
1COMP-5: OLE Automation with MS Office

COMP-5: Integrating OLE
Automation with Microsoft Office

A Primer

2COMP-4: OLE Automation with MS Office

About
Paul Guggenheim & Associates

Working in Progress since 1984 and training Progress
programmers since 1986
Designed six comprehensive Progress courses covering all
levels of expertise
TailorPro Partner
Tools4Progress Partner
Jargon Authorized Reseller
Major consulting clients include Bank One, Textron
Fastening Systems, American Academy of Orthopaedic
Surgeons and Foxwoods Casino

3COMP-4: OLE Automation with MS Office

What is OLE?

OLE Automation, or Object Linking and
Embedding, is an effective way for a
Progress® application to communicate with
other applications in the MS Windows
environment.

4COMP-4: OLE Automation with MS Office

Before OLE

The legacy method of communicating with
a word processor or spreadsheet was to
dump data to an ASCII file and then load
the ASCII file into the other application.
This process involved several manual steps,
making it difficult to automate and secure
against end user errors.

5COMP-4: OLE Automation with MS Office

OLE Automation

OLE Automation is a client/server based
form of communication.
An OLE Automation Server is an
application that can be controlled by other
applications.
An OLE Automation Client is an
application that can issue server commands.

6COMP-4: OLE Automation with MS Office

OLE Automation

Examples of OLE Automation Servers are:
– Microsoft Word
– Microsoft Excel
– Microsoft Outlook
– Microsoft Powerpoint
– Microsoft Mappoint

Progress Versions 8.2 and higher are OLE
Automation Clients.

7COMP-4: OLE Automation with MS Office

OLE Information

To learn about how to use OLE
Automation, check the following:
– Progress COM Object Viewer
– Record Macros in the OLE Automation Server

and look at the Visual Basic Application (VBA)
source code produced.

8COMP-4: OLE Automation with MS Office

OLE Information

To learn about how to use OLE
Automation, check the following:
– Visual Basic for Applications Help

• Use the Object Browser to determine the value of
constants

– Internet
• MS Office Developer Website

(http://www.msdn.microsoft.com/office)

http://www.msdn.microsoft.com/office

9COMP-4: OLE Automation with MS Office

OLE Automation Servers

The OLE Automation Server application
consists of components called objects or
collections. They relate to each other
hierarchically.
Each object consists of properties and
methods that are analogous to Progress
widget attributes and methods.

10COMP-4: OLE Automation with MS Office

Using OLE in Progress – 3 Steps

1. Create an instance
2. Refer to other objects using properties
and methods
3. Release Objects from memory

11COMP-4: OLE Automation with MS Office

Using OLE in Progress

1. Create an instance
– Example:

def var hwordapp as com-handle.
create "word.application" hwordapp.

– In order for an instance to be created, the server
application must be registered to the same
machine as the running Progress client, and the
server program files must be located either on
the same machine or a shared network drive.

12COMP-4: OLE Automation with MS Office

Using OLE in Progress

CREATE statement
CREATE expression1 COM-hdl-var
[CONNECT [TO expression2]]
[NO-ERROR]

– expression1 is a character string that names a
unique Automation object in the system
registry.

– expression2 is a character string that identifies
a file name of a particular application type, like
.doc for Word files or .xls for Excel files.

13COMP-4: OLE Automation with MS Office

Using OLE in Progress
2. Refer to other objects using properties and

methods
– Example:

def var hdoc as com-handle.
hdoc =
hwordapp:documents:open("worddoc.doc").

– Documents is a collection object belonging to
the Word application, using the method Open.

• This method opens an existing Word document
called "worddoc" and stores the reference to it in a
variable called hdoc.

14COMP-4: OLE Automation with MS Office

Using OLE in Progress

3. Release objects from memory
– Example:

release object hdoc.
release object hwordapp.

– Limits - Usually hundreds of server objects
may be controlled by a client.

15COMP-4: OLE Automation with MS Office

Using OLE in Progress

RELEASE statement
RELEASE OBJECT COM-hdl-var
[NO-ERROR]

– Once a COM object is released, any references
to it could result in an invalid handle error.

• Warning: Since a new COM object could be given
the same handle as one that was deleted, you should
always set COM-hdl-var to ‘?’ after releasing the
object and use the VALID-HANDLE function to
see if it refers to anything before referencing it or
use the NO-ERROR keyword.

16COMP-4: OLE Automation with MS Office

A Simple Example

The following program, simple.p, shows
you how to open up a Microsoft Word
document from within Progress.
– Notice we are using a REPEAT block to open

more than one file at a time.

17COMP-4: OLE Automation with MS Office

A Simple Example

create "Word.Application" oword.

The CREATE statement produces a
separate instance of the Microsoft Word
application. This means that each time
through the loop each file being opened will
be in a separate Word application window.

18COMP-4: OLE Automation with MS Office

A Simple Example

message "before visible" view-as
alert-box information.

oword:visible = yes.

After the "before visible" message is
executed, the Word application window
appears. This is because the VISIBLE
property for the Word application is set to
YES.

19COMP-4: OLE Automation with MS Office

A Simple Example

message "before open" view-as
alert-box message.

oword:Documents:Open(openfile).

After the "before open" message is run, the
selected file is opened into view in the
application window. This is because the
Open method was used on the documents
object collection for the Word application.

20COMP-4: OLE Automation with MS Office

A Simple Example

release object oword.

At the end of the REPEAT block, the
object is released by Progress. This means
that the Progress procedure is finished
accessing the OLE object.

21COMP-4: OLE Automation with MS Office

A Little-Less-Simple Example

The program simple2.p improves on the
previous example by showing how to open
up a Microsoft Word document in the same
application window from within Progress.

22COMP-4: OLE Automation with MS Office

A Little-Less-Simple Example

Move the
create “Word.document” oword
above the repeat block.

By moving the above statement outside the
repeat block, all documents opened will be
logically grouped in the same Word
window. The windows pull down menu will
show each document.

23COMP-4: OLE Automation with MS Office

Working with Collections

The program simple3.p augments the
previous example by showing how to read
and access the previously opened
documents in a Microsoft Word application
from within Progress.

24COMP-4: OLE Automation with MS Office

Working with Collections

The following illustrates the similarities of
collections I have studied in Microsoft
Automation Servers:
1. The collection name is plural, i.e Adjustments,

Windows, Bookmarks, ChartObjects, etc.
2. Each individual object inside of a collection

usually is singular, i.e. Window, Bookmark,
ChartObject, etc. (Adjustment doesn't exist).

25COMP-4: OLE Automation with MS Office

Working with Collections

The following illustrates the similarities of
collections I have studied in Microsoft
Automation Servers:
3. There is a read-only Count property that

returns an integer representing the number of
items in a collection.

4. There is an Item method that expects an integer
representing the unique sequence number for a
particular item in a collection.

26COMP-4: OLE Automation with MS Office

Working with Collections

do i = 1 to oword:windows:count :
...

end. /* do i */

Knowing this, a simple DO loop may be
created to access all items in a collection.
In simple3.p, after exiting the REPEAT
block, a do loop is performed from 1 to
oword:Windows:Count (number of
documents open).

27COMP-4: OLE Automation with MS Office

Working with Collections

create twordwin.
assign twordwin.tch =
oword:windows:item(i)

A twordwin record is created and the Item
method is used to assign the (i)th com-
handle to the tch temp-table field in the
twordwin record.

28COMP-4: OLE Automation with MS Office

Working with Collections

twordwin.tcaption =
twordwin.tch:caption.

The Caption property is similar to the
TITLE attribute in Progress for a window
or frame.

29COMP-4: OLE Automation with MS Office

Working with Collections

on value-changed of b1
tch:activate().

Every time a new row is changed (VALUE-
CHANGED) in the browse, that window in
Word is brought to the foreground using
the Activate method.

30COMP-4: OLE Automation with MS Office

Working with Collections

on default-action of b1 do:
twordwin.tch:close().
delete twordwin.
run openq1.

end.

Every time a new row is selected through a
carriage return or a mouse double-click
(DEFAULT-ACTION) in the browse, that
window in Word is closed.

31COMP-4: OLE Automation with MS Office

Put a Spell on That Item

Arguably, MS Word's most versatile
automation application is spell check.
In this example, itemspell.p, we are
checking the spelling for the catalog
description in the item table.

32COMP-4: OLE Automation with MS Office

Put a Spell on That Item

a = item.cat-description:
screen-value.

run spellit.p (input-output a).

When the Spell button is selected, the
spellit.p program is called with the text
being passed as an input-output parameter.

33COMP-4: OLE Automation with MS Office

Put a Spell on That Item

oword:Documents:Add().

Inside spellit.p, it is necessary to add a
document to word to perform the spell
check.

34COMP-4: OLE Automation with MS Office

Put a Spell on That Item

oword:Documents:Item(1):Range
(0,0):InsertAfter(spelltext).

Next, our submitted text is placed into the
document with the InsertAfter method.

35COMP-4: OLE Automation with MS Office

Put a Spell on That Item

The 4GL statement,
oword:Documents:Item(1):Range
(0,0):InsertAfter(spelltext).

is really a shortcut for the following:
oword:Documents:Add().
odoc = oword:Documents:Item(1).
orange = odoc:range(0,0).
orange:InsertAfter(spelltext).

– Odoc and orange are COM handles.

36COMP-4: OLE Automation with MS Office

Put a Spell on That Item

oword:Options:
CheckGrammarWithSpelling = true.

oword:Documents:Item(1):
CheckGrammar().

CheckGrammarWithSpelling is set to
TRUE in order to check for both grammar
and spelling with the CheckGrammar
method.

37COMP-4: OLE Automation with MS Office

Put a Spell on That Item

oword:Visible = false.

VISIBLE was set to FALSE since we do
not need to see Microsoft Word just to
check spelling.

38COMP-4: OLE Automation with MS Office

Put a Spell on That Item

if trim(spelltext) =
trim(oword:Selection:Text)
then message "No spelling or
grammer errors found or changed"
view-as alert-box information.

If nothing changed during the spell check
then a message is issued.
TRIM is needed since whitespace may be
added by the CheckGrammar method.

39COMP-4: OLE Automation with MS Office

Put a Spell on That Item

Else assign spelltext =
trim(oword:Selection:Text).

Otherwise we assign the selected text by
first using the Selection method, then using
the Text property for the selection object.

40COMP-4: OLE Automation with MS Office

Put a Spell on That Item

oword:Quit(0).
release object oword.

Finally we close the application and release
the handle.

41COMP-4: OLE Automation with MS Office

Mail Merge Made Easy

Mail Merge is easy if you remember to use
bookmarks.

42COMP-4: OLE Automation with MS Office

Mail Merge Made Easy

Let's examine the following example:
– Cimerge.p contains two browses based on the

following temp-tables: tcustomer for the first
browse and titem and tcustitem for the second
one.

• Tcustitem contains the products that a customer has
ordered and their total monetary value.

43COMP-4: OLE Automation with MS Office

Mail Merge Made Easy

When a customer is selected in the left
browse, all items for that customer are
shown in the second browse listed in
descending order from largest monetary
value to smallest. Also the address, sales
rep, and contact information are displayed
in the frame.
After an item for that customer is selected, a
mail merge is performed.

44COMP-4: OLE Automation with MS Office

Mail Merge Made Easy

odoc = oword:Documents:
Open("e:\ole\merge.doc").

After the application is opened for the first
time, the merge document is opened into
Word.

45COMP-4: OLE Automation with MS Office

Mail Merge Made Easy

orange = odoc:
GoTo(-1, , ,"Customer").

This allows us to use the GoTo method to
place the cursor on the desired bookmark.
– This method returns the position (range) where

the bookmark is located within the document
and allows us to use the InsertAfter method at
that position.

46COMP-4: OLE Automation with MS Office

Mail Merge Made Easy

The GoTo method requires four arguments.
The first is the type of object we are going
to. -1 is for bookmarks.
– How did I know this?
– Well, here is where the Visual Basic help is

crucial.

47COMP-4: OLE Automation with MS Office

Mail Merge Made Easy

First select MS Word Visual Basic Help.
The easiest way to do this is to select Edit
Macros from the Tools menu in word. From
the Edit Macros menu, lookup the GoTo
method. You will see several constants
under What, the first GoTo argument.

48COMP-4: OLE Automation with MS Office

Mail Merge Made Easy

The constant desired in this case is
wdGoToBookmark. In order to find its
value, we need to select the Object Browser
from the Visual Basic button bar. We then
search for wdGoToBookmark and find a
value of -1.

49COMP-4: OLE Automation with MS Office

Mail Merge Made Easy

The next two arguments are skipped
because they are not needed. The last
argument, Name, is the name of the
bookmark.

50COMP-4: OLE Automation with MS Office

Mail Merge Made Easy

orange:insertparagraphafter().

To insert a carriage return we just use the
InsertParagraphAfter method.
This is used for:
1. Inserting the contact name and customer name

at the same bookmark
2. Inserting a non-blank second address line

below the first address line.

51COMP-4: OLE Automation with MS Office

Mail Merge Made Easy

savfile = "e:\ole\tmpmerge.doc".
odoc:SaveAs(savfile).
odoc:Close().

The second time we do the merge, I save
the merge document to a temporary one
called tmpmerge.doc and close it. That
way, I can reopen the merge document as
many times as desired.

52COMP-4: OLE Automation with MS Office

Outlook Synchronization

Another handy application is to synchronize
your customer list with Outlook’s Contact
Folder.
Outlook provides a hierarchical object
model in the application help.
It lists the objects, properties, methods and
events.

53COMP-4: OLE Automation with MS Office

Outlook Synchronization

From Outlook help, select Table of
Contents, then Microsoft Outlook Visual
Basic Reference.

54COMP-4: OLE Automation with MS Office

Outlook Synchronization

The last selection, Enumerations can
replace the object browser for looking up
constants.
For example, it lists the valid item types:

55COMP-4: OLE Automation with MS Office

Outlook Synchronization

The procedure, olsync.p, shows how to
synchronize the sports customer table with
the Outlook contact folder.
To instantiate Outlook, it does the
following:
create "Outlook.Application" ool.
ons = ool:GetNameSpace("MAPI").
octf = ons:getdefaultfolder(10).
octf:display().

56COMP-4: OLE Automation with MS Office

Outlook Synchronization

Next, the user highlights the desired customers in
the browse that are to be transferred or deleted
to/from Outlook.
When the add button is pressed, for each customer
selected, the findcontact procedure is run to see if
the customer has already been added. This is
accomplished using the find method on the
Outlook account field.

57COMP-4: OLE Automation with MS Office

Outlook Synchronization

Next the updatecontact procedure is run. If
the find method fails then the octitem is not
valid and the createitem method is executed
and the customer number is stored in the
account field.
The rest of the outlook fields are updated
and the contact is saved.

58COMP-4: OLE Automation with MS Office

Outlook Synchronization

For removing entries from the contact
folder, the delete button is pressed.
The delete button trigger runs findcontact
for each customer selected and then
executes the delete method for valid
contacts found.

59COMP-4: OLE Automation with MS Office

On the road again

One of the more productive uses of OLE is
mixing address data with a map program
such as Microsoft Mappoint.
Since Mappoint emerged a little later than
the previously shown applications, it’s
Visual Basic documentation for OLE is
more comprehensive and easier to follow.

60COMP-4: OLE Automation with MS Office

On the road again

From Mappoint help, select contents,
programming information, then Visual Basic
Reference.

61COMP-4: OLE Automation with MS Office

On the road again

An object model map is displayed.

62COMP-4: OLE Automation with MS Office

On the road again

The procedure mp1.p shows some of the
basic properties and methods to working
with Mappoint.
First, the application is invoked with:

Create “MapPoint.application” omp.

63COMP-4: OLE Automation with MS Office

On the road again

Next, the activemap handle is obtained.
Then, findaddressresults method is used on
the activemap handle which returns the
handle to the find address result collection.

ofar = oam:findaddressresults
("1788 Second Street","Highland
Park","","IL","").

64COMP-4: OLE Automation with MS Office

On the road again

The postal-code is not necessary, but can
also be used to improve the search.
Since this collection could contain more
than one result, only the first result is
assigned. The resultsquality property will be
covered in a later example.

oitem = ofar:item(1).

65COMP-4: OLE Automation with MS Office

On the road again

The Goto method is what zooms the map to
the selected address.
Next, a pushpin is added to the address.
Finally, the balloon state is set so that the
address information is displayed next to the
pushpin.
The quit method is used to close Mappoint.

66COMP-4: OLE Automation with MS Office

I’ve been everywhere

In mp2.p, two addresses are entered and the
distance and route are calculated.
This example uses the ofar com-handle with an
extent of 2 for the two addresses.
The distance method calculates the distance by
accepting both findaddressresults handles as
parameters.
Notice that units may be in miles or kilometers.

67COMP-4: OLE Automation with MS Office

I’ve been everywhere

The active route
handle ort is obtained
from the activemap
handle.
For the route, two
waypoints are added
and then the calculate
method is used.

68COMP-4: OLE Automation with MS Office

Return to sender

In mpbr.p, the user can enter in multiple
addresses. Each address is validated and then
displayed in a multiple selection browse.
Two addresses may be selected to calculate
distance and routing.
The application coordinates are set to fit both the
progress and mappoint applications side by side.

69COMP-4: OLE Automation with MS Office

Return to sender

70COMP-4: OLE Automation with MS Office

Return to sender

The tloc temp-table is used to store each address
entered and to store each location and pushpin
com-handle associated with the address. The
temp-table information is displayed in the browse
and the frame.
The findloc internal procedure is used to validate
the address using the resultsquality property.
The resstring variable contains the messages
displayed to the user for each type of result.

71COMP-4: OLE Automation with MS Office

Return to sender

When a user presses enter on a particular
row in the browse, mappoint zooms to that
address using the goto method.
The routing is calculated based upon the
order that the rows were selected. The first
row selected is the starting point and the
second row is the ending point for the route.

72COMP-4: OLE Automation with MS Office

Conclusion

There are several learning curves or
knowledge bases needed in order to use
OLE objects with a Progress application.
1. A thorough knowledge of Event Driven

Programming in Progress
2. A solid familiarity with the OLE Automation

Server that you will be using, such as Word or
Excel.

73COMP-4: OLE Automation with MS Office

Conclusion

There are several learning curves or
knowledge bases needed in order to use
OLE objects with a Progress application.
3. Make sure the VBA Help is loaded when

installing MS Office and access it frequently.
Use VBA’s Object Browser for looking up
constant values.

74COMP-4: OLE Automation with MS Office

Conclusion

There are several learning curves or
knowledge bases needed in order to use
OLE objects with a Progress application.
4. Create macros to capture VBA commands that

can be converted into Progress code.
Remember that the period (.) in VBA translates
to a colon (:) in Progress.

5. Use Progress’ COM Object Viewer to see how
the syntax is used in Progress.

75COMP-4: OLE Automation with MS Office

Conclusion

There are several learning curves or
knowledge bases needed in order to use
OLE objects with a Progress application.
6. Examine Progress’ ActiveX examples stored in

their src/samples/activex subdirectory.

76COMP-4: OLE Automation with MS Office

Conclusion

Like most things, with little documentation
linking OLE Automation Servers to
Progress clients, I found that trial-and-error
was necessary to acquire knowledge.

77COMP-4: OLE Automation with MS Office

Credits

I would like to extend a special thanks to
Don Sorcinelli at Progress Software
Corporation who spent the time to show me
where to look for things and elaborate on
some of the thornier topics.
His white paper “OLE Automation With
MS Office97” I found to be very valuable.
Please leave me your business card and I
will be happy to e-mail the article to you.

78COMP-4: OLE Automation with MS Office

Hey Excel, Analyze This!!!

Now let's apply the same concepts to an
Excel spreadsheet and chart.

79COMP-4: OLE Automation with MS Office

Hey Excel, Analyze This!!!

The procedure ciexcel.p looks similar to
cimerge.p.
– The differences are that the user may select

multiple items in the item browse for a
customer to select on a graph.

– The other difference is a radio-set for chart type
replaces the customer header information.

80COMP-4: OLE Automation with MS Office

Hey Excel, Analyze This!!!

Once the Excel button is selected, and
provided that there is at least 1 customer
selected and 1 item selected, the data is
placed in a new workbook and worksheet
and then charted.

81COMP-4: OLE Automation with MS Office

Hey Excel, Analyze This!!!

oWbook = oExcel:Workbooks:Add().

A new workbook is created with the Add
method for Workbooks collection of the
Excel object.

82COMP-4: OLE Automation with MS Office

Hey Excel, Analyze This!!!

The first worksheet is accessed and named
using the following:
oWSheet = oExcel:Sheets:Item(1).
oWSheet:Name = "Customer Item
Data".

83COMP-4: OLE Automation with MS Office

Hey Excel, Analyze This!!!
if i = 1 then
assign
oWSheet:Columns("A"):ColumnWidth = 20
oWSheet:range("a1"):value = "Customer".
oWSheet:range("b1"):value = "Item".

Next, the worksheet is formatted and
populated with data by setting the
ColumnWidth property for the columns
and labels for the columns.

84COMP-4: OLE Automation with MS Office

Hey Excel, Analyze This!!!

bcust:fetch-selected-row(i).
oWSheet:range("a" + string(i +
2)):value = tcustomer.tname.

The customer name is assigned to a given
row.

85COMP-4: OLE Automation with MS Office

Hey Excel, Analyze This!!!

assign
oWSheet:Columns(chr(97 +
j)):ColumnWidth = 14

oWSheet:range(chr(97 + j) +
"2"):value = titem.titem-name.

Next the inner DO loop is used fill the rows
with our customer sales data. Each column
label is set to a specific item.

86COMP-4: OLE Automation with MS Office

Hey Excel, Analyze This!!!

oWSheet:Range("B2:" + chr(97 +
bitem:num-selected-rows) +
string(bcust:num-selected-rows +
2)):Select().

chr(97) is the letter A. By adding the
number of selected items in the browse to
97, we can determine the last lettered
column we are using.

87COMP-4: OLE Automation with MS Office

Hey Excel, Analyze This!!!

oExcel:Selection:
HorizontalAlignment = -4152.

What does -4152 mean?
– First, I created a macro to see how Visual Basic

aligns items horizontally.
– Then, I had to go to the Object Browser to

determine the value used of XLRIGHT, the
constant for right horizontal alignment.

88COMP-4: OLE Automation with MS Office

Hey Excel, Analyze This!!!

The following is the Visual Basic code
generated when you create the macro:
With Selection

.HorizontalAlignment = xlRight

.VerticalAlignment = xlBottom

.WrapText = False

.Orientation = 0

.ShrinkToFit = False

.MergeCells = False
End With

89COMP-4: OLE Automation with MS Office

Hey Excel, Analyze This!!!

oExcel:Selection:Style =
"Currency".

“Currency” is a format style for display
numbers with dollar signs.
Again, keep in mind that a range must be
selected to set the Style property for the
Selection object.

90COMP-4: OLE Automation with MS Office

Hey Excel, Analyze This!!!

oChart:ChartWizard(oRange,
integer(charttype:screen-value),
1, 1, 1, 1, TRUE, "Customer Item
Figures ", ”Customer", "Value").

Finally, charttype’s SCREEN-VALUE is
used to set the Gallery parameter for the
ChartWizard method.
– In addition, if the value of charttype is

changed, it will instantaneously change the
chart to the new type.

91COMP-4: OLE Automation with MS Office

Hey Excel, Analyze This!!!

Here are the parameters for the
ChartWizard method.
1. Source - Handle to the range object being

charted.
2. Gallery - Integer value specifying what kind of

chart it will be.
3. Format - Specifies auto-formatting type to be

applied.
4. Plot by - 1 is by rows, 2 is by columns.

92COMP-4: OLE Automation with MS Office

Hey Excel, Analyze This!!!

Here are the parameters for the
ChartWizard method.
5. Category Labels - Specifies the number of rows

and columns to contain category labels.
6. Series Labels - Specifies the number of rows or

columns that contain series labels.
7. Has Legend - Logical specifying if there is a

legend on the widget or not.
8. Title - Chart Title

93COMP-4: OLE Automation with MS Office

Hey Excel, Analyze This!!!

Here are the parameters for the
ChartWizard method.
9. Category Title
10. Value and extra title.

	COMP-5: Integrating OLE Automation with Microsoft Office
	About�Paul Guggenheim & Associates
	What is OLE?
	Before OLE
	OLE Automation
	OLE Automation
	OLE Information
	OLE Information
	OLE Automation Servers
	Using OLE in Progress – 3 Steps
	Using OLE in Progress
	Using OLE in Progress
	Using OLE in Progress
	Using OLE in Progress
	Using OLE in Progress
	A Simple Example
	A Simple Example
	A Simple Example
	A Simple Example
	A Simple Example
	A Little-Less-Simple Example
	A Little-Less-Simple Example
	Working with Collections
	Working with Collections
	Working with Collections
	Working with Collections
	Working with Collections
	Working with Collections
	Working with Collections
	Working with Collections
	Put a Spell on That Item
	Put a Spell on That Item
	Put a Spell on That Item
	Put a Spell on That Item
	Put a Spell on That Item
	Put a Spell on That Item
	Put a Spell on That Item
	Put a Spell on That Item
	Put a Spell on That Item
	Put a Spell on That Item
	Mail Merge Made Easy
	Mail Merge Made Easy
	Mail Merge Made Easy
	Mail Merge Made Easy
	Mail Merge Made Easy
	Mail Merge Made Easy
	Mail Merge Made Easy
	Mail Merge Made Easy
	Mail Merge Made Easy
	Mail Merge Made Easy
	Mail Merge Made Easy
	Outlook Synchronization
	Outlook Synchronization
	Outlook Synchronization
	Outlook Synchronization
	Outlook Synchronization
	Outlook Synchronization
	Outlook Synchronization
	On the road again
	On the road again
	On the road again
	On the road again
	On the road again
	On the road again
	On the road again
	I’ve been everywhere
	I’ve been everywhere
	Return to sender
	Return to sender
	Return to sender
	Return to sender
	Conclusion
	Conclusion
	Conclusion
	Conclusion
	Conclusion
	Credits
	Hey Excel, Analyze This!!!
	Hey Excel, Analyze This!!!
	Hey Excel, Analyze This!!!
	Hey Excel, Analyze This!!!
	Hey Excel, Analyze This!!!
	Hey Excel, Analyze This!!!
	Hey Excel, Analyze This!!!
	Hey Excel, Analyze This!!!
	Hey Excel, Analyze This!!!
	Hey Excel, Analyze This!!!
	Hey Excel, Analyze This!!!
	Hey Excel, Analyze This!!!
	Hey Excel, Analyze This!!!
	Hey Excel, Analyze This!!!
	Hey Excel, Analyze This!!!
	Hey Excel, Analyze This!!!

