
MOVE-8: Separating Interface from Logic

John Campbell
White Star Software

2MOVE-8: Separating Interface

Or,
How to get from
What we Have

To
What we Want

3MOVE-8: Separating Interface

BackgroundBackGround

4MOVE-8: Separating Interface

Strategic Issues

Legacy issues used to be in the business
process

Now, it's the software

Business can't adapt if legacy software is too
hard to change

5MOVE-8: Separating Interface

The Goal

“Rewrite the software

(Implicit: so it can do ‘anything’)

6MOVE-8: Separating Interface

What is our Purpose

How to create software that is:
Competitive
Responsive
Flexible
Multiple Interfaces
Changeable
Maintainable
Functional
Fast

7MOVE-8: Separating Interface

Problem (cont’d)

Market “Demands” change
Sales Force
• Must Have Competitive Products

Functionality
• Often Requires Web
• GUI would add

– Flexibility
– Features
– Power

• Character is often most efficient

8MOVE-8: Separating Interface

Today’s Software Issues

Existing, functional software
Interface
• Character
• User-friendly
• Rich
• Efficient

Robust mechanics

9MOVE-8: Separating Interface

What is the REAL problem?

The software world has changed, but

Our
• Understanding

• Skills
• Tools

Have not

10MOVE-8: Separating Interface

What are the Questions to Ask?

11MOVE-8: Separating Interface

What Skills do we Have?

Classic Progress®
GUI
n-Tier
Web Services

12MOVE-8: Separating Interface

What are the issues we face?

Technical
• Microsoft
• Progress
• Oracle

Business
• Sales
• Politics
• Ignorance

13MOVE-8: Separating Interface

The Developer's Dilemma

What ever happened to:
• For each customer: display customer.

14MOVE-8: Separating Interface

What to think about

Interface Objectives
System Architecture
Durability
• Interface
• Environment

Maintainability
Performance

15MOVE-8: Separating Interface

What's possible

Multiple Interfaces
Dynamic or Static
Modular code
Great flexibility
Good performance

16MOVE-8: Separating Interface

What's not Probable

Complete, automated rewrite
Simple porting of old application
Direct translation of old features

17MOVE-8: Separating Interface

Project Case Study

18MOVE-8: Separating Interface

Project Background

Clinical Scheduling software
Robust character interface
Robust mechanics
ASP model

19MOVE-8: Separating Interface

Objectives

Keep interface
Isolate from all DB access
Allow some on-line (web) access
Allow users to continue using character
Deliver choice of on-line, GUI or TTY

20MOVE-8: Separating Interface

What we did

Convert existing app to multi-interface
Chose WebClient™ for web
Character interface to be retained
GUI was client of choice
AppServer™ enabled

21MOVE-8: Separating Interface

How we did it

Analyzed Application
Separated screens into categories
Rewrote some
Templates for others

22MOVE-8: Separating Interface

Secondary Analysis

Looked at code functions
What could be retained
• Data requests
• Validation
• Business Logic

23MOVE-8: Separating Interface

How to minimize
the effort of rewriting code

Reproduce the interface
Parse out
• Data requests
• Validation

Extract other logic*
• Retain current logic as much as possible

* Otherwise known as cut and paste

24MOVE-8: Separating Interface

What we Did

25MOVE-8: Separating Interface

Overview

Designed templates
Built tools
Crafted new code
Cut and paste AND automation

26MOVE-8: Separating Interface

Theory and Process

Use a repository as target for current
application’s information
• Screen Definitions
• Data retrieval
• Other information (logic, etc)

27MOVE-8: Separating Interface

Populating the Repository

Use run-time tool to derive screen information
Use code parser to derive data queries and
some other logic

28MOVE-8: Separating Interface

Screen repository

Simple Model:
• Parent table stores frame, table and query

information for a screen
• Child table stores primary screen object

information (fill-ins) for this frame
• The demo of this model is for single-table, single-

record maintenance screens with fill-ins
– (Full application more complex and robust)

29MOVE-8: Separating Interface

Frame / Table Table

Field-Name Type Format
------------------ ---- ------------
ProgName char x(20)
TableName char x(15)
ValidateProgram char x(20)
FrameName char X(10)
FrameRow inte >9
FrameCol inte >9
FrameWidth inte >>9
FrameHeight inte >9
FrameTitle char X(20)
FrameBox logi yes/no
QueryPhrase char X(40)
OneRecord logi yes/no

30MOVE-8: Separating Interface

Storing Frame into Repository
assign
hFrame = self:frame
hField = hFrame:first-child
hfield = hfield:first-tab-item.

do while valid-handle(hField):
if hField:table <> ? then leave.
hField = hField:next-sibling.

end.
if valid-handle(hField) and hField:table <> ?

then TableName = hField:table.
find first MaintScreen where MaintScreen.ProgName = vProgName

and MaintScreen.framename = hFrame:name no-error.
if not available(MaintScreen) then do:

create MaintScreen.
assign ProgName = vProgName

TableName = hField:table
FrameName = hFrame:name
FrameRow = hFrame:row
FrameCol = hFrame:column
FrameWidth = hFrame:width
FrameHeight = hFrame:height
FrameTItle = hframe:title
FrameBox = hFrame:box.

end.

31MOVE-8: Separating Interface

Screen object repository

Screen object information
Field Name Table Label
Format Datatype Width
Etc.
Code initiated on "hotkey"
Walked screen widget tree
" TTY Browsers" (and other) not converted

32MOVE-8: Separating Interface

Prototyping New Screens

Using a repository allows prototyping new
screens with AppBuilder and storing those
screens into the repository

33MOVE-8: Separating Interface

Field Table

Field-Name Type Format
------------------ ---- ------------
Progname char x(20)
FrameName char x(10)
FieldName char x(15)
FieldRow deci >9.99
FieldColumn deci >9.99
FieldFormat char x(10)
FieldWidth deci >9.99
FieldLabel char x(20)
ValidateString char x(30)
ValidateMessage char x(40)
Tooltip char x(40)
HelpString char x(40)
Maintain logi yes/no

34MOVE-8: Separating Interface

Storing Fields into repository

do while valid-handle(hField):
if hField:type = "fill-in" then do:
find first MaintField
where MaintField.ProgName = MaintScreen.ProgName
and MaintField.Framename = hFrame:name
and fieldname = hField:name no-error.

if not available(MaintField) then do:
create MaintField.
assign MaintField.ProgName = vProgName.

end.
assign
MaintField.FieldName = hfield:name
MaintField.FieldRow = hField:row
MaintField.Fieldcolumn = hField:column
MaintField.FieldWidth = hField:width
MaintField.FieldLabel = hField:label
MaintField.FieldFormat = hField:format.

end.
hField = hField:next-tab-item.

end.

35MOVE-8: Separating Interface

Interface Generation

Dynamic Browsers
Simple Maintenance Screens
Temp-tables from DB fields

36MOVE-8: Separating Interface

Frame Generation

for each MaintScreen no-lock:
put unformatted "form " skip.
for each MaintField no-lock

where MaintField.progname = MaintScreen.progname
and MaintScreen.framename = MaintField.framename :
put unformatted "t" FieldName " at row "
MaintField.FieldCol " column " MaintField.FieldCol

skip.
end.
put unformatted

"with " skip
"row " framerow skip
"column " framecol skip
"size " framewidth " by " frameheight skip
if FrameBox then "" else " no-box " skip
"side-label " skip
if session:window-system <> "tty" then "three-d"
else "" skip
"frame " MaintScreen.framename "." skip(1)

end.

37MOVE-8: Separating Interface

Interface Options

Static screen: code generation
• This presentation

Dynamic: uses code template
• 2005 presentation on all-dynamic

38MOVE-8: Separating Interface

Code Parsing

Tools:
• Hand-built parser
• JoanJu's ProParse & ProLint

39MOVE-8: Separating Interface

Look for Data query stuff (for, find …)

Analyze & store to DB
sosomt.p|for|91| for each so_mstr no-lock where so_nbr > “a"

MaintScreen.QueryPhrase = ‘where so_nbr > “a“’

Parser Overview

40MOVE-8: Separating Interface

Query Generation

for each MaintScreen no-lock:
. . .

put unformatted "run get_" maintscreen.tablename ".p"

"('" MaintScreen.TableName "',"

MaintScreen.queryphrase ","

MaintScreen.OneRecord

",input-output table " Temptablename ")."
end.

41MOVE-8: Separating Interface

Methodology

Look for Data query stuff (for, find …)
Analyze & store to DB
Convert to consistent selections
• Use queries
• For each and find use same code

Ultimate goal: drive data selections to a temp-
table

42MOVE-8: Separating Interface

Alternatives

This demo uses static temp-tables
• Easier to visualize and read in demo
• More concrete for less abstract developers

Could use ProDataSets
• Smaller footprint (1 program)
• Much harder to maintain
• Harder to visualize
• See all-dynamic – 2005 for examples

43MOVE-8: Separating Interface

Screen and Query Generator
Code Samples

44MOVE-8: Separating Interface

Query Generation

for each MaintScreen no-lock:
/* generate a program to get data for this table */
output to value("{&dirname}get_" + MaintScreen.TableName +
".p").

put unformatted "/* get_" MaintScreen.TableName ".p "
skip
"Routine to get data based on query from client */ "
skip(1)

chr(123)
'get_data.i &TableName = "' MaintScreen.TableName '"}'
skip.
output close.
/* end data retrieval */

45MOVE-8: Separating Interface

Generated Query Routine

/* get_so_mstr.p
Routine to get data based on query from client */

{get_data.i &TableName = "so_mstr"}

46MOVE-8: Separating Interface

Query Include - Definitions

/* get_data.i
Routine to get data based on query from client
*/
define temp-table t{&TableName} like {&TableName}
field tRowid as rowid.

define input parameter pTableName as char.
define input parameter pQueryPhrase as char.
define input parameter pOneRecord as log.

/* note that this is a static temp-table */
define input-output parameter table for t{&TableName}.

define variable hDBQuery as handle.
define variable hTTBuffer as handle.
define variable hDBBuffer as handle.

47MOVE-8: Separating Interface

Query Include - Setup

assign
hTTBuffer = buffer t{&TableName}:handle
pQueryPhrase = "for each " + pTableName +
" no-lock where " + pqueryphrase.

/* first, create an empty DB buffer structure */
create buffer hDBBuffer for table pTableName.
create query hDBQuery.

/* point the query to the DB table */
hDBQuery:set-buffers(hDBBuffer).

/* get the query ready and open it */
hDBQuery:query-prepare(pQueryPhrase).
hDBQuery:query-open().

48MOVE-8: Separating Interface

Query Include - Retrieval

repeat:
hDBQuery:get-next().
if not hDBQuery:query-off-end then do:

/* create records in the temp table */
hTTBuffer:buffer-create().
/* copy the DB record to the TT */
hTTBuffer:buffer-copy(hDBBuffer).
/* then the rowid of the DB record */
hTTBuffer:buffer-field("trowid"):buffer-value =
hDBBuffer:rowid.
if pOneRecord then leave.

end.
else leave.

end.

49MOVE-8: Separating Interface

Screen Generation

50MOVE-8: Separating Interface

Program Setup

for each MaintScreen no-lock:

/* generate a program to display and retrieve data */
output to value(MaintScreen.progname + ".p").
TempTableName = "t" + MaintScreen.TableName .
put unformatted "define temp-table " TempTableName
" like "

MaintScreen.TableName skip
"field tRowid as rowid. "

skip.

put unformatted "." skip(1) "form " skip.

51MOVE-8: Separating Interface

Screen Generation

put "form " skip.
for each maintfield
where maintfield.progname = MaintScreen.progname

and MaintScreen.framename = maintfield.framename no-lock:

put unformatted tempTableName "." FieldName " at "
maintfield.fieldcol skip.

end.
put unformatted

"with " skip
" row " framerow skip
" column " framecol skip
" size " framewidth " by " frameheight skip
if FrameBox then "" else " no-box " skip
" side-label " skip
if session:window-system <> "tty" then " three-d" else ""

skip
" frame " MaintScreen.framename "." skip(1).

52MOVE-8: Separating Interface

Data Retrieval

put unformatted "run get_" MaintScreen.TableName ".p"
"('" MaintScreen.TableName "',"
MaintScreen.queryphrase ","
MaintScreen.OneRecord
",input-output table " TempTableName ")."
skip(1)
"find first " TempTableName "." skip(1)
"display " skip.

for each maintfield where maintfield.progname =
MaintScreen.progname
and MaintScreen.framename = maintfield.framename no-lock:
put unformatted tempTableName "." FieldName skip.

end.
put unformatted

"with frame " skip
MaintScreen.framename "." skip(1).

output close.

53MOVE-8: Separating Interface

Generated Application

54MOVE-8: Separating Interface

Resulting Program

define temp-table tso_mstr like so_mstr field tRowid as rowid.
define variable hAppServer as handle.
form
tso_mstr.so_nbr at 7
tso_mstr.so_cust at 23.88
tso_mstr.so_bill at 39.75
tso_mstr.so_ship at 56.63
with
row 3 column 1 size 80 by 2 no-box
side-label three-d frame a.

view frame a.

run get_so_mstr.p on hAppServer
('so_mstr',true,yes,input-output table tso_mstr).

find first tso_mstr.

display
tso_mstr.so_nbr
tso_mstr.so_cust
tso_mstr.so_bill
tso_mstr.so_ship
with frame a.

55MOVE-8: Separating Interface

Original Screen

56MOVE-8: Separating Interface

Resulting Frame

57MOVE-8: Separating Interface

Application Considerations

58MOVE-8: Separating Interface

New Code Logic

Re-usable libraries
Consistently used code
Put common code in one module

59MOVE-8: Separating Interface

Server-side validation

Server Site
Data

Handling Code

Table / Field
specific

validation

procedure
validate_field1:

end procedure.

procedure
validate_field2:

end procedure.

60MOVE-8: Separating Interface

Multiple persistent procedures

Memory vs. speed
Progress is pretty efficient
Memory is cheaper

61MOVE-8: Separating Interface

Re-usable queries

Queries by table
One program or many
Dynamic queries
Flexible
Hard to read / maintain

62MOVE-8: Separating Interface

Keep what works!

Don't redo every line of code
Much functionality is robust
Redo what needs help
Many parts of existing code were slapped
together
Others are added to, and added to…

63MOVE-8: Separating Interface

The Big Picture

If your application works, it’s “right”

Complete rewrites are extremely difficult
• Many companies have failed to accomplish

them

You have one chance at this, so do it right!

64MOVE-8: Separating Interface

The Big Picture

Many parts of your existing code were
slapped together
• (prototype becomes production)

Others were added to, and added to…
Streamline bad code when feasible
Keep old code when reasonable

65MOVE-8: Separating Interface

Move simple validation toward the client

Load static data to temp-tables
• At startup
• Only when needed

Consider local flat files
Keep database accesses distinct from logic
Consider using distinct modules to populate
temp tables
Benchmark efficiency

66MOVE-8: Separating Interface

Code Architecture

Re-structure but don't over-structure
Use the right technology for the environment
Super-procedures
Persistent procedures

67MOVE-8: Separating Interface

Don't over-engineer

Simpler is always better
Be sparing of
• Publish-subscribe
• Dynamic objects
• Examples of why

68MOVE-8: Separating Interface

What's Possible

Single-platform
Host-based TTY
GUI Client-server
Not much different from web based
App-server based
Web Client gives rich interface
.NET possible, but beware

69MOVE-8: Separating Interface

Generating Code

A repository is key to
• Consistency
• Changeability

70MOVE-8: Separating Interface

Summary

Application Migration is
• Everybody’s Goal
• Not Simple
• Not Impossible

71MOVE-8: Separating Interface

Summary

Look at Models
• DWP
• OpenEdge® Reference Architecture
• Other Vendors / developers

72MOVE-8: Separating Interface

Questions?

Thanks

John Campbell
White Star Software

	Or, �How to get from �What we Have �To �What we Want
	Background
	Strategic Issues
	The Goal
	What is our Purpose
	Problem (cont’d)
	Today’s Software Issues
	What is the REAL problem?
	What are the Questions to Ask?
	What Skills do we Have?
	What are the issues we face?
	The Developer's Dilemma
	What to think about
	What's possible
	What's not Probable
	Project Case Study
	Project Background
	Objectives
	What we did
	How we did it
	Secondary Analysis
	How to minimize �the effort of rewriting code
	What we Did
	Overview
	Theory and Process
	Populating the Repository
	Screen repository
	Frame / Table Table
	Storing Frame into Repository
	Screen object repository
	Prototyping New Screens
	Field Table
	Storing Fields into repository
	Interface Generation
	Frame Generation
	Interface Options
	Code Parsing
	Parser Overview
	Query Generation
	Methodology
	Alternatives
	Screen and Query Generator� Code Samples
	Query Generation
	Generated Query Routine
	Query Include - Definitions
	Query Include - Setup
	Query Include - Retrieval
	Screen Generation
	Program Setup
	Screen Generation
	Data Retrieval
	Generated Application
	Resulting Program
	Original Screen
	Resulting Frame
	Application Considerations
	New Code Logic
	Server-side validation
	Multiple persistent procedures
	Re-usable queries
	Keep what works!
	The Big Picture
	The Big Picture
	Move simple validation toward the client
	Code Architecture
	Don't over-engineer
	What's Possible
	Generating Code
	Summary
	Summary
	Questions?

