeProperties.SessionModel = 1; // state-free

I define a Connection object using that string. Then I assign my AppObject reference

to a new instance of my CustOrderApp proxy, passing the connection string to get me

going. And then I insert that AppObject reference into the cache, using the COAppObj

key value that I later use to retrieve it with.

 Connection connObj = new Connection(urlString, "", "", "");

 _appObj = new CustOrderApp(connObj);

 COCache.Insert("COAppObj", (object)_appObj);

 }

So each time after the first, when I run this DomainService, I will find the already

running instance of my AppObject in the cache, and be able to reuse it. And again,

this happens without binding anything on the OpenEdge AppServer. Once I’ve either

created or located the running AppObject instance, I create a new instance of my

DataSet object:

 CustOrderDS = new CustOrdersDataSet();

 }

Finally, I just put in a default catch block for any errors:

 catch (System.Exception e)

 {

 throw new Exception(e.Message);

 }

 }

Using RIA Services with Silverlight John Sadd

February, 2011 Page 36 of 52

And that’s the end of the constructor. At this point I’ve got a reference to my

OpenEdge proxy, and I’m ready to call the one entry point it has so far, which

corresponds to the GetCustOrders.p procedure on the AppServer.

Ahead of the first method definition following the class constructor I insert a data

annotation that tells Visual Studio what type of access my first method is performing.

RIA Services supports specific access types for queries, update, insert, and delete

operations, and a general purpose type of operation called Invoke. In this first

example I’m just creating a query. The method that query designation applies to has
a return type of IEnumerable for my CustOrder entity. IEnumerable here is the

interface that defines a set of data rows that my user interface will be able to interate

through.

 [Query]

 public IEnumerable<CustOrder> GetCustOrders()

 {

CustOrder, remember, is the name of the entity class that I created earlier, the

object representation of the top-level table in my ABL ProDataSet. I call this method

GetCustOrders, to match the name of my ABL procedure.

Remember that after I create the DomainService class, the Silverlight Business

Application support in Visual Studio will generate the client-side class that connects

the UI to the DomainService in the Web server. That new generated class is what I’ve
been calling the DomainContext. The [Query] data annotation that I entered above

the method definition means that I will get a method in that DomainContext called
GetCustOrdersQuery, which is what the user interface support code will invoke to get

data into the UI. So there are a lot of pieces that get connected to get the data from

one end to the other, but I’m showing you all the parts that you’re responsible for –

the rest gets generated for you.

Within the usual try block, the new method in turn invokes the GetCustOrders entry

in the AppObject – that’s using the .NET proxy to access my ABL procedure on the

OpenEdge AppServer:

 try

 {

 _appObj.GetCustOrders(out CustOrderDS);

The proxy converts the ProDataSet returned return by the ABL procedure to an
ADO.NET DataSet, which is represented here in CustOrderDS, an instance of the

CustOrdersDataSet. Within that DataSet there are two .NET DataTables called

customers and orders, derived from the ProDataSet’s two temp-tables:

 DataTable customers = (DataTable)CustOrderDS.Tables["ttCustomer"];

 DataTable orders = (DataTable)CustOrderDS.Tables["ttOrder"];

Next I define a query to iterate over the customers. Its type again is IEnumerable,

the type of my CustOrder entity. I name the query object custquery. Here’s where

we get into the rather odd syntax that you have to use to define sets of data in this

technology. This is called Language Integrated Query (LINQ, pronounced "link"),

Using RIA Services with Silverlight John Sadd

February, 2011 Page 37 of 52

a Microsoft .NET Framework component that adds native data querying capabilities to

.NET languages. You can study the Microsoft documentation for details, but an
example here will get you started in the right direction. Custrow is the name of a row

object. Once again I designate the customers table as being an Enumerable using the

method AsEnumerable:

 IEnumerable<CustOrder> custquery =

 from custrow in customers.AsEnumerable()

 select new CustOrder

 {

Within that block of code I name each element and retrieve the field value for the

corresponding DataTable field. Note the special statement at the end that populates
an Orders object with the result returned from another method I’ll code next, called

getOrders, using the current CustNum as the key value to filter Orders with.

 {

 CustNum = custrow.Field<int>("CustNum"),

 Name = custrow.Field<string>("Name"),

 Address = custrow.Field<string>("Address"),

 City = custrow.Field<string>("City"),

 State = custrow.Field<string>("State"),

 CreditLimit = custrow.Field<decimal>("CreditLimit"),

 Orders = getOrders(orders, custrow.Field<int>("CustNum")),

 };

Finally, GetCustOrders returns the custquery I just built, again as an Enumerable.

 return custquery.AsEnumerable();

 }

I finish up with a placeholder for a catch block that will do any error handling:

 catch (System.Exception e)

 {

 throw new Exception(e.Message);

 }

 }

The getOrders method, which builds an orderquery with rows from the Orders

DataTable that match the custNum value passed, in looks very similar. For

completeness the entire code for the DomainService class is shown here:

namespace CustOrderProject.Web.Services

{

 using System;

 using System.Collections.Generic;

 using System.ComponentModel;

 using System.ComponentModel.DataAnnotations;

 using System.Linq;

 using System.ServiceModel.DomainServices.Hosting;

 using System.ServiceModel.DomainServices.Server;

 using System.Web;

 using System.Web.Caching;

 using Progress.Open4GL;

 using Progress.Open4GL.Proxy;

Using RIA Services with Silverlight John Sadd

February, 2011 Page 38 of 52

 using System.Data;

 using Models;

 using CustOrdersNS;

 using CustOrdersNS.StrongTypesNS;

 // TODO: Create methods containing your application logic.

 [EnableClientAccess()]

 public class CustOrderDomainService : DomainService

 {

 private CustOrdersNS.CustOrderApp _appObj = null;

 CustOrdersDataSet CustOrderDS = null;

 public CustOrderDomainService()

 : base()

 {

 try

 {

 Cache COCache = HttpRuntime.Cache;

 _appObj = (CustOrderApp)COCache.Get("COAppObj");

 if (_appObj == null)

 {

 string urlString = "AppServer://localhost/asbroker1";

 RunTimeProperties.SessionModel = 1; // state-free

 Connection connObj = new Connection(urlString, "", "", "");

 _appObj = new CustOrderApp(connObj);

 COCache.Insert("COAppObj", (object)_appObj);

 }

 CustOrderDS = new CustOrdersDataSet();

 }

 catch (System.Exception e)

 {

 throw new Exception(e.Message);

 }

 }

 [Query]

 public IEnumerable<CustOrder> GetCustOrders()

 {

 try

 {

 _appObj.GetCustOrders(out CustOrderDS);

 DataTable customers = (DataTable)CustOrderDS.Tables["ttCustomer"];

 DataTable orders = (DataTable)CustOrderDS.Tables["ttOrder"];

 IEnumerable<CustOrder> custquery =

 from custrow in customers.AsEnumerable()

 select new CustOrder

 {

 CustNum = custrow.Field<int>("CustNum"),

 Name = custrow.Field<string>("Name"),

 Address = custrow.Field<string>("Address"),

 City = custrow.Field<string>("City"),

 State = custrow.Field<string>("State"),

 CreditLimit = custrow.Field<decimal>("CreditLimit"),

 Orders = getOrders(orders, custrow.Field<int>("CustNum")),

 };

 return custquery.AsEnumerable();

 }

 catch (System.Exception e)

 {

 throw new Exception(e.Message);

 }

 }

 private IEnumerable<Order> getOrders(DataTable orders, int custNum)

 {

 IEnumerable<Order> orderquery =

 from orderrow in orders.AsEnumerable()

 where orderrow.Field<int>("CustNum") == custNum

Using RIA Services with Silverlight John Sadd

February, 2011 Page 39 of 52

 select new Order

 {

 OrderNum = orderrow.Field<int>("OrderNum"),

 CustNum = orderrow.Field<int>("CustNum"),

 OrderDate = orderrow.Field<DateTime>("OrderDate"),

 Carrier = orderrow.Field<string>("Carrier"),

 SalesRep = orderrow.Field<string>("SalesRep"),

 };

 return orderquery;

 }

 }

}

This one example should provide sufficient detail that you can use it as the basis for

examples you can start to build using your own data and your own ABL procedures.

In the next section, I finally get to the Silverlight user interface itself, showing you a

few key parts of the DomainContext class, and then a very simple page for the

Silverlight Business Application that takes the Customer and Order data and displays

it using Silverlight datagrid controls.

BUILDING A USER INTERFACE

In this section, corresponding to part six of the video series, I’m finally ready to

define a simple user interface in Silverlight that will display the data retrieved through

the .NET proxy and the DomainService class. First, having completed the code for the

DomainService, I do a Build of my CustOrderProject solution. This generates the

DomainContext class that is the client counterpart to the DomainService. When the

Build completes, I can look at a few key parts of that generated class. I select the

button in the Solution Explorer marked Show All Files:

I need to do this to find the DomainContext class, because, being a fully generated

class, derived from the DomainService, it’s not intended that you would ever edit it,

and normally you shouldn’t need to look at it. It’s in a folder that I can now see

named Generated_Code. At the top there is a warning that you shouldn’t ever edit

the file: any changes you made would be lost the next time you did a build. Further

down in the body of the file, you can see just a bit of the extensive code that’s

Using RIA Services with Silverlight John Sadd

February, 2011 Page 40 of 52

generated to support the authentication and user registration features of the

Silverlight Business Application template:

At the top of the next screenshot you can GetCustOrdersQuery see a property

named CustOrders that’s defined as an EntitySet of the object CustOrder. I’ll be

referencing CustOrders as a set of CustOrder objects later in this document.
Remember that using the Query data annotation in brackets in the DomainService

class ahead of the GetCustOrders method causes a method to be generated in the

DomainContext called. The next screenshot shows that method. It will be invoked

later from the user interface support code:

Remember as well that I said it’s important to end the DomainService class name

with the string Service, as that gets automatically converted to Context as a naming

convention here. Below you can see several overloaded constructors for the

CustOrderDomainContext class:

Using RIA Services with Silverlight John Sadd

February, 2011 Page 41 of 52

There’s also a lot of code to support all of the DataTables and individual fields that the

DomainService class references. This is all part of what you get for free using the

standard support of RIA Services and the Silverlight Business Application template.

Back in the user interface MainPage that the Business Application template started me

with, you can see buttons for the default Home and About pages that you could use to

get started. Scrolling over to see the XAML for those pages, you can see the XAML
definition for the Rectangle controls that outline the two HyperLinkButton controls,

as they’re called, for the Home and About buttons:

<HyperlinkButton x:Name="Link1" Style="{StaticResource LinkStyle}"

 NavigateUri="/Home" TargetName="ContentFrame"

 Content="{Binding Path=ApplicationStrings.HomePageTitle,

 Source={StaticResource ResourceWrapper}}"/>

<Rectangle x:Name="Divider1" Style="{StaticResource DividerStyle}"/>

<HyperlinkButton x:Name="Link2" Style="{StaticResource LinkStyle}"

 NavigateUri="/About" TargetName="ContentFrame”

 Content="{Binding Path=ApplicationStrings.AboutPageTitle,

 Source={StaticResource ResourceWrapper}}"/>

You can of course build your user interface by selecting controls from the Toolbox, as

I’ll do in a moment for the DataGrids that will display Customers and Orders. But I’ll

do this edit in the XAML itself just to show that you are free to edit the code directly if

you want to. Also, I want another button that looks just like the first two, which is
easy to do this way. I paste in a copy of the Rectangle and HyperLinkButton control

definitions. In the copy of those definitions, I give the rectangle a new name,
Divider2, and I name the button CustOrderButton. The page to run when it’s clicked

isn’t the About page, but rather a new page that I’ll create in a moment called
CustOrderPage. The Content property is the label that’s displayed.

<Rectangle x:Name="Divider2" Style="{StaticResource DividerStyle}"/>

<HyperlinkButton x:Name="CustOrderButton" Style="{StaticResource LinkStyle}"

 NavigateUri="/CustOrderPage" TargetName="ContentFrame"

 Content="CustOrder"/>

Using RIA Services with Silverlight John Sadd

February, 2011 Page 42 of 52

I can see the changes reflected immediately in the design pane:

I can also see the properties displayed over in the Properties tab:

I can make changes in any of those three places.

Now it’s time to create the new page of XAML where I’ll put the controls to display

Customers and Orders. I right-click on the Views and select Add, and Class. From

all the templates available, I select Silverlight Page, and give it the name I used in
the new HyperLinkButton on the MainPage, namely CustOrderPage. I then Add that

to the project. This gives me a blank page to work with:

Using RIA Services with Silverlight John Sadd

February, 2011 Page 43 of 52

I’m going to drop two grid controls onto the page, one to browse Customers and the

second to display Orders for a selected Customer. Opening up the Toolbox, I select

the DataGrid, and just drag that onto the design canvas, and drop it:

Immediately the generated XAML code reflects the initial properties of the new

control. If I reposition and resize the control visually, the property values in the code

are changed as I go:

Using RIA Services with Silverlight John Sadd

February, 2011 Page 44 of 52

I can set those properties in the Properties pane as well, of course. For instance I

change the default control name to CustomerGrid. For simplicity’s sake I also set the

property called AutoGenerateColumns, which does just what the name implies. Again

I can see that property setting reflected in the XAML for the page:

In the introductory video on Silverlight I showed you that there is a C# file of

executable code associated with each XAML page that’s generated. This is where

event handlers and other user interface logic will go. To see that file, I expand the

XAML file entry in the Solution Explorer. The supporting C# file, referred to as the

code-behind, has the same name, with .cs appended to it.

Using RIA Services with Silverlight John Sadd

February, 2011 Page 45 of 52

A new C# user interface support file is generated automatically as a starting point for

any UI logic that’s needed.

As with the other C# classes in these examples, I need a few using statements

beyond the ones provided. First there are a couple to support the DomainServices

Client, and then a second for ApplicationServices:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Net;

using System.Windows;

using System.Windows.Controls;

using System.Windows.Documents;

using System.Windows.Input;

using System.Windows.Media;

using System.Windows.Media.Animation;

using System.Windows.Shapes;

using System.Windows.Navigation;

using System.ServiceModel.DomainServices.Client;

using System.ServiceModel.DomainServices.Client.ApplicationServices;

Next I need to add the namespace of my own project’s Web project, and within that,
a reference to the Services folder containing the DomainService, and another to the

Models folder, where the CustOrder entity class is located:

using CustOrderProject.Web;

using CustOrderProject.Web.Services;

using CustOrderProject.Web.Models;

The generated code includes the start of the class that bears the same name as my

XAML page:

namespace CustOrderProject.Views

{

 public partial class CustOrderPage : Page

 {

Using RIA Services with Silverlight John Sadd

February, 2011 Page 46 of 52

The first thing I need to add to the class is a reference to an instance of my

DomainContext class. I name it CODomainContext. Remember that this is the client

side of the code that gets data and other parameters back and forth between client

and server:

 CustOrderDomainContext CODomainContext;

Then in the constructor for the class, after the standard InitializeComponent method,

I create an instance of the DomainContext class:

 public CustOrderPage()

 {

 InitializeComponent();

 CODomainContext = new CustOrderDomainContext();

There’s a standard Load method that the DomainContext inherits that I can use to

create a LoadOperation for the CustOrder entity. I call it loadOp, and within the

DomainContext, I invoke the Load method:

 LoadOperation<CustOrder> loadOp =

 CODomainContext.Load(CODomainContext.GetCustOrdersQuery(),

 OnLoadCompleted, null);

That LoadOperation of TEntity is a generic type that is basically a typesafe pointer

to the asynchronous Load method of the DomainContext. The method that Load uses

to load data is the GetCustOrdersQuery method that I showed you earlier, which was

generated in the DomainContext class because I specified in the DomainService that
GetCustOrders is a query operation.

This is the front end of a series of references that go from the XAML user interface to

this C# supporting code, to a query method in the DomainContext class, to the

GetCustOrders method that runs in the DomainService in the Web server, and then

via the .NET proxy dll to the GetCustOrders.p ABL procedure running in the

AppServer:

The Load operation is asynchronous, so I specify a method to invoke when the Load

completes, and there’s an optional flag to indicate whether I want an exception

thrown if there’s an unhandled error condition. Instead I define a simple completion

Using RIA Services with Silverlight John Sadd

February, 2011 Page 47 of 52

method. If there’s an error, it displays a message box with the error text and marks

the error as handled:

 private void OnLoadCompleted(LoadOperation<CustOrder> lo)

 {

 if (lo.HasError)

 {

 MessageBox.Show(string.Format("Retrieving data failed: {0}",

 lo.Error.Message));

 lo.MarkErrorAsHandled();

 }

 }

Now I have the supporting class with a method to load data by running
GetCustOrders. The only other thing required is to assign that data to be the data

source for the Customer DataGrid. This is called the ItemsSource property of the grid

control. I set that to the CustOrders EntitySet seen earlier in this document, in the

generated DomainContext class.

 CustomerGrid.ItemsSource = CODomainContext.CustOrders;

Now I have everything needed to retrieve the CustOrders DataSet and display at

least the Customers in the Silverlight UI. Let’s see what happens when I run the

project. The first time you do this in a session, a popup appears to show you that an

ASP.NET Development Server has been started to host the test web page for the

application. Then the the default Home page comes up. The port number of the

Development Server in the URL, along with the test page that is part of the generated

code in the Web project that supports the application. Clicking the new CustOrder

button, I see the CustOrderPage the first of the Customers retrieved via

GetCustOrders.p:

Because I just set the AutoGenerateColumns property for the grid, I get a column for

every field, with the field name as a header, but they’re in alphabetical order, which

isn’t very useful, and there’s a column representing the Orders for the Customer that

Using RIA Services with Silverlight John Sadd

February, 2011 Page 48 of 52

doesn’t contain any meaningful data. So I next refine the grid definition a bit with a

new event handler to address that. Back in the design window, showing the XAML for
the CustOrdersPage, I select the Events tab. The grid control supports a large

number of events. I want one that controls what happens when columns are

automatically generated, because of the property setting I made. The event I want is
called AutoGeneratingColumn. If I double-click in the event handler name fill-in, I’m

taken back to the C# file and given a starting skeleton for an event handler method.

Just as in the OpenEdge GUI for .NET, if you’ve used the support for that user

interface technology, an event handler takes two parameters. The first is the object
that generated the event, the sender, and the second is an object simply named e

that contains the arguments that define the specific data associated with the event.
The case statement shown below puts each column in the right order in the grid, and

also specifies that the Orders property within the Customer object shouldn’t be

displayed in the CustomerGrid:

 private void CustomerGrid_AutoGeneratingColumn(object sender,

 DataGridAutoGeneratingColumnEventArgs e)

 {

 string headername = e.Column.Header.ToString();

 switch (headername)

 {

 case "CustNum":

 e.Column.DisplayIndex = 0;

 break;

 case "Name":

 e.Column.DisplayIndex = 1;

 break;

 case "Address":

 e.Column.DisplayIndex = 2;

 break;

 case "City":

 e.Column.DisplayIndex = 3;

 break;

 case "State":

 e.Column.DisplayIndex = 4;

 break;

 case "CreditLimit":

 e.Column.DisplayIndex = 5;

 break;

 case "Orders":

 e.Column.Visibility = Visibility.Collapsed;

 break;

 }

 }

Now I can save and re-run the application. I go back to the CustOrdersPage, and

now the fields are in the right order:

Using RIA Services with Silverlight John Sadd

February, 2011 Page 49 of 52

Now I need another grid control to display Orders in. Back in the Toolbox, I grab

another DataGrid, and drop it onto the design canvas. As before I can reposition and

resize it visually, and the generated XAML code reflects the changes I make. In this
case I name the grid OrderGrid. Once again I set the AutoGenerateColumns

property, and in the events list, I find the same AutoGeneratingColumn event defined

for the Customer grid. I paste in a similar case statement based on the value of the

header string for each column, to get the columns into a reasonable display order.

One more thing I need to do is to define an event on the CustomerGrid that

repopulates the OrderGrid with the right Orders when I select a Customer. That’s the

SelectionChanged event. Because it’s the default event for a DataGrid, I can just

double-click on the control itself and get an event handler for it. I want to identify the
current instance of the CustOrder entity that the top-level grid is navigating. I call

that selectedCust. It’s an object of type CustOrder, so I cast it as such. Within the

CustomerGrid, it’s the object identified by the property selectedItem. Next I need to

define the data source for the OrderGrid just as I did for the CustomerGrid. I set the

ItemsSource property to be the set of Orders for the selected Customer:

 private void CustomerGrid_SelectionChanged(object sender,

 SelectionChangedEventArgs e)

 {

 CustOrder selectedCust = (CustOrder)CustomerGrid.SelectedItem;

 OrderGrid.ItemsSource = selectedCust.Orders;

 }

As a reminder, this is the code in the entity class that defines Orders as one of the

properties of the top-level CustOrder object. That’s what I’m using to populate the

OrderGrid:

 [Include]

 [Association("Cust_Order", "CustNum", "CustNum")]

 public IEnumerable<Order> Orders { get; set; }

 public CustOrder()

 {

 Orders = new List<Order>();

 }

Using RIA Services with Silverlight John Sadd

February, 2011 Page 50 of 52

Back in the supporting class for the CustOrderPage, I can save these latest changes,

do a Build of the solution, and run it again. In the CustOrdersPage, I see Customers

and an empty OrderGrid, because it isn’t populated until I select a Customer. When I

do that, the OrderGrid shows the Orders for the Customer:

For reference, the complete CustOrderPage.xaml.cs file is reproduced here:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Net;

using System.Windows;

using System.Windows.Controls;

using System.Windows.Documents;

using System.Windows.Input;

using System.Windows.Media;

using System.Windows.Media.Animation;

using System.Windows.Shapes;

using System.Windows.Navigation;

using System.ServiceModel.DomainServices.Client;

using System.ServiceModel.DomainServices.Client.ApplicationServices;

using CustOrderProject.Web;

using CustOrderProject.Web.Services;

using CustOrderProject.Web.Models;

namespace CustOrderProject.Views

{

 public partial class CustOrderPage : Page

 {

 CustOrderDomainContext CODomainContext;

 public CustOrderPage()

 {

 InitializeComponent();

 CODomainContext = new CustOrderDomainContext();

 LoadOperation<CustOrder> loadOp =

 CODomainContext.Load(CODomainContext.GetCustOrdersQuery(),

 OnLoadCompleted, null);

 CustomerGrid.ItemsSource = CODomainContext.CustOrders;

 }

 private void OnLoadCompleted(LoadOperation<CustOrder> lo)

Using RIA Services with Silverlight John Sadd

February, 2011 Page 51 of 52

 {

 if (lo.HasError)

 {

 MessageBox.Show(string.Format("Retrieving data failed: {0}",

 lo.Error.Message));

 lo.MarkErrorAsHandled();

 }

 }

 // Executes when the user navigates to this page.

 protected override void OnNavigatedTo(NavigationEventArgs e)

 {

 }

 private void CustomerGrid_AutoGeneratingColumn(object sender,

 DataGridAutoGeneratingColumnEventArgs e)

 {

 string headername = e.Column.Header.ToString();

 switch (headername)

 {

 case "CustNum":

 e.Column.DisplayIndex = 0;

 break;

 case "Name":

 e.Column.DisplayIndex = 1;

 break;

 case "Address":

 e.Column.DisplayIndex = 2;

 break;

 case "City":

 e.Column.DisplayIndex = 3;

 break;

 case "State":

 e.Column.DisplayIndex = 4;

 break;

 case "CreditLimit":

 e.Column.DisplayIndex = 5;

 break;

 case "Orders":

 e.Column.Visibility = Visibility.Collapsed;

 break;

 }

 }

 private void OrderGrid_AutoGeneratingColumn(object sender,

DataGridAutoGeneratingColumnEventArgs e)

 {

 string headername = e.Column.Header.ToString();

 switch (headername)

 {

 case "CustNum":

 e.Column.DisplayIndex = 0;

 break;

 case "OrderNum":

 e.Column.DisplayIndex = 1;

 break;

 case "OrderDate":

 e.Column.DisplayIndex = 2;

 break;

 case "Carrier":

 e.Column.DisplayIndex = 3;

 break;

 case "SalesRep":

 e.Column.DisplayIndex = 4;

 break;

 }

 }

Using RIA Services with Silverlight John Sadd

February, 2011 Page 52 of 52

 private void CustomerGrid_SelectionChanged(object sender,

SelectionChangedEventArgs e)

 {

 CustOrder selectedCust = (CustOrder)CustomerGrid.SelectedItem;

 OrderGrid.ItemsSource = selectedCust.Orders;

 }

 private void SubmitButton_Click(object sender, RoutedEventArgs e)

 {

 if (CODomainContext.HasChanges == true)

 CODomainContext.SubmitChanges(OnSubmitCompleted, null);

 }

 private void OnSubmitCompleted(SubmitOperation submitOp)

 {

 if (submitOp.HasError)

 {

 MessageBox.Show(string.Format(submitOp.Error.Message));

 submitOp.MarkErrorAsHandled();

 }

 }

 }

}

I’ve finally gotten you all the way through the process of retrieving data from an ABL

procedure and displaying it in a Silverlight user interface using RIA Services. The

purpose here has been to show you concrete examples of the coding you need to do

to get the data binding part to work, since that’s the essential element that connects

your ABL application to a Silverlight UI. Clearly there’s a lot for you to learn in order

to build a UI that reflects all the capabilities of Silverlight, but that part you should be

able to learn from the materials on the Silverlight site. This series continues with

examples of how to do updates using RIA Services, as well as the Invoke operation

that passes non-dataset parameters to and from a request.

