
March, 2011 Page 1 of 15

UPDATING DATABASE DATA WITH RIA SERVICES

John Sadd

Fellow and OpenEdge Evangelist

Document Version 1.0

February 2011

Updating Database Data with RIA Services John Sadd

March, 2011 Page 2 of 15

DISCLAIMER

Certain portions of this document contain information about Progress Software Corporation’s

plans for future product development and overall business strategies. Such information is
proprietary and confidential to Progress Software Corporation and may be used by you solely in
accordance with the terms and conditions specified in the PSDN Online (http://www.psdn.com)
Terms of Use (http://psdn.progress.com/terms/index.ssp). Progress Software Corporation
reserves the right, in its sole discretion, to modify or abandon without notice any of the plans
described herein pertaining to future development and/or business development strategies.

Any reference to third party software and/or features is intended for illustration purposes only.
Progress Software Corporation does not endorse or sponsor such third parties or software.

This document continues the series that begins with the video series and document

entitled Using RIA Services with Silverlight. Having gotten Customer and Order data

all the way from OpenEdge and the AppServer to the Silverlight user interface, it’s

time to take a look at a simple update operation to return changes back to the

database. I’ll go through most of the same steps I’ve gone through before, as

illustrated here:

I have a new ABL procedure to save customer updates back to the database, which

will also run in my OpenEdge AppServer, as the GetCustOrders.p procedure does.

I’ll edit the proxy to add this second procedure to the same AppObject used by the

other examples.

I’ll then have to make some changes to the data definitions in the entity class.

http://www.psdn.com/
http://psdn.progress.com/terms/index.ssp

Updating Database Data with RIA Services John Sadd

March, 2011 Page 3 of 15

I’ll need to make some substantial additions to the DomainService class, mostly to

transform the object-oriented representation of a changed row into an ADO.NET

dataset that the DomainService can then pass back to the proxy, which in turn runs

the ABL procedure that applies the changes to the database.

Finally, I can regenerate the DomainContext class so that it includes support for the

update methods. Then I’ll add an update button to the user interface and an event

handler to pass the event on to the rest of the supporting C# code.

Remember that I’m building the ABL procedures so that each one -- each service in

effect -- is a separate non-persistent procedure, so that the application doesn’t do

any AppServer binding.

The following code is a simple ABL update procedure, which takes the CustOrders
ProDataSet as an INPUT-OUTPUT parameter and uses the ABL SAVE-ROW-CHANGES

method to save any changes back to the database. I have added a couple of MESSAGE

statements to confirm that the user interface sent back what I expect to the ABL

procedure:

/*--

 File : UpdateCustOrders.p

 Notes :

 --*/

 {DSCustOrders.i}

 DEFINE INPUT-OUTPUT PARAMETER DATASET FOR CustOrders.

 DEFINE DATA-SOURCE dsCust FOR Customer.

 DEFINE DATA-SOURCE dsOrder FOR Order.

 BUFFER ttCustomer:ATTACH-DATA-SOURCE (DATA-SOURCE dsCust:HANDLE).

 BUFFER ttOrder:ATTACH-DATA-SOURCE (DATA-SOURCE dsOrder:HANDLE).

 OUTPUT TO "c:\AppServerDeploy\UpdateCustOrders.txt".

 MESSAGE "In UpdateCustOrders" SKIP.

 FOR EACH ttCustomerBefore TRANSACTION:

 MESSAGE "Found CustomerBefore " ttCustomerBefore.CustNum

 ttCustomerBefore.Name SKIP.

 FIND ttCustomer WHERE ttCustomer.CustNum = ttCustomerBefore.CustNum.

 MESSAGE "ttCustomer is " ttCustomer.CustNum ttCustomer.Name SKIP.

 BUFFER ttCustomerBefore:SAVE-ROW-CHANGES ().

 END.

 FOR EACH ttOrderBefore TRANSACTION:

 BUFFER ttOrderBefore:SAVE-ROW-CHANGES ().

 END.

Here you can see that the procedure sends a message to a log file with the before

and after records of the CustNum and Name fields. If I make a change to a Customer

Name, I should see that in the log file. I save this new procedure in the

AppServerContent directory, so my AppServer-enabled project in Architect copies

the source and .r files to the AppServerDeploy directory in the AppServer’s ProPath.

Back in ProxyGen, I reopen the CustOrderApp proxy project. Previously I had added

GetCustOrders.p as the first procedure in this AppObject. Now I’m going to add the

update procedure to the same AppObject. Selecting the Procedures tab, I right-click

to add another non-persistent procedure. In the AppServerContent directory, I find

UpdateCustOrders.r.

Updating Database Data with RIA Services John Sadd

March, 2011 Page 4 of 15

I add that to the proxy, and click the Generate button. I don’t need to change any

settings, and a new version of the proxy DLL is generated that contains references to

both my procedures. That’s all I need to do in ProxyGen.

Back in Visual Studio, I first need to re-open the entity class file that defines the

parent and child tables as C# objects. That’s CustOrder.cs in the Web project’s

Models folder:

I haven’t changed my data definitions, so why do I need to change this file?

Well, it turns out that between Silverlight version 3 and Silverlight 4, Microsoft

decided that it was inefficient to return all field values from the client back to the

server when you do an update. So by default, when you ask for the before image of a

row in the DomainService class, it’s populated only with values marked as Keys. Even

values that were actually changed aren’t automatically populated. So in Silverlight 4,

you have to prepend a new annotation to each and every property definition in the

Updating Database Data with RIA Services John Sadd

March, 2011 Page 5 of 15

entity class, unless for some reason it’s a field you would never want returned to the

server. Keep in mind that the ABL SAVE-ROW-CHANGES method compares all the fields

in the before table row with the values in the database to see if anyone has changed

the database record after you read it, so you really have to return all the field values.

The new annotation is called RoundtripOriginal. Be sure to spell it with just capital

R and capital O. The CustNum property, identified as a Key, will be populated

automatically. so it’s all the other properties you have to annotate, as shown here:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Web;

using System.ComponentModel.DataAnnotations;

using System.ServiceModel.DomainServices.Server;

namespace CustOrderProject.Web.Models

{

 public class CustOrder

 {

 [Key]

 public int CustNum { get; set; }

 [RoundtripOriginal]

 public string Name { get; set; }

 [RoundtripOriginal]

 public string Address { get; set; }

 [RoundtripOriginal]

 public string City { get; set; }

 [RoundtripOriginal]

 public string State { get; set; }

 [RoundtripOriginal]

 public decimal CreditLimit { get; set; }

 [Include]

 [Association("Cust_Order", "CustNum", "CustNum")]

 public IEnumerable<Order> Orders { get; set; }

 public CustOrder()

 {

 Orders = new List<Order>();

 }

 }

 public class Order

 {

 [Key]

 public int OrderNum { get; set; }

 [Key]

 public int CustNum { get; set; }

 public System.DateTime OrderDate { get; set; }

 public string Carrier { get; set; }

 public string SalesRep { get; set; }

 }

}

To keep the code in the example as simple as possible, I’m not allowing for changes

to fields in the Order table, but you can make the same kinds of changes to those

values as well, to support updating both Customers and Orders.

Now I need to start making the more significant changes to the DomainService class.

I open the file as it stands after the first series of videos (described in the white paper

Using RIA Services with Silverlight), with all the code to support reading data:

Updating Database Data with RIA Services John Sadd

March, 2011 Page 6 of 15

I scroll down to the bottom to start adding several new methods to support update

operations. The primary job these new methods have to do is to transform the object-

oriented form of the Customer and Order data back into a ProDataSet.

Here’s another version of the overall architecture diagram that illustrates these steps:

Remember that part of the job of the .NET proxy is to transform a ProDataSet that’s

passed as a parameter from an ABL procedure into the equivalent ADO.NET DataSet

that .NET can use. The entity class is then an object-oriented representation of that

DataSet. When the client passes an update back to the server, the code in the

DomainService class needs to take the object representation of the before and after

rows and turn them back into an ADO.NET DataSet, so that the proxy can in turn pass

that back to OpenEdge as a ProDataSet with its before and after tables.

Updating Database Data with RIA Services John Sadd

March, 2011 Page 7 of 15

First I add a couple of little support methods to the DomainService class. The first is

called CreateCustOrder. CustOrder is the top-level class that holds Customer field

values and a collection of Orders. This method takes an entity representation of a

CustOrder and create a DataTable row that is its equivalent:

private DataRow CreateCustOrder(CustOrder entity)

 {

I define a DataRow called newRow. In the CustOrder dataset I identify the table

corresponding to ttCustomer, and add the new row to that:

 DataRow newRow = CustOrderDS.Tables["ttCustomer"].NewRow();

When the Submit code is called in the DomainService to start the update process, the

CustOrder DataSet starts out empty, so this will be the first row in it. I assign the
CustNum field in the new row to the CustNum value from the entity:

 newRow["CustNum"] = entity.CustNum;

Then I do the same for the remaining fields, and return the new row:

 newRow["Name"] = entity.Name;

 newRow["Address"] = entity.Address;

 newRow["City"] = entity.City;

 newRow["State"] = entity.State;

 newRow["CreditLimit"] = entity.CreditLimit;

 return newRow;

 }

As with all this code, updates are enabled only for Customer; the code could be

extended to do the same for Orders as well.

The next support method is called FindCustomer. After I’ve added a row to the

initially empty CustOrder DataSet at the start of an update, the code needs to locate

it to generate an after version of the row, and this method just finds it in the DataSet

by its key value. In the simple case of submitting a single update to the server, there

will only be one row in the table at this point:

private DataRow FindCustomer(int custNum)

 {

 foreach (DataRow custrow in CustOrderDS.Tables["ttCustomer"].Rows)

 if (custrow.Field<int>("CustNum") == custNum)

 return custrow;

 return null;

 }

The third support method is one that is called as part of the Submit operation. I have

to identify it as an Update using the [Update] data annotation. The method itself

takes a CustOrder object as a parameter. The combination of these two things, the

Updating Database Data with RIA Services John Sadd

March, 2011 Page 8 of 15

update annotation and the parameter, identifies what method is run in the

DomainService to do an update of the CustOrder object:

[Update]

 public void UpdateCustOrder(CustOrder changeRow)

 {

I use the FindCustomer method just created to return a DataRow that matches the

CustNum key, which is used to create an update version of that row:

 DataRow updateRow = FindCustomer(changeRow.CustNum);

If there is a matching row, I create the update verson field by field. Now I’ve got the

after version of all the field values:

 if (updateRow != null)

 {

 updateRow["CustNum"] = changeRow.CustNum;

 updateRow["Name"] = changeRow.Name;

 updateRow["Address"] = changeRow.Address;

 updateRow["City"] = changeRow.City;

 updateRow["State"] = changeRow.State;

 updateRow["CreditLimit"] = changeRow.CreditLimit;

 }

 }

Now I have support methods to build up the before and after rows in an ADO.NET

DataSet based on an object representation of those rows. It’s time to create the
principal update support method, called Submit. This is an override of an inherited

DomainService method, so as soon as I type the name I get a whole skeleton for the
method, including the changeSet as a parameter, and a statement to invoke the

inherited behavior.

public override bool Submit(ChangeSet changeSet)

 {

The first thing I add to that is a variable to hold the return value from other methods:

 bool result = true;

In the usual try block, I look at each changed row in the changeSet passed in:

 try

 {

 foreach (ChangeSetEntry changeRow in changeSet.ChangeSetEntries)

 {

This changeSet is constructed when I invoke SubmitChanges from the user interface

support code, and is parallel to the rows in a modified DataSet -- either ADO.NET

DataSet or ABL ProDataSet -- with before and after versions of modified rows, and

Updating Database Data with RIA Services John Sadd

March, 2011 Page 9 of 15

Inserts and Deletes as well if the code supported those operations. In principle this

could be any number of updates, inserts, and deletes, but I’m just supporting updates

to start with.

I next check the entity type of the row; there could be multiple different entities, like
CustOrder and Order. If it’s the top-level CustOrder, I’m prepared to deal with it.

Remember that I'm leaving Order updates out of the code for now:

 if (changeRow.Entity is CustOrder)

 {

I need to extract the before version of the row, which in the object representation is
called the OriginalEntity:

 CustOrder origEntity = (CustOrder)changeRow.OriginalEntity;

Now, remember that I had to add the annotation RoundtripOriginal to every

property in my entity class, because otherwise only the Key values would be

populated. This is where that change comes into effect. If I hadn’t added that

annotation, my OriginalEntity would come back to me with only the CustNum field

populated, because that’s identified as a Key. All the other fields would be null, and if

I passed that back to OpenEdge my SAVE-ROW-CHANGES method in the ABL update

procedure wouldn’t succeed. So adding that annotation to all the properties in the

entity means that all the before values will be set in the object I get back here.

Now I’m going to use my local CreateCustOrder method to create a DataTable row

based on this OriginalEntity. That’s my before table row:

 DataRow newRow = CreateCustOrder(origEntity);

Then I add that row to the DataSet.

 CustOrderDS.Tables["ttCustomer"].Rows.Add(newRow);

I turn that into a before image in the DataSet by invoking AcceptChanges, so its data

values aren’t considered new and modified anymore. This is exactly equivalent to

what you do to a row in a ProDataSet temp-table on the OpenEdge side, where there
is an ACCEPT-CHANGES method as well:

 newRow.AcceptChanges();

 }

 }

Here is where the code invokes the standard Submit method that the local method is

overriding:

 result = base.Submit(changeSet);

Updating Database Data with RIA Services John Sadd

March, 2011 Page 10 of 15

Now you need to understand the next bit of built-in behavior that happens when you
submit changes. The inherited Submit method looks at the change set you pass to it,

and for each change, it invokes another support method in your DomainService class.

It does this by examining the data annotations in front of the local methods in your

DomainService, along with their signatures.

I have a method annotated as an [Update], which takes a CustOrder entity as a

parameter. So when I invoke the base Submit method, it turns around and invokes

UpdateCustOrder in my DomainService based not on the method name itself, but on

the data annotation and the signature. And you remember that my UpdateCustOrder

method creates the after table row from the changeSet. Back in the Submit method, I

don’t want to return after invoking the base version of Submit, because I’m not done

yet. So I just save off the return value in my result variable.

If the changeSet has any errors I return false:

 if (changeSet.HasError)

 return false;

Now I’ve got an ADO.NET dataset with a representation of any changes that took

place in the client that my .NET proxy will be able to accept.

Having transformed the change set data into a form the OpenEdge .NET proxy can in

turn convert to a ProDataSet with change tables, the next action is to invoke the ABL

update procedure via the proxy, using the AppObject:

 _appObj.UpdateCustOrders(ref CustOrderDS);

 }

Remember that even though each ABL procedure is a separate non-persistent .p, my

one AppObject -- the proxy DLL that ProxyGen created -- can invoke any and all of

them. In the first RIA Services example I put the AppObject instance into a cache so

that it could be reused throughout a whole session, but in this case I’m still running

the same AppObject instance as I was when I read the data, so I don’t even need to

retrieve it from the cache.

I pass the CustOrder DataSet as a parameter, and I pass it by reference because that

corresponds to the INPUT-OUTPUT parameter on the OpenEdge side.

I’ve executed UpdateCustOrders.p, and my changes should be back in the

OpenEdge database. As before, I just insert a simple catch block:

 catch (System.Exception e)

 {

 throw new Exception(e.Message);

 }

 return result;

 }

Updating Database Data with RIA Services John Sadd

March, 2011 Page 11 of 15

Now I can save and compile the DomainService class.

Next I need to add a Submit button to the user interface, so that when I make a

change to a value in the datagrid, I can tell Silverlight to send it back to OpenEdge.

Once again, I’m just enabling saving changes for the Customer grid, to simplify the
code. By the way, the grid’s IsReadOnly property is false by default, so my datagrids

were always editable; I just wasn’t prepared to do anything with any changes before.

I make room under the Customer grid for a new button. I drag a button from the

Toolbox to my CustOrderPage, and call it SubmitButton, and change the label, which

is the Content property, to Submit Changes:

I resize the button to show the new label, and when I double-click on the button, I

get a skeleton event handler for the Click event, the default event for a Button. All

this event handler needs to do is check if the DomainContext has registered any

changes in the user interface, and if so, to invoke the standard SubmitChanges

method in the DomainContext. Remember that this will turn around and run Submit

in my DomainService class:

private void SubmitButton_Click(object sender, RoutedEventArgs e)

 {

 if (CODomainContext.HasChanges == true)

 CODomainContext.SubmitChanges(OnSubmitCompleted, null);

 }

Here’s the simple completion event method that checks for errors:

private void OnSubmitCompleted(SubmitOperation submitOp)

 {

 if (submitOp.HasError)

 {

 MessageBox.Show(string.Format(submitOp.Error.Message));

 submitOp.MarkErrorAsHandled();

 }

 }

Updating Database Data with RIA Services John Sadd

March, 2011 Page 12 of 15

I do a build to get everything regenerated and synchronized. Now I can see what

happens when I run the test page for the project. In the Home page I select the

CustOrderPage, and then select a Customer name. That causes the Order grid to
display the Orders for that Customer because of the SelectionChanged event defined

in an earlier presentation:

I add a t to the end of the Customer Name. In the Address field, I change the street

number to 33. Then I click the Submit Changes button:

Because this is the simplest of user interfaces, there’s no specific affordance to
confirm that the Submit succeeded. I can go back to the Home page, though, and

then reselect the CustOrderPage. Because the data is re-retrieved from

GetCustOrders.p, this shows that my changes went through to the OpenEdge

database:

Updating Database Data with RIA Services John Sadd

March, 2011 Page 13 of 15

To get a little more reassurance that things worked as I expected, I can take a look at

the log file that the MESSAGE statements in UpdateCustOrders.p were written to.

The first message confirms that UpdateCustOrders.p is executing. The procedure

found the ttCustomerBefore table row with the original value of the Name field, as

well as the CustNum. And the ttCustomer table row, which has the changes, shows

the updated value of the Name. (The message statement doesn’t display the Address,

though that was also modified.)

That’s the end of the update sequence. As with the other parts of this series, there

are clearly a number of steps involved. But given this concrete example, you should

be able to adapt it to handle updates for your own data as well. All the DomainService

code is fairly mechanical, and just deals with the data transformation and data

binding from OpenEdge to .NET. The application-specific logic should all be in your

ABL procedures on one end, and in your user interface design on the other.

To review, all of the new methods in CustOrderDomainService.cs are shown here:

Updating Database Data with RIA Services John Sadd

March, 2011 Page 14 of 15

 private DataRow CreateCustOrder(CustOrder entity)

 {

 DataRow newRow = CustOrderDS.Tables["ttCustomer"].NewRow();

 newRow["CustNum"] = entity.CustNum;

 newRow["Name"] = entity.Name;

 newRow["Address"] = entity.Address;

 newRow["City"] = entity.City;

 newRow["State"] = entity.State;

 newRow["CreditLimit"] = entity.CreditLimit;

 return newRow;

 }

 private DataRow FindCustomer(int custNum)

 {

 foreach (DataRow custrow in CustOrderDS.Tables["ttCustomer"].Rows)

 if (custrow.Field<int>("CustNum") == custNum)

 return custrow;

 return null;

 }

 [Update]

 public void UpdateCustOrder(CustOrder changeRow)

 {

 DataRow updateRow = FindCustomer(changeRow.CustNum);

 if (updateRow != null)

 {

 updateRow["CustNum"] = changeRow.CustNum;

 updateRow["Name"] = changeRow.Name;

 updateRow["Address"] = changeRow.Address;

 updateRow["City"] = changeRow.City;

 updateRow["State"] = changeRow.State;

 updateRow["CreditLimit"] = changeRow.CreditLimit;

 }

 }

 public override bool Submit(ChangeSet changeSet)

 {

 bool result = true;

 try

 {

 foreach (ChangeSetEntry changeRow in changeSet.ChangeSetEntries)

 {

 if (changeRow.Entity is CustOrder)

 {

 CustOrder origEntity = (CustOrder)changeRow.OriginalEntity;

 DataRow newRow = CreateCustOrder(origEntity);

 CustOrderDS.Tables["ttCustomer"].Rows.Add(newRow);

 newRow.AcceptChanges();

 }

 }

 result = base.Submit(changeSet);

 if (changeSet.HasError)

 return false;

 _appObj.UpdateCustOrders(ref CustOrderDS);

 }

 catch (System.Exception e)

 {

 throw new Exception(e.Message);

 }

 return result;

 }

Updating Database Data with RIA Services John Sadd

March, 2011 Page 15 of 15

The event handler method and its completion method from CustOrderPage.xaml.cs

are shown here:

private void SubmitButton_Click(object sender, RoutedEventArgs e)

 {

 if (CODomainContext.HasChanges == true)

 CODomainContext.SubmitChanges(OnSubmitCompleted, null);

 }

 private void OnSubmitCompleted(SubmitOperation submitOp)

 {

 if (submitOp.HasError)

 {

 MessageBox.Show(string.Format(submitOp.Error.Message));

 submitOp.MarkErrorAsHandled();

 }

 }

If you combine these with the updated entity class CustOrder.cs shown in its

entirety earlier in this document, and add the Submit Changes button to the user

interface, you will have all the code needed to reproduce the example. Given your

understanding of what all the code in the example is doing, you should be able to

create similar examples that access your own application data using your own ABL

procedures.

