
MOVE-6: Zen and the A.R.T.
of Progress® Coding –
Pattern Matching for Better
Code

Steven Lichtenberg
Sr. Technologist

Jenark Business Systems

5/11/2006 Move 6: ZEN and the A.R.T. of Progress Coding 2

Goals

Define A.R.T
Explain the concept of Elegance
Demonstrate tools available
Tips and Tricks

5/11/2006 Move 6: ZEN and the A.R.T. of Progress Coding 3

Agenda

Define Elegance – why is it important
Working with existing code
Tools you may want to consider
Re-architect and Re-design – Planning
for re-use
We really don’t know what will come
along

5/11/2006 Move 6: ZEN and the A.R.T. of Progress Coding 4

Agenda

Working with existing code
Tools you may want to consider
Re-architect and Re-design – Planning
for re-use
We really don’t know what will come
along

Define Elegance – why is it important

5/11/2006 Move 6: ZEN and the A.R.T. of Progress Coding 5

What is Elegance?

Design ideas to maximize efficiency
Minimize Resources used

Hardware and software
Human Resources

Economy
Maximize benefit versus cost

Aesthetics in code can/should be elegant
Elegance represents good design

5/11/2006 Move 6: ZEN and the A.R.T. of Progress Coding 6

What is Elegance?

“Designs that LOOK
good will also BE
good”

The Tower and the Bridge – David P.
Billington

5/11/2006 Move 6: ZEN and the A.R.T. of Progress Coding 7

How Does This Relate To Me?

Simpler/Cleaner code is easier to maintain
Standard structures allow for easy migration
Start with the smallest piece of code to
perform a specific task
Write better code for the long term

5/11/2006 Move 6: ZEN and the A.R.T. of Progress Coding 8

A Case For Elegance - Advantages

Easier to read/maintain
Potential for future problems is greatly
reduced
Architected to account for future use

5/11/2006 Move 6: ZEN and the A.R.T. of Progress Coding 9

A Case For Elegance
/**** uglycode.p ******/
DEFINE VARIABLE dollarstring AS CHARACTER NO-

UNDO.
DEFINE VARIABLE decimalpos AS INTEGER NO-UNDO.
assign

dollarstring = STRING(account.balance)
decimalpos = INDEX(amountstring,”.”)
dollarstring = IF length(amountstring) –

decimalpos = 1 THEN amountstring + “0”
ELSE IF decimalpos = ? OR
LENGTH(dollarstring) – decimalpos = 0
THEN dollarstring + “00”

dollarstring = REPLACE(dollarstring,”.”,””).

5/11/2006 Move 6: ZEN and the A.R.T. of Progress Coding 10

A Case For Elegance
/********** bettercode.p **************/
FUNCTION dollarstring RETURNS CHARACTER
(decamount AS DECIMAL):

RETURN STRING(decamount * 100).
END FUNCTION. /* dollarstring */

5/11/2006 Move 6: ZEN and the A.R.T. of Progress Coding 11

Agenda

Define Elegance – why is it important

Tools you may want to consider
Re-architect and Re-design – Planning
for re-use
We really don’t know what will come
along

Working with existing code

5/11/2006 Move 6: ZEN and the A.R.T. of Progress Coding 12

Working With Existing Code

Splitting business logic and presentation
layers is the first step
Continue to split procedures as the need
arises and it makes sense
Keep code as flexible as possible
Re-evaluate procedures each time you make
functional changes

5/11/2006 Move 6: ZEN and the A.R.T. of Progress Coding 13

General Rules of Thumb

Deprecated language elements should be
removed
Internal procedures/functions replace multiple
include file
Move duplicate logic to procedure/function
Look for similar logic patterns

5/11/2006 Move 6: ZEN and the A.R.T. of Progress Coding 14

General Rules of Thumb (cont’d)

Each piece of business logic should exist only
once
Newer language features make this easier.
Change structure without changing
functionality

5/11/2006 Move 6: ZEN and the A.R.T. of Progress Coding 15

Agenda

Define Elegance – why is it important
Working with existing code

Re-architect and Re-design – Planning
for re-use
We really don’t know what will come
along

Tools you may want to consider

5/11/2006 Move 6: ZEN and the A.R.T. of Progress Coding 16

Refactoring Tools - Basic

Manual Refactoring
Compile XREF
Profiler

5/11/2006 Move 6: ZEN and the A.R.T. of Progress Coding 17

Refactoring Tools - Advanced

Proparse – http://www.joanju.com
Prolint - http://www.prolint.org
ProRefactor – http://www.prorefactor.org

http://www.prolint.org/

5/11/2006 Move 6: ZEN and the A.R.T. of Progress Coding 18

5/11/2006 Move 6: ZEN and the A.R.T. of Progress Coding 19

Agenda

Define Elegance – why is it important
Working with existing code
Tools you may want to consider

We really don’t know what will come
along

Re-architect and Re-design –
Planning for re-use

5/11/2006 Move 6: ZEN and the A.R.T. of Progress Coding 20

Tips And Tricks

Review code each time you make functional
changes
Continue to split logic as the need arises
Aim for Single instance of logic
Try not to take code apart at this point

5/11/2006 Move 6: ZEN and the A.R.T. of Progress Coding 21

Architecture Planning

Plan for change
Functional changes are separate
Think in “objects”

5/11/2006 Move 6: ZEN and the A.R.T. of Progress Coding 22

Design/Redesign

Your application will become process based
Newer delivery methods will be used
Don’t forget the “old” users

5/11/2006 Move 6: ZEN and the A.R.T. of Progress Coding 23

Agenda

Define Elegance – why is it important
Working with existing code
Tools you may want to consider
Re-architect and Re-design – Planning
for re-use
We really don’t know what will come

along

5/11/2006 Move 6: ZEN and the A.R.T. of Progress Coding 24

Summary

Consider aesthetics when writing code
Pretty code and clean solutions are often
better
Simpler Code is easier to maintain

Continue to split code into discrete functional
pieces as the need arises and it makes sense
There are tools available that will make the
job easier. Take advantage of them

5/11/2006 Move 6: ZEN and the A.R.T. of Progress Coding 25

Summary

Plan for future changes
Time spent now will result in faster
implementation later

Business logic will be needed again.
Flexibility is the key to success

5/11/2006 Move 6: ZEN and the A.R.T. of Progress Coding 26

Further Reading
“Who Cares About Elegance? - The Role
of Aesthetics in Programming Language
Design”

Bruce J. MacLennan
http://www.cs.utk.edu/~mclennan/anon-
ftp/Elegance.html

“Principled Programming”
Daniel Read
http://www.developerdotstar.com/mag/artic
les/read_princprog.html

Google – “Elegance in Programming”

http://www.cs.utk.edu/%7Emclennan
http://www.cs.utk.edu/~mclennan/anon-ftp/Elegance.html
http://www.cs.utk.edu/~mclennan/anon-ftp/Elegance.html

5/11/2006 Move 6: ZEN and the A.R.T. of Progress Coding 27

Acknowledgements
John Green/Judy Hoffman – Authors of
Proparse/Prorefactor

http://www.joanju.com
http://www.prorefactor.org

Jurjen Dijkstra – Author of Prolint
http://www.prolint.org

Progress E-mail Group (PEG)
http://www.peg.com
Membership:
http://www.peg.com/jointoday.html

http://www.joanju.com/
http://www.prorefactor.org/
http://www.prolint.org/
http://www.peg.com/

5/11/2006 Move 6: ZEN and the A.R.T. of Progress Coding 28

Questions???????

	MOVE-6: Zen and the A.R.T. of Progress® Coding –�Pattern Matching for Better Code
	Goals	
	Agenda
	Agenda
	What is Elegance?
	What is Elegance?
	How Does This Relate To Me?
	A Case For Elegance - Advantages
	A Case For Elegance
	A Case For Elegance
	Agenda
	Working With Existing Code
	General Rules of Thumb
	General Rules of Thumb (cont’d)
	Agenda
	Refactoring Tools - Basic
	Refactoring Tools - Advanced	
	Agenda
	Tips And Tricks
	Architecture Planning
	Design/Redesign
	Agenda
	Summary
	Summary
	Further Reading
	Acknowledgements
	Questions???????

