

INSTRUCTOR GUIDE

INSTRUCTOR GUIDE



INSTRUCTOR GUIDE


OLE Automation With MS Office97
Don Sorcinelli

Progress Software Education Services



Instructor Lesson summary:  The goal of this lesson is to…

· Instructor activity:  
· Student activity:  
· Files:  
If students need the finished screen from the previous lesson, it's in \Solution\LsnN.

Overview

Introduction

Beginning with PROGRESS Version 8.2, Windows client access to any other Windows application that was designed to work as an OLE Automation Server became available. This enhancement to the PROGRESS 4GL environment allowed for developers to utilize the technology of existing applications for their PROGRESS applications, and to integrate different applications using a single interface using the PROGRESS 4GL.

One of the most popular OLE Automation Server suites on the market today is Microsoft’s Office Suite. Components of Office97 include:

· Microsoft Word 97 – For word processing capabilities;

· Microsoft Excel 97 – For spreadsheet and charting of data;

· Microsoft Outlook 97 – For Personal Information Management (including tasks & appointments), as well as a full e-mail client.

Many PROGRESS developers have utilized one or more of these software components to enhance, extend and integrate their PROGRESS applications into the Windows environment. 

Learning objectives

Upon completion of this document, you should be able to:

· Work with general 4GL syntax for creating instances of OLE Automation objects

· Use Microsoft Outlook 97 for appointment integration into a PROGRESS application

· Use Microsoft Outlook 97 for e-mail integration into a PROGRESS application

· Use Microsoft Word 97 for document generation using PROGRESS data

· Use Microsoft Excel 97 for spreadsheet & chart generation using PROGRESS data

Prerequisites

Before you begin working with this document, you should be able to:

· Write PROGRESS 4GL event-driven applications using event-driven syntax 

· Familiarity with the User Interface Builder

· Conceptual understanding of SmartObjects; the sample application provided for this lesson uses SmartObjects for screen layout. NOTE: SmartObject knowledge is NOT required for the use of OLE Automation.

Code Provided

A small application has been provided which serves as the basis for demonstrating OLE Automation in the PROGRESS 4GL environment. The following steps should be taken to install the application.

· Create a directory for the application;

· Unzip the file ole_auto.zip into the new directory;

· Unzip the file sp2000.zip into the new directory

The sp2000.zip file contains the database used for the application (sports2000). Make sure that you connect to this database prior to running any of the code. The file used to start the application is w_ofcint.w.

In order for the demonstration to run properly, you must also have the following products installed:

· Microsoft Word97 or higher;

· Microsoft Excel97 or higher;

· Microsoft Outlook97 or higher.

OLE Automation Basics

Introduction

Before dealing with the specifics of each of the Office 97 components, it is important to discuss some basic terminology and syntax used when working with OLE Automation in the PROGRESS (and OLE Automation) environments.

General Terminology

· OLE Automation Server – A Windows application which can be accessed using standardized syntax and structure from an external application. All of the Microsoft Office 97 products are considered to be OLE Automation Servers. They can be programmatically controlled from within their own environment (for Office 97 applications, this is accomplished using VBA, or Visual Basic for Applications, which is a subset of Microsoft’s Visual Basic product), or from some other language that has been enhanced to communicate with them. Not all applications that run in the Windows environment are designed to be OLE Automation servers; this requires extensive programming. The PROGRESS environment is NOT designed to be run as an OLE Automation Server, for example.
· OLE Automation Client – A Windows application with can communicate with OLE Automation Servers. The PROGRESS 8.2 environment is an example of an OLE Automation client. 4GL syntax has been added to the language to allow for the communication between a PROGRESS client session and OLE Automation servers.
· OLE Automation Object –A component of an OLE Automation Server. OLE Automation relies heavily on a hierarchy of objects, or components with similar functionality. The Microsoft Word 97 OLE Automation Server, for example, consists of hundreds of components arranged in a hierarchy. Each object consists of properties (characteristics of the object) and methods (pre-defined functions which perform actions on the object). These properties and methods are similar to those found in the PROGRESS 4GL for User Interface Objects (editors, selection lists, fill-in fields, etc.). By providing an object model for access to OLE Automation, programmers need only acquaint themselves with and utilize the objects needed by their client application.
· Instance – The programmatic creation and subsequent reference to an object. To utilize an OLE Automation object, you must first “start up” that object within the OLE Automation client application. This is similar to starting up an application from a shortcut in Windows before actually using the application.

continued on next page

OLE Automation Basics, continued

Defining An Instance To An OLE Automation Object

In order to create an instance to an OLE Automation object using the PROGRESS 4GL, you must first create a variable in a procedure in order to reference it. The definition of a variable does NOT create an instance; it simply creates a variable which will hold a reference to the OLE Automation object. This is functionally similar to the creation of a variable in the 4GL to hold a reference to a persistent procedure.

The syntax for the definition of a OLE Automation variable is:


DEFINE VARIABLE <name> AS COM-HANDLE.
The special data type COM-HANDLE is used to accommodate OLE Automation object references. The term COM comes from Microsoft Corporation’s Component Object Model, which is used to generally describe OLE Automation and ActiveX control technology. All objects which are defined as COM objects use a basic foundation prescribed by Microsoft to allow them to act as components for other applications.

Creating An Instance Of An OLE Automation Object

Creation of an instance to an OLE Automation object can occur in one of two ways. Initial creation of an instance to an OLE Automation Server requires referencing the Application object. For each OLE Automation server, the Application object is the OLE Automation server application itself. For Word 97, the application object is “Word.Application”; for Excel 97, it is “Excel.Application”. Each of these application objects, along with the “sub-objects” associated with the application, are registered with the machine on which the application is stored. The Microsoft Office products are automatically registered on a machine when the applications are installed.

NOTE: This brings forth an important point with regards to using OLE Automation. In order for an application (such as one written in the PROGRESS 4GL) to create an instance of an OLE Automation server, two things MUST be true:

· The OLE Automation application must be accessible. This means that it must be installed on the client machine or on a shared network drive.

· The OLE Automation server must be registered on the client machine. This means (for Office 97 products, at least), that the application must be properly installed in order for the registration process to occur.

continued on next page

OLE Automation Basics, continued

Creating An Instance Of An OLE Automation Object (Cont.)

Creating an initial instance of an OLE Automation Server requires the following  4GL syntax:


CREATE “<Application Object>” <COM Variable>.

For example,


DEFINE VARIABLE chWord AS COM-HANDLE.


CREATE “Word.Application” chWord.    

The preceding code (1) defines a COM variable for use, and (2) creates an instance of Word and assigns it to the variable.

Once the application object is created, references to objects within the hierarchy are performed using the following syntax:


<COM Variable> = <COM Variable>:<Property or Method>.

For example, after creating an instance to the Word 97 application object, we can open an existing document (a document object) and assign it to a COM variable via the following 4GL:


objDoc = objWord:Documents:Open(“MyDoc.doc”).

This does require that we have previously defined a COM variable named objDoc in our 4GL.

Releasing A Reference To An OLE Automation Object

Once an application has finished using an instance of an OLE Automation object, it is necessary to release that reference from system memory. The syntax for doing this is:


      RELEASE OBJECT <COM variable>.

For example, 


      RELEASE OBJECT chWord.
This will release the reference to the Word application object from memory. 

NOTE: Unlike standard PROGRESS variables, a procedure going out of scope does NOT release the COM object instance; the variable is simply out of scope. It is necessary to RELEASE all COM objects before exiting a procedure.

Exploring OLE Automation Object Models

Introduction

OLE Automation Servers provide us with a means to functionally automate or control an application external of the PROGRESS environment. The methods of control are the servers’ OLE Automation objects. Each OLE Automation server  provides a developer with any of a number of objects for programmatic functionality and control. The number of objects available depends on the server being used, but often times runs into the hundreds! It therefore becomes the responsibility of the developer to determine which OLE objects to use, how they work, and what they require in terms of parameters and arguments to work properly.

Object And Type Libraries

When developers create COM objects (OLE Automation Servers, ActiveX controls, etc), it is hoped that the object models that they create are documented for the people who use them. Help files, manuals and the likes are all encouraged. In addition to these forms of documentation, the COM programming standard and the tools used for developing COM objects provide a method to document the objects being created. COM object developers can, and often do, create either Object Library Files (*.olb) or Type Library Files (*.tlb) for their COM objects. If these files are provided to you, there are tools which can be used to inquire about the various object models, their properties, and their methods. Progress Software provides the developer with one such tool in Version 8.2; the COM Object Viewer.

continued on next page

Exploring OLE Automation Object Models, continued

Using The PROGRESS COM Object Viewer

The COM Object Viewer is included with the PROVision package, and is accessible from the PRO*Tools menu.

To start the COM Object Viewer, perform the following steps:

1. Start PRO*Tools from any PROGRESS Desktop application using the Tools menu item on the menu bar.

[image: image1.png]
continued on next page

Exploring OLE Automation Object Models, continued

2. Select Progress COM Object Viewer from the PRO*Tools toolbar.

[image: image2.png]
 

      This will bring you to the COM Object viewer screen.

You will then need to open a type or object library to view. To do this, select the open icon from the top of the screen. 

continued on next page

Exploring OLE Automation Object Models, continued

You will be brought to a standard File Open dialog box where you can select the object to view.

[image: image3.png]
NOTE: The object and type library files for Microsoft Office products can typically be found in the installation directory for Microsoft Office (i.e. – C:/Program Files/Microsoft Office).

continued on next page

Exploring OLE Automation Object Models, continued

The following table lists the type libraries for some of the Office 97 products and their purpose:

File Name
Purpose

Excel8.olb
Excel 97 object model

Msoutl8.olb
Outlook 97 object model

Msword8.olb
Word 97 object model

Once you have selected a type library to view, the different sections of the COM Object Viewer will be populated with information.

[image: image4.png]
continued on next page

Exploring OLE Automation Object Models, continued

Sections Of The COM Object Viewer

The COM Object Viewer screen is broken up into several sections, each with information relating to a COM object and its’ associated properties and methods.

Section
Purpose

Automation Objects
This section lists the top level automation objects associated with this library. There can be one or more automation objects contained within a type library. Selecting one of these objects will refresh the other sections of the COM Object viewer with associated information.

COM Objects
Lists the various objects which are contained within the main automation object. NOTE: The object model for an automation object is typically a hierarchical model. A document object in Word 97, for example, consists of many “sub-objects”, including a bookmark object, a range object, etc. The COM Object viewer does NOT display information in this hierarchical format; it simply displays all objects for an automation object.

Methods/Properties/Events
For any highlighted COM Object, a list of methods, properties and events are displayed.

Progress Syntax
For any highlighted method, property or event, This section describes how the associated item can be manipulated through the PROGRESS 4GL. The information in brackets above the syntax box describes how many arguments a method requires, and how many are optional. For each argument, the syntax box describes the data type required for the argument. If the property or method returns a value, the syntax box will display the data type of the return value.

continued on next page

Exploring OLE Automation Object Models, continued

Additional Resources For Information

In addition to the information provided in this section, as well as in subsequent sections, there is ample documentation relating to OLE Automation objects for the Office 97 suite as well as other OLE Automation servers. These resources include:

· The Internet. Microsoft’s Office Developer Web Site (http://www.microsoft.com/officedev) contains a number of documents pertaining to the various Office 97 products and their associated object models. The VBAObjects Home (http://www.inquiry.com/objects/index.html) provides graphical representations of many OLE Automation Server object models for “quick & easy” reference.

· Windows Help Files. Installing any of the Office 97 products allows you to optionally install “VBA Help” for the product. The Windows help files installed give full documentation to the object models associated with a product. Most other OLE Automation Server products include similar options when performing installations.

· Third-Party Books. There are countless books available at book stores describing and documenting OLE Automation objects and programming. Microsoft Press publishes numerous books relating to the Office 97 suite.

Using The Word Object Model

Introduction

Using the Word OLE Automation Server and object model, it is programmatically possible to generate or manipulate Word documents from within the PROGRESS 4GL. This capability allows a developer to perform such tasks as:

· Creating mail merge documents using database data;

· Generate formatted reports without the use of a report writer;

· Create “template” documents which can then be populated with database data.

Frequently-Used Word Objects

Typical usage of the Word object model results in accessing a small subset of the objects, properties and methods provided within the object model. The following chart lists some of the more commonly used items:

Object
Description
Commonly-Used Properties & Methods

Document
Refers to a single Word document.
Bookmarks Collection - Contains references to all bookmarks within a document.

SaveAs method – Allows the saving of a document by another name.

Close – Closes the document.

Range
Selected text or object in a document object.
InsertBefore,InsertAfter methods – Allow the insert either before or after the range object.

Delete method – Delete the data contained within the range object.

continued on next page

Using The Word Object Model, continued

Word 97 Automation In The Sample Application

The sample application allows for a user to select a customer from the browse object provided, prompts for a “template” document, and then runs a 4GL procedure, passing several arguments.



      F_cust.w

 

The “template” document is actually a Word document containing text and a series of bookmarks, each one with a name.

continued on next page

Using The Word Object Model, continued

[image: image5.png]
The bookmarks will serve as “positions” to insert database data from the customer record passed down to cr_word.p.

The cr_word.p procedure begins with several defined variables (including COM variables).

continued on next page

Using The Word Object Model, continued

Definition Of COM Variables

Cr_word.p


Each of these variables will be used for various COM object references throughout the procedure.

Creating An Instance Of The OLE Automation Server

The next step in the 4GL logic is to create an instance of the Word 97 OLE Automation server and store that reference in the objWord COM variable.

Cr_word.p


continued on next page

Using The Word Object Model, continued

Object Property And Method Syntax

In the PROGRESS 4GL, referencing a COM object’s properties an methods is performed through the following general syntax:

Property –



<COM-Variable>:Property

Method – 



<COM-Variable>:Method()

This is functionally similar to the accessing of PROGRESS attributes and methods within the 4GL.

Opening An Existing Word Document

Our 4GL procedure opens the Word document passed down as a parameter from f_cust.w. To do this, we use the Open method of the Documents collection for the application.

Cr_word.p


Object Collections

In the COM object model, a collection is a group of similar objects treated as a logical unit. For example, an instance of a Word application can have many documents open at one time. Each document may have many bookmarks. Each of these logical groupings of data is referred to as a collection and can be programmatically accessed. In the previous code, the Documents collection for the instance was utilized to open our template file using the Open method. The Open method adds the document passed as an argument to the collection of documents available within the application instance.

Under standard programming conventions for COM object models, collections of an object are referred to by the object name in plural form. For example, a Document is a single COM object; there is a Documents COM objects collection. 

Our application uses the Bookmarks collection to determine all of the bookmarks that are set up for the template document. Each bookmark is used to “point” to a place in the document where text is to be inserted. The collection is captured into a COM variable for use.

continued on next page

Using The Word Object Model, continued


Inserting Text Into A Word Document

Using the Word97 object model, the easiest technique for manipulating objects (text, graphics, etc.) is through the use of a Range object. This object represents a specific portion of the document. Just about any object contained in a document can be assigned to a Range object. Once assigned, the range object can be manipulated in any of a number of ways.

In the sample application, the range object is used to allow the insertion of database information immediately following a bookmark.


The 4GL code first tests to see if a bookmark with a specific name exists. In the instance above, the test is for the bookmark named “CustName”. The Exists method of the bookmarks collection returns True if the referenced bookmark exists, False if it does not.

The GoTo method of the Document object allows for the navigation through a Word document to a specific point based on information passed to the method through arguments. The arguments are:

· What – specifies the type of object you are trying to navigation to. –1 is the constant value for wdGoToBookmark.

· Which – allows for the specification of an instance of what. In the case of the sample application, this is not needed; we are listing a specific bookmark.

· Count – used to specify an absolute reference in a collection of objects. For example, the sample application could use an integer value to represent a given bookmark in the bookmarks collection. In this example, however, the bookmark name is used (as is more commonly the case with this style of coding).

· Name – specifies the name of the object to move to (if the object can and does have a name). In the sample application, the name of each bookmark is passed to the GoTo method. 

The GoTo method returns a Range object, which is assigned to the objRange COM variable.

continued on next page

Using The Word Object Model, continued

The last step in the process is to insert the appropriate database field data after each bookmark. This is accomplished through the InsertAfter method of the Range object. This method inserts text immediately after the selected range.

Saving The New Word Document

Once the document has been populated with database data, the sample application saves the document. This is accomplished using the SaveAs method of the Document object. The SaveAs method takes one argument; the file name to “Save As”. 


The sample application takes the customer’s ID number and appends the Word “.doc” extension to it.

Closing The Document & Quitting Word

Once a Word document has been completed, the document can be closed using the Close method of the Document object. This method takes no arguments, and closes the currently active Word document.

Once the instance of Word97 is no longer needed, it is important to properly close the instance. This is done through the use of the Quit method of the Application object.


The Quit method, like the Close method, can be invoked with no arguments.

It is important to “shut down” the running instance of Word97 using this method. Not invoking the Quit method will leave the instance running in memory, and that instance will not be removed until either (a) the user explicitly kills the process from memory, or (b) the user ends there Windows95/NT session.

continued on next page

Using The Word Object Model, continued

RELEASEing COM Variables In PROGRESS

In the PROGRESS 4GL, COM variables do not behave like standard 4GL variables in terms of scope and subsequent releasing of memory. Following the standards of COM programming, COM variable instances must be explicitly released through 4GL statements in order for the reference to be removed from memory. The RELEASE OBJECT statement serves that very purpose. The syntax for this statement is:



RELEASE OBJECT <COM variable>.

Failure to release a COM variable explicitly will result in the object instance failing to be removed from memory, thus “tying up” resources unnecessarily. 


The sample application releases all of the COM variables used once they are no longer needed.

Using The Excel Object Model

Introduction

Using the Excel OLE Automation Server and object model, it is programmatically possible to generate or manipulate Excel Workbooks and Worksheets from within the PROGRESS 4GL. This capability allows a developer to perform such tasks as:

· Create spreadsheets for use by employees within an organization;

· Generate graphs from PROGRESS data using Excel’s graphing capabilities;

· Utilize the many financial functions included within Excel to manipulate data.

Frequently-Used Excel Objects

Typical usage of the Excel object model results in accessing a small subset of the objects, properties and methods provided within the object model. The following chart lists some of the more commonly used items:

Object
Description
Commonly-Used Properties, Methods And Collections

Workbook
Object containing one or more spreadsheets
Sheets collection – contains all of the spreadsheets within the workbook

Sheet
Spreadsheet object
Columns collection – references all of the columns of a spreadsheet

Range object – used to select a cell or column

Value property – contains the value of a cell.

Chart
Object used to display data from the spreadsheet in graphs
ChartWizard method – commonly used to format and display a graph

continued on next page

Using The Excel Object Model, continued

Using Excel In The Sample Application

The sample application uses Excel97 to provide charting functionality in two places. One use is to show customer sales for a twelve-month period for one particular customer. The other use is to show all of the monthly sales for a given sales rep and the associated monthly quotas for the same period. For discussion purposes, the focus will be on the second instance.


Both code examples run the same PROGRESS 4GL procedure (cr_xcel.p). In this case, the logic leading up to the RUN statement accumulates customer monthly sales information for the selected sales rep and builds a comma-separated list (chSales). At the same time, a second variable (chQuotas) contains a comma-separated list of the monthly sales quotas for the sales rep.

Creating An Instance, Workbook And Worksheet In Excel97

The creation of an instance of Excel97 is the same as Word97 (and other Office applications, for that matter). Use of the CREATE syntax is used.

Creating a new workbook is performed through the Add method of the Workbooks collection. This method requires no arguments, and returns an instance of the new workbook to be stored into a COM variable.

continued on next page

Using The Excel Object Model, continued

Selecting the active worksheet (spreadsheet) for use requires the use of the Item method of the Worksheets collection. The Item method is available to all collections in the Microsoft COM object model. This method takes one argument; the name or index number of an item in the collection. 

Each object in a collection is assigned an index number as a unique ID. The first item in a collection is item number 1, the second is item number 2, and so on. If an object in a collection is not given a name, the object can still be referenced using this ID.


The Name property of the Worksheet object can be used to assign a name to a worksheet in the Worksheets collection, and to additionally affect the tab that appears at the bottom of a workbook in Excel97. 

The Columns collection in Excel is used to reference a specific column of within the worksheet. There are a number of properties associated with a Column object. To select a single column to affect in procedure code, use of the column letter to specify the index within the collection is most commonly used.


The Range object used in Excel97 is most commonly utilized to programmatically affect a range of columns and/or cells in a single line of code, rather than several lines of code.


The preceding code selects the cells A1, B1 and C1 and sets the font of these cells to bold. 

The range object can also be used to select a single cell and apply changes to that cell’s associated properties. The following code demonstrates this principle.


continued on next page

Using The Excel Object Model, continued

This code assigns cell A1’s Value property (the contents of the cell) equal to “Month”, B1’s Value property equal to “Monthly Sales”, and C1’s Value property equal to “Monthly Quota”.

Populating Excel Cells With Database Data

In order to properly populate columns of data in the Excel spreadsheet, the only knowledge the programmer must have “in hand” is the intended layout of the spreadsheet. In our example, the following worksheet structure is known:

· Column A’s cells should contain a word for each month (i.e. – Jan., Feb., etc.);

· Column B’s cells should contain the sales rep’s corresponding monthly for the given month;

· Column C’s cells should contain the sales rep’s quota for the corresponding month.

With that information in hand, the code required to populate the spreadsheet cells requires only the use of the Range object, 4GL variables and the data passed down.


The preceding code performs the following:

· Uses the variable intCount to determine the cell to act upon;

· Uses the Range object to select a cell to populate. The cell is referenced through the variable cRange;

· The A column is populated using the appropriate entry in the chrMonths array passed down by the calling procedure;

· The B column is populated using the appropriate entry in the chrSales array passed down by the calling procedure;

· The C column is populated using the appropriate entry in the chrQuotas array passed down by the calling procedure.

The DO block iterates for all twelve months (and the associated twelve elements in the arrays). The Value property is used to set the cells’ values.

The Selection Object And The Select Method In Excel

Use of the Range object in Excel allows a programmer to select a cell or group of cells and simultaneously act upon the range within a single statement. 

continued on next page

Using The Excel Object Model, continued

Our previous code usage of the Range object demonstrates this fact. A similar functionality also exists with the use of the Selection object from within Excel. 

The Selection object points to a single or range of elements within a worksheet that has previously been selected. The Selection object can then be manipulated as often as is required by the application logic.

To select a cell or range of cells for use by the Selection object, you must capture the information using the Select method, which is available for several objects, including the range object. The following code demonstrates usage:


The first line of code selects cells B2 through C13 and assigns them to the Selection object. The second line of code uses the Style property of the Selection object and formats the cells for currency data.

Additional Note: The Selection object is a child of the Application object, not a worksheet object. This can be advantageous to a developer if they wish to hold information contained in one worksheet and “paste” the information into another worksheet, whether the “target” worksheet in the same workbook, or even in an entirely different workbook.

Creating Charts Using OLE Automation

Charts can be created in one of two ways using the Excel97 object model. The two methods are:

· The ChartObject object. This object allows the developer to programmatically create a chart and embed the chart on the worksheet of choice;

· The Chart object. The chart object allows the programmer to create a chart which will be displayed on a separate worksheet, commonly referred to as a Chart Sheet.

Depending on the requirements of your application, you can use either of these two methods to create charts.

The code example that follows uses embeds a ChartObject object on the current worksheet and activates it:


The Add method of the ChartObjects collection is used to add a new Chart object. This method requires four parameters:

continued on next page

Using The Excel Object Model, continued

· Left. Specifies the placement of the upper-left corner of the chart on the worksheet relative to the left side of the worksheet. The number provided for this parameter (as well as the other three parameters) is based upon a unit of measurement called a point. A point is roughly 1/72nd of an inch.

· Top. Specifies the placement of the upper-left corner of the chart on the worksheet relative to the top of the worksheet.

· Width. Specifies the width of the chart in points.
· Height. Specifies the height of the chart in points.
When the Add method is immediately followed by the Activate method, this specifies that the new ChartObject object is not only created, but is also selected as the chart to be programmatically manipulated. Once a ChartObject has been activated, it can be accessed through the use of the ActiveChart property of the Application object.

Creating a ChartObject does not populate it with data; this task must be handled through program logic. The easiest way to perform this is with the ChartWizard method.

The ChartWizard method requires a number of parameters, many of which refer to constants in the Excel environment. The arguments are:

· Source. This first argument requires the range of data that will be used to populate the chart. The first argument is usually a Range object that has been previously set;

· Gallery. This value will point to one of the available chart types handled by the Chart Wizard. Using the PROGRESS COM Object Viewer, you can see all of the available chart types and their integer values. Simply select XLChartType from the Com Object panel.

· Format. Specifies auto-formatting type to be applied to the chart. A value of 1 normally specifies default formatting based on the chart type.

· Plot By. Determines how plotting should occur. Value of 1 is rows, 2 is columns.

· Category Labels. Specifies the number of rows or columns (based on Plot By) that contain the category labels.

· Series Labels. Specifies the number of rows or columns (based on Plot By) that contain the series labels.

· Has Legend. Determines whether or not a legend should be displayed for the chart. A value of TRUE indicates yes, FALSE indicates no.

· Title. Chart title.

· Category Title. The title for the category axis.

· Value Title. The title for the value axis.

· Extra Title. The series axis title for 3D charts.

The following code populates a ChartObject using the ChartWizard method:

continued on next page

Using The Excel Object Model, continued


Creating a Chart object is quite similar to a ChartObject object. The code below demonstrates this:


Please note that in order to create a Chart object, you will need to save a reference to the object in a 4GL COM variable.

Releasing COM Objects

Releasing 4GL COM variables and their associated COM object instances is the same with Excel97 as it was with Word97. It is important to always release COM objects when you are programmatically done with them via the RELEASE OBJECT syntax.


Using The Outlook Object Model

Introduction

Designed as a full-featured Personal Information Manager (or PIM), Microsoft Outlook provides a complete e-mail client, scheduler, contact manager and task manager in one product. Outlook also provides the capability to share data between users. Microsoft has also extended Outlook to function as an OLE Automation Server, thus enabling developers to integrate and exchange data between Outlook and other applications. Using the PROGRESS 4GL, your application can:

· Read, write, send and receive e-mail;

· Store contact information;

· Perform single-user and group scheduling of appointments, meetings, etc.;

· Perform task management. 

Frequently Used Outlook Objects

Object
Description
Commonly-Used Properties, Methods And Collections

NameSpace
Object allowing access to a user’s personal information store. 
GetDefaultFolder method – Returns the default folder used for Calendar, Mail, Tasks, etc.

MailItem
Object used as an interface to mail messages
To property – Person to send a message to.

Body property – Contains the message text.

Attachments collection – Contains references to files attached to the mail message.

Send method – Sends a mail message.

AppointmentItem
Object used as an interface to Calendar information.
Subject property – Subject of the appointment.

Start property – Determines the starting date & time of the appointment.

Duration property – Specifies the duration (in minutes) of the appointment.

continued on next page

Using The Outlook Object Model, continued

Frequently Used Outlook Objects (Cont.)

Object
Description
Commonly-Used Properties, Methods And Collections

AppointmentItem (Cont.)

IsRecurring property – Returns TRUE if the appointment is a recurring appointment.

GetRecurrencePattern method – Returns a RecurrencePattern object, which can then be used to set or retrieve appointment recurrence information.

Save method – Used to save an appointment item.

ContactItem
Object used as an interface to Contact records. 
LastName property – Contains the last name of the contact.

FirstName property – Contains the first name of the contact.

CompanyName property – Contains the name of the company the contact works for.

Email1Address property – Contains the primary e-mail address for the contact.

Categories property – Sets a comma-separated list of categories pertaining to the contact.

Save method – used to save the contact record. 

TaskItem
Object used as an interface to Task information.
Subject property – Subject of the task.

StartDate property – The starting date and time of the task.

continued on next page

Using The Outlook Object Model, continued

Frequently Used Outlook Objects (Cont.)

Object
Description
Commonly Used Properties, Methods And Collections

TaskItem (Cont.)

DueDate property – The date and time the task is due.

Importance property – Sets the priority of the task based on Outlook constants.

Save method – Used to save the task item.

The objects listed above are a subset of a very robust object model provided by Microsoft for the Outlook application. For a full listing of all objects included in the Microsoft Outlook 97 & 98 packages, please refer to the Microsoft Outlook Visual Basic Reference help topics included with the Outlook application.

Creating Mail Messages With Outlook

The sample application provides several points at which mail messages to people in the PROGRESS database can be created. In each case, the trigger code for the choosing of the mail buttons runs the procedure cr_mail.p, which takes 3 parameters:

· ChName – a charater input parameter containing the e-mail address (if available) of the person to send the mail message to.

· ChAttach – a character input parameter. This parameter can contain a comma-separated list of files to attach to the mail message.

· LSuccess – A logical output parameter that returns TRUE if the procedure executed properly.

The first step in the procedure code is to create an instance of the Outlook application using the CREATE OBJECT syntax.


Once an instance of the application object is completed, the next step is to create a 

continued on next page

Using The Outlook Object Model, continued

Creating Mail Messages With Outlook (Cont.)

new mail message. This is done through the CreateItem method of the application object. The CreateItem method takes one argument; the type of item to create. The

following chart lists the objects which can be created, and their appropriate Outlook and PROGRESS constants:

Object
Outlook Constant
PROGRESS Constant

Mail Messasge
olMailItem
0

Appointment
olAppointmentItem
1

Contact
olContactItem
2

Task
olTaskItem
3

Journal
olJournalItem
4

Note
olNoteItem
5

Post
olPostItem
6

For the creation of a mail item, the syntax CreateItem(0) was used.

The recipient of a mail message is set in Outlook in the To property. The sample procedure assigns this property if an e-mail address has been passed down.


To properly attach files to an Outlook mail message, it is necessary to work with the MailItem’s Attachment collection. This collection references all attachments to a mail message. The sample procedure accomplishes this task by assigning the Attachments collection to a PROGRESS COM variable.


The procedure then iterates through the comma-separated list of files contained in the chAttach parameter and uses the Add method of the Attachments collection to 

continued on next page

Using The Outlook Object Model, continued

Creating Mail Messages With Outlook (Cont.)

properly assign the files.


In the sample procedure, the mail message is not automatically sent. Instead, the message is displayed to the user through use of the Display method, allowing for the user to make any changes before sending. If the message was to be automatically sent, the Send method could be used. 


As with all COM objects, it is always necessary to “clean up” in the PROGRESS 4GL by explicitly RELEASEing the variables.


Please note that the RELEASE OBJECT syntax for the Attachments collection is only issued if we had previously used (i.e. – “created an instance of”) the object.

Working With Outlook Appointment Items

The Outlook AppointmentItem object provides an interface allowing a programmer to view, add, update and delete items stored in a user’s Calendar folder from within Outlook. The sample application performs all of these tasks in a SmartFrame object named f_appt.w.

The procedure has an ADM local event (local-initialize) which handles the initial connection to Outlook application object. The 4GL code then proceeds to find the default settings for the user through the use of the GetNameSpace method.

continued on next page

Using The Outlook Object Model, continued

Working With Outlook Appointment Items (Cont.)


The GetNamespace method takes one argument; the type of namespace that has settings associated. Under the Outlook object model, the argument MAPI (for Mail API) is almost exclusively used. The internal procedure pop_tbl, which populates a PROGRESS TEMP-TABLE with appointment information, is then executed.

Microsoft Outlook enables and end-user to have more than one folder set up for a particular object. For example, a user could have several Calendar folders, each containing different and specific information like personal appointments, business appointments, corporate events, etc. There is, however, only one default folder for each of the object types. The GetDefaultFolder method of the Namespace object allows for the retrieval of a default folder.


The GetDefaultFolder method takes one argument; the object type for which the default folder should be retrieved. The following chart lists the objects, Outlook constants and PROGRESS 4GL constants:

Object
Outlook Constant
PROGRESS Constant

Deleted Items
olFolderDeletedItems
3

Outbox
olFolderOutbox
4

Sent Mail
olFolderSentMail
5

Inbox
olFolderInbox
6

Calendar
olFolderCalendar
9

Contacts
olFolderContacts
10

Journal
olFolderJournal
11

Notes
olFolderNotes
12

In the pop_tbl internal procedure, GetDefaultFolder(9) was used to retrieve the Calendar folder.

continued on next page

Using The Outlook Object Model, continued

Working With Outlook Appointments (Cont.)

PLEASE NOTE: There is a method of the Namespace object (the PickFolder method) which allows a user to pick a folder from the available folders for their session. 

Once the calendar folder has been retrieved, the procedure logic iterates through the Items collection of the Calendar folder to create TEMP-TABLE records.


The Count property of any collection will return how many items exist in the collection. Each item in the collection can be retrieved by using the Items collection Index property The index property is commonly referenced by enclosing the index number within parentheses (as shown above). 

Once all of the necessary TEMP-TABLE records have been created, the internal procedure completes, and the local-initialize ADM method logic opens the defined query in order to properly display the items in a 4GL browse object.

Adding an appointment in the sample application is accomplished by pressing an Add button on the screen. 


The trigger procedure logic uses the Add method of the Items collection and assign the new Appointment item to a COM variable (chOLAppt). This new appointment is then displayed to the user through the use of the Display method, allowing the user to enter any applicable information. The trigger procedure logic then re-populates the TEMP-TABLE via the pop_tbl internal procedure, and re-opens the query and refreshes the browse object.

continued on next page

Using The Outlook Object Model, continued

Working With Outlook Appointment Items (Cont.)

The Update button in f_appt.w allows a user to edit an existing Outlook appointment. The trigger procedure code accomplishes this by retrieving the proper AppointmentItem object in the Items collection.

 

Objects in a collection can be retrieved in one of two ways. The first method is to use an absolute index number (as was done previously in the pop_tbl internal procedure), for by passing key value. Each object is allowed to specify a key value for a collection as an alternative to an absolute value. For the Appointments collection, the Subject property can be used. The appointment is then displayed for editing via the Display method.

The Delete button in f_appt.w allows for a user to delete an existing appointment. The trigger procedure 4GL logic first prompts for confirmation of the deletion, then retrieves the associated AppointmentItem object and deletes it by using the Delete method of the AppointmentItem object.


Once the appointment has been deleted, the TEMP-TABLE is rebuilt and the defined query is re-opened.

All of the COM objects are RELEASEd in the ADM local method local-destroy, thus guaranteeing that when the SmartFrame is no longer utilized, all OLE automation resources will be properly reliquished.

continued on next page

Using The Outlook Object Model, continued

Working With Outlook Appointments (Cont.)


Summary

The Microsoft Office 97 OLE Automation object models provide a fully open method for integration with the PROGRESS 4GL environment. The objects, properties and methods listed here a merely a subset of the vast capabilities available to a PROGRESS 4GL programmer. With the basic syntax and structure provided in this document, the only additional information required to expand on the capabilities provided in the sample application will be the syntax and structure of the OLE Automation objects.  

ON CHOOSE OF b_word IN FRAME F-Main /* Button 9 */

DO:

  ASSIGN

    chTmplDoc = "".

    

  SYSTEM-DIALOG GET-FILE chTmplDoc

    TITLE "Select MS-Word Document"

    FILTERS "Word Documents (*.doc)" "*.doc"

    MUST-EXIST

    USE-FILENAME

    UPDATE l_ok.

    

  IF l_ok THEN

  RUN cr_word.p (INPUT chTmplDoc, BUFFER customer, OUTPUT l_ok).

    

     

END.





/*****************************************************************************

 * PROCEDURE    : cr_word.p

 * AUTHOR       : Don Sorcinelli - Progress Software Corp.

 *                Education Services

 * DATE         : 04/25/98

 * DESCRIPTION  : Called procedure to create a new Outlook mail message from

 *                within PROGRESS. 

 * NOTES        : Parameters - 

 *                (1) chrTemplate (char). The Word docuemnt to use

 *                as a template for the final output.

 *                (2) Customer (Buffer) - Contains the customer record to be

 *                used as the basis of the "merge".

 *                (3) lSuccess (logical). Returns TRUE if procedure executed

 *                successfully.

 *****************************************************************************/



DEFINE INPUT PARAMETER chrTemplate AS CHARACTER NO-UNDO.

DEFINE PARAMETER BUFFER Customer FOR Customer.

DEFINE OUTPUT PARAMETER lSuccess AS LOGICAL NO-UNDO.



DEFINE VARIABLE objWord AS COM-HANDLE NO-UNDO.

DEFINE VARIABLE objDoc AS COM-HANDLE NO-UNDO.

DEFINE VARIABLE objBkMark AS COM-HANDLE NO-UNDO.

DEFINE VARIABLE objRange AS COM-HANDLE NO-UNDO.

  

DEFINE VARIABLE chrDocName AS CHARACTER NO-UNDO.

DEFINE VARIABLE lOK AS LOGICAL NO-UNDO.





DO ON ERROR UNDO, LEAVE ON ENDKEY UNDO, LEAVE:

    /*

     * Turn on the Hour Glass...

     */  

    lOK = SESSION:SET-WAIT-STATE("GENERAL").

    /*

     * Create an instance of MS-Word, and store into the objWord variable...

     */

    CREATE "Word.Application" objWord.







    /*

     * Open the template doc and assign it to the objDoc variable...

     */

    objDoc = objWord:Documents:Open(chrTemplate).

    





/* 

     * Capture all of the bookmarks for the template (bookmarks collection)

     * into the objBkMark variable...

     */  

    objBkMark = objDoc:Bookmarks.





/*

     * Test for the existence of each required bookmark. If the bookmark exists,

     * go to that bookmark (using a Range object) and insert the appropriate 

     * field value immediately the bookmark...

     */  

    IF objBkMark:Exists("CustName") THEN

    DO:

        objRange = objDoc:GoTo(-1, , ,"CustName").

        objRange:InsertAfter(Customer.Name).

    END.





/*

     * Build a file name to save as, using the customer number...

     */  

    chrDocName = ".\" + STRING(customer.custnum) + ".doc".

    /*

     * Use the SaveAs method to save the "merged" document (we do not want to

     * modify the original...

     */

    objDoc:SaveAs(chrDocName).





/* 

     * Close the document and quit Word...

     */    

    objDoc:Close().

    objWord:Quit().





/*

     * Release all of the objects used...

     */

    RELEASE OBJECT objDoc.

    RELEASE OBJECT objBkMark.

    RELEASE OBJECT objRange.

    RELEASE OBJECT objWord.





ON CHOOSE OF b_xcelrep IN FRAME F-Main /* Button 2 */

DO:

  IF AVAILABLE(Salesrep) THEN

  DO:  

    ASSIGN    

        chSales = ""

        chQuotas = "".

    

    DO intMonth = 1 TO 12:

        ASSIGN

            chQuotas = chQuotas + STRING(Salesrep.MonthQuota[intMonth])

            chQuotas = chQuotas + "," WHEN intMonth < 12.

        intTotal = 0.

        FOR EACH Customer OF Salesrep NO-LOCK, 

            EACH Invoice OF Customer NO-LOCK:

            IF MONTH(Invoice.InvoiceDate) = intMonth AND

                YEAR(Invoice.InvoiceDate) = 1996 THEN

                intTotal = intTotal + INTEGER(Invoice.Amount).

        END.

        ASSIGN

            chSales = chSales + STRING(intTotal)

            chSales = chSales + "," WHEN intMonth < 12.

    END. 

    

    RUN cr_xcel.p (INPUT Salesrep.RepName, INPUT chSales, INPUT chQuotas, OUTPUT l_ok).   

  END.

END.





/* create a new Excel Application object */

CREATE "Excel.Application" chExcelApplication.

chExcelApplication:Visible = TRUE.



/* create a new Workbook */

chWorkbook = chExcelApplication:Workbooks:Add().



/* get the active Worksheet */

chWorkSheet = chExcelApplication:Sheets:Item(1).

chWorkSheet:Name = "Sales Data".





/* set the column widths for the Worksheet */

    chWorkSheet:Columns("A"):ColumnWidth = 18.

    chWorkSheet:Columns("B"):ColumnWidth = 12.

    chWorksheet:Columns("C"):ColumnWidth = 12.





chWorkSheet:Range("A1:C1"):Font:Bold = TRUE.





chWorksheet:Range("A1"):Value = "Month".

chWorkSheet:Range("B1"):Value = "Monthly Sales".

chWorkSheet:Range("C1"):Value = "Monthly Quota".





DO intCount = 2 TO 13:

    cColumn = STRING(intCount).

    cRange = "A" + cColumn.

    chWorksheet:Range(cRange):Value = ENTRY(intCount - 1, chrMonths).

    cRange = "B" + cColumn.

    chWorkSheet:Range(cRange):Value = ENTRY(intCount - 1,chrSales).

    cRange = "C" + cColumn.

    chWorkSheet:Range(cRange):Value = ENTRY(intCount - 1, chrQuotas).

END.





chWorkSheet:Range("B2:C13"):Select().

chExcelApplication:Selection:Style = "Currency".





/* create embedded chart using the data in the Worksheet */

    chWorksheetRange = chWorksheet:Range("A1:C13").

    chWorksheet:ChartObjects:Add(300,20,500,200):Activate.





chWorksheetRange = chWorksheet:Range("A1:C13").

chWorksheet:ChartObjects:Add(300,20,500,200):Activate.

chExcelApplication:ActiveChart:ChartWizard(chWorksheetRange, 3, 1, 2, 1, 1, TRUE,"Sales Figures For " + chrName, "Month", "Sales/Quotas").





chChart = chExcelApplication:Charts:Add().

chChart:ChartWizard(chWorksheetRange, 3, 1, 2, 1, 1, TRUE,

    "Sales Figures For " + chrName, "Month", "Sales/Quotas").





/* release com-handles */

RELEASE OBJECT chExcelApplication.      

RELEASE OBJECT chWorkbook.

RELEASE OBJECT chWorksheet.

RELEASE OBJECT chChart.

RELEASE OBJECT chWorksheetRange. 

 



/*

     * Create an instance of Outlook...

     */

    CREATE "Outlook.Application" objOLApp.

    

    /* 

     * Create a mail item. "0" is the constant for "olMailItem"...

     */

    objOLMail = objOLApp:CreateItem(0).





/*

     * If a name is passed down, put it in the TO field...

     */

    IF LENGTH(chName) > 0 THEN

    objOLMail:To = chName.





IF NUM-ENTRIES(chAttach) > 0 THEN

    DO: 

        /*

         * Create an attachments collection object...

         */

        objOLAttach = objOLMail:Attachments.





DO iCount = 1 TO NUM-ENTRIES(chAttach):

    /*

     * Add using the attachment collection's Add method...

     */

    objOLAttach:Add(ENTRY(iCount,chAttach)).

END.





/*

 * Display the mail message to the user...

 */

objOLMail:Display.





/* 

     * If we created any attachments, RELEASE the attachments collection...

     */

    IF NUM-ENTRIES(chAttach) > 0 THEN

        RELEASE OBJECT objOLAttach.

    

    /*

     * RELEASE the mail & application objects...

     */

    RELEASE OBJECT objOLMail.

    RELEASE OBJECT objOLApp.





CREATE "Outlook.Application" chOLApp.

chOLNSpace = chOLApp:GetNamespace("MAPI").

RUN pop_tbl.





FOR EACH w_appt:

    DELETE w_appt.

  END.

  chOLFolder = chOLNSpace:GetDefaultFolder(9).





IF chOLFolder:Items:Count > 0 THEN

  DO:

    intItems = chOLFolder:Items:Count.

    DO intCount = 1 TO intItems:

        chOLAppt = chOLFolder:Items(intCount).

        CREATE w_appt.

        ASSIGN

            w_appt.EntryID = STRING(chOLAppt:EntryID)

            w_appt.appt_date = STRING(chOLAppt:Start)

            w_appt.Subject = STRING(chOLAppt:Subject)

            w_appt.location = STRING(chOLAppt:Location)

            w_appt.body = STRING(chOLAppt:Body).

    END.

  END.







  chOLAppt = chOLFolder:Items:Add.

  chOLAppt:Display.

  SESSION:SET-WAIT-STATE("GENERAL").

  RUN pop_tbl.

  {&OPEN-QUERY-{&BROWSE-NAME}}

  APPLY "VALUE-CHANGED" TO {&BROWSE-NAME} IN FRAME {&FRAME-NAME}.



  SESSION:SET-WAIT-STATE("").





chOLAppt = chOLFolder:Items(w_appt.Subject).

chOLAppt:Display.

SESSION:SET-WAIT-STATE("GENERAL").

RUN pop_tbl.

{&OPEN-QUERY-{&BROWSE-NAME}}

APPLY "VALUE-CHANGED" TO {&BROWSE-NAME} IN FRAME {&FRAME-NAME}.





MESSAGE "Are you sure you wish to delete this appointment?"

    VIEW-AS ALERT-BOX QUESTION BUTTONS YES-NO UPDATE v_yn AS LOGICAL.

  IF v_yn THEN

  DO:

    chOLAppt = chOLFolder:Items(w_appt.Subject).

    chOLAppt:Delete.

    SESSION:SET-WAIT-STATE("General").

    RUN pop_tbl.

    {&OPEN-QUERY-{&BROWSE-NAME}}

    APPLY "VALUE-CHANGED" TO {&BROWSE-NAME} IN FRAME {&FRAME-NAME}.



    SESSION:SET-WAIT-STATE("").

  END.





/* Code placed here will execute PRIOR to standard behavior. */

  FIND FIRST w_appt NO-ERROR.

  IF AVAILABLE(w_appt) THEN

    RELEASE OBJECT chOLAppt.

  RELEASE OBJECT chOLFolder.

  RELEASE OBJECT chOLNSpace.

  RELEASE OBJECT chOLApp.  

  /* Dispatch standard ADM method.                             */

  RUN dispatch IN THIS-PROCEDURE ( INPUT 'destroy':U ) .







1-2

OLE Automation With MS Office97
Copyright © 1998 PSC
DRAFT DATE: 7/30/98
OLE Automation With MS Office97
1-3
Copyright © 1998 PSC

DRAFT DATE: 7/30/98

