
DEV-23 Structure Your Errors In OpenEdge 10.1C
Peter van Dam

Progress Exchange 2008
8-11 June, 2008

1

DEV-22: Catch Me If You Can –
Practical Structured Error Handling

Peter van Dam

2 DEV-22: Catch Me If You Can – Practical Structured Error Handling

Agenda

Introduction
FINALLY!
The ProError Object
CATCHing Errors
Propagating Errors Up The Call Stack
Limitations and workarounds

3 DEV-22: Catch Me If You Can – Practical Structured Error Handling

Relevant Exchange Sessions

DEV-8: Structured Error Handling in the ABL
Sarah Marshall
Monday, 9 June, 3:15pm–4:15pm
DEV-38: OpenEdge ABL Info Exchange
Wednesday, 11 June, 10:45am–11:45am

DEV-23 Structure Your Errors In OpenEdge 10.1C
Peter van Dam

Progress Exchange 2008
8-11 June, 2008

2

4 DEV-22: Catch Me If You Can – Practical Structured Error Handling

What is Structured Error Handling?

Modern – Object-oriented (but you don’t have
to know much about OO to use it)
Can catch errors that could not be caught
before
Can co-exist and interoperate with traditional
error handling
This talk presents practical examples of
adding structured error handling to existing
applications

5 DEV-22: Catch Me If You Can – Practical Structured Error Handling

Agenda

Introduction
FINALLY!
The ProError Object
CATCHing Errors
Propagating Errors Up The Call Stack
Limitations and workarounds

6 DEV-22: Catch Me If You Can – Practical Structured Error Handling

First of All: FINALLY

FINALLY is a new block statement that you
can use right away
FINALLY always executes, whether an error
was raised or not
FINALLY must come after all other
executable statements in a block
Intended for clean-up code
Examples: delete objects, close streams,
write logs etc.

Introducing the FINALLY block

DEV-23 Structure Your Errors In OpenEdge 10.1C
Peter van Dam

Progress Exchange 2008
8-11 June, 2008

3

7 DEV-22: Catch Me If You Can – Practical Structured Error Handling

Using FINALLY to Prevent Memory Leaks

TABLE-HANDLE parameters create a TEMP-
TABLE in the SESSION Widget Pool
You are responsible for cleaning it up
That can be difficult to manage
Error conditions can also bypass your
cleanup code

Solving the OUTPUT TABLE-HANDLE problem

8 DEV-22: Catch Me If You Can – Practical Structured Error Handling

Creating A Memory Leak

memleak1.pmemleak1.p memleak2.pmemleak2.p

OUTPUT TABLE-HANDLEOUTPUT TABLE-HANDLE CREATE TEMP-TABLECREATE TEMP-TABLE

memleak2.p contains a CREATE TEMP-
TABLE statement that creates the TEMP-
TABLE in the current WIDGET-POOL
The temp-table received by memleak1.p
is created in the SESSION WIDGET-POOL

9 DEV-22: Catch Me If You Can – Practical Structured Error Handling

Demo: memleak.p

DEV-23 Structure Your Errors In OpenEdge 10.1C
Peter van Dam

Progress Exchange 2008
8-11 June, 2008

4

10 DEV-22: Structure Your Errors In OpenEdge 10.1C

FINALLY in Practice

FINALLY always executes, on success or
failure
From now on I put all my DELETE OBJECT
statements in FINALLY blocks
Starting with the examples in this
presentation!

11 DEV-22: Catch Me If You Can – Practical Structured Error Handling

Agenda

Introduction
FINALLY!
The ProError Object
CATCHing Errors
Propagating Errors Up The Call Stack
Limitations and workarounds

12 DEV-22: Catch Me If You Can – Practical Structured Error Handling

The Mother of All Error Classes

DEV-23 Structure Your Errors In OpenEdge 10.1C
Peter van Dam

Progress Exchange 2008
8-11 June, 2008

5

13 DEV-22: Catch Me If You Can – Practical Structured Error Handling

Enabling Stack Tracing

Adds overhead – not enabled by default
You must use the –errorstack startup
parameter or SESSION:ERROR-STACK-
TRACE to enable Stack Tracing
Enable this feature in your startup procedure
when SESSION:DEBUG-ALERT is TRUE
This feature enables you to access the stack
trace in the CallStack property of error
objects

14 DEV-22: Catch Me If You Can – Practical Structured Error Handling

Enabling Stack Tracing

15 DEV-22: Catch Me If You Can – Practical Structured Error Handling

Agenda

Introduction
FINALLY!
The ProError Object
CATCHing Errors
Propagating Errors Up The Call Stack
Limitations and workarounds

DEV-23 Structure Your Errors In OpenEdge 10.1C
Peter van Dam

Progress Exchange 2008
8-11 June, 2008

6

16 DEV-22: Catch Me If You Can – Practical Structured Error Handling

Catching Errors

You can now catch everything that was hard to catch before

17 DEV-22: Catch Me If You Can – Practical Structured Error Handling

Catching System Errors

Catching Errors While Printing

OUTPUT TO print.txt.
FIND customer WHERE custNum EQ 1000 NO-LOCK.
PUT UNFORMATTED NAME SKIP address.
OUTPUT CLOSE.

OUTPUT TO print.txt.
FIND customer WHERE custNum EQ 1000 NO-LOCK.
PUT UNFORMATTED NAME SKIP address.
OUTPUT CLOSE.

The error (customer 1000 does not exist) will
end up in your output file and you might not
even notice

18 DEV-22: Catch Me If You Can – Practical Structured Error Handling

Catching System Errors

Catching Errors While Printing

OUTPUT TO print.txt.
FIND customer WHERE custNum EQ 1000 NO-LOCK.
PUT UNFORMATTED NAME SKIP address.
OUTPUT CLOSE.
CATCH e AS Progress.Lang.ProError :
MESSAGE “Error occurred during printing:" SKIP
e:getMessage(1) VIEW-AS ALERT-BOX ERROR.

DELETE OBJECT e.
END CATCH.

OUTPUT TO print.txt.
FIND customer WHERE custNum EQ 1000 NO-LOCK.
PUT UNFORMATTED NAME SKIP address.
OUTPUT CLOSE.
CATCH e AS Progress.Lang.ProError :
MESSAGE “Error occurred during printing:" SKIP
e:getMessage(1) VIEW-AS ALERT-BOX ERROR.

DELETE OBJECT e.
END CATCH.

Merely adding a CATCH block will address
this situation

DEV-23 Structure Your Errors In OpenEdge 10.1C
Peter van Dam

Progress Exchange 2008
8-11 June, 2008

7

19 DEV-22: Catch Me If You Can – Practical Structured Error Handling

Demo: print.p

20 DEV-22 Catch Me If You Can – Practical Structured Error Handling

Methods On Built-in System Handles

The reason is that errors arising from
methods on built-in system handles are
treated… ‘differently’.

The following code does not raise an error condition:

DEFINE VARIABLE hBuffer# AS HANDLE NO-UNDO.

CREATE BUFFER hBuffer# FOR TABLE "customer".

hBuffer#:FIND-UNIQUE("WHERE CustNum EQ 1000").

DEFINE VARIABLE hBuffer# AS HANDLE NO-UNDO.

CREATE BUFFER hBuffer# FOR TABLE "customer".

hBuffer#:FIND-UNIQUE("WHERE CustNum EQ 1000").

21 DEV-22: Catch Me If You Can – Practical Structured Error Handling

Methods On Built-in System Handles (2)

The result is that an error message is
displayed on standard output and processing
continues!
There is no error condition
This is pretty bad as it is, and absolutely
horrible when it happens on your AppServer
When any relevant CATCH block is present,
built-in ABL methods raise error.

Errors on built-in system handles are treated ‘differently’

DEV-23 Structure Your Errors In OpenEdge 10.1C
Peter van Dam

Progress Exchange 2008
8-11 June, 2008

8

22 DEV-22: Catch Me If You Can – Practical Structured Error Handling

Demo: built-in.p

23 DEV-22: Catch Me If You Can – Practical Structured Error Handling

Agenda

Introduction
FINALLY!
The ProError Object
CATCHing Errors
Propagating Errors Up The Call Stack
Limitations and workarounds

24 DEV-22: Catch Me If You Can – Practical Structured Error Handling

ROUTINE-LEVEL ON ERROR UNDO, THROW

Changes all default ON ERROR phrases to
ON ERROR UNDO, THROW in a file
Must be the first statement in a file (before or
after USING)

DEV-23 Structure Your Errors In OpenEdge 10.1C
Peter van Dam

Progress Exchange 2008
8-11 June, 2008

9

25 DEV-22: Catch Me If You Can – Practical Structured Error Handling

Propagating Errors Up The Call Stack

Catching AppServer™/ WebSpeed® Errors

client1.p getcustomers.p getrecords.p

Throw

26 DEV-22: Catch Me If You Can – Practical Structured Error Handling

Demo: Propagating Errors back to the client

Client1.p

27 DEV-22: Catch Me If You Can – Practical Structured Error Handling

Propagating Errors Up The Call Stack

Ajax example

ajax7.html getxmlcustomers.p getrecords.p

Throw

DEV-23 Structure Your Errors In OpenEdge 10.1C
Peter van Dam

Progress Exchange 2008
8-11 June, 2008

10

28 DEV-22: Catch Me If You Can – Practical Structured Error Handling

Propagating Errors Up The Call Stack

Generic Error Handling With Ajax

CATCH errorObject AS Progress.Lang.SysError:

DEFINE VARIABLE iMessage# AS INT NO-UNDO.
DEFINE VARIABLE hSAXWriter AS HANDLE.
CREATE SAX-WRITER hSAXWriter.
hSAXWriter:FORMATTED = TRUE.
hSAXWriter:SET-OUTPUT-DESTINATION("STREAM", "WEBSTREAM").
hSAXWriter:START-DOCUMENT().
hSAXWriter:START-ELEMENT("error").

DO iMessage# = 1 TO errorObject:numMessages:
hSAXWriter:WRITE-DATA-ELEMENT("errorMessage", errorObject:getMessage(iMessage#)).

END.

hSAXWriter:END-ELEMENT("error").
hSAXWriter:END-DOCUMENT().

DELETE OBJECT hSAXWriter.
DELETE OBJECT hTable NO-ERROR.
DELETE OBJECT errorObject.

END CATCH.

29 DEV-22: Catch Me If You Can – Practical Structured Error Handling

Propagating Errors Up The Call Stack

Return any errors as XML

<error>
<errorMessage>message 1</errorMessage>
<errorMessage>message 2</errorMessage>

</error>

<error>
<errorMessage>message 1</errorMessage>
<errorMessage>message 2</errorMessage>

</error>

In this way errors can be processed
generically on the Ajax client as well

30 DEV-22: Catch Me If You Can – Practical Structured Error Handling

Propagating Errors back to an Ajax client

Ajax7.p

DEV-23 Structure Your Errors In OpenEdge 10.1C
Peter van Dam

Progress Exchange 2008
8-11 June, 2008

11

31 DEV-22: Catch Me If You Can – Practical Structured Error Handling

Agenda

Introduction
FINALLY!
The ProError Object
CATCHing Errors
Propagating Errors Up The Call Stack
Limitations and workarounds

32 DEV-22: Catch Me If You Can – Practical Structured Error Handling

Limitations of Structured Error Handling

Cannot THROW an Error Object across an
AppServer boundary
Cannot catch STOP
Cannot catch QUIT

33 DEV-22: Catch Me If You Can – Practical Structured Error Handling

Catching the STOP condition

DO ON STOP UNDO, RETRY:
IF RETRY THEN
UNDO, THROW

NEW Progress.Lang.AppError("Program not found",1).
RUN nonexistent.p.

END. /* ON STOP... */

CATCH eError AS Progress.Lang.ProError:
MESSAGE eError:getMessage(1)

VIEW-AS ALERT-BOX ERROR.
DELETE OBJECT eError.

END CATCH.

DO ON STOP UNDO, RETRY:
IF RETRY THEN
UNDO, THROW

NEW Progress.Lang.AppError("Program not found",1).
RUN nonexistent.p.

END. /* ON STOP... */

CATCH eError AS Progress.Lang.ProError:
MESSAGE eError:getMessage(1)

VIEW-AS ALERT-BOX ERROR.
DELETE OBJECT eError.

END CATCH.

DEV-23 Structure Your Errors In OpenEdge 10.1C
Peter van Dam

Progress Exchange 2008
8-11 June, 2008

12

34 DEV-22: Catch Me If You Can – Practical Structured Error Handling

Conclusions

Start using FINALLY blocks wherever that
makes sense
Start adding CATCH blocks to your top-level
procedure(s)
Start adding ROUTINE-LEVEL ON ERROR
UNDO, THROW statements to your
secondary procedures
Subsequently add CATCH blocks in your
other blocks

First structured error handling steps

35 DEV-22: Catch Me If You Can – Practical Structured Error Handling

Questions?

36 DEV-22: Catch Me If You Can – Practical Structured Error Handling

Thank You

DEV-23 Structure Your Errors In OpenEdge 10.1C
Peter van Dam

Progress Exchange 2008
8-11 June, 2008

13

37 DEV-22: Catch Me If You Can – Practical Structured Error Handling

www.futureproofsoftware.com

peter@futureproofsoftware.com

