
1

DEV-35: Modeling Existing ABL
Systems with UML

Thomas Mercer-Hursh, Ph.D.
VP Technology

Computing Integrity, Inc.

Let me begin by introducing myself. I have been a Progress Application
Partner since 1986 and for many years I was the architect and chief
developer for our ERP application. In recent years I have refocused on the
problems of transforming and modernizing legacy ABL applications. This
has led me to exploring UML as a tool in the transformation process.
Today’s talk is to tell you about a major step forward in our ability to analyze
existing applications using UML.

2

© 2008 Progress Software Corporation2 DEV-35 Modeling Existing ABL Systems with UML

Agenda

The Problem
Existing Tools and Their Limitations
Going Beyond
UML – What and Why?
The UML Profile for ABL
The UML Toolset for ABL
Sample Modeling Efforts
Where Do We Go From Here?

3

© 2008 Progress Software Corporation3 DEV-35 Modeling Existing ABL Systems with UML

The Problem

Legacy ABL System
Millions of Lines of ABL Code
Years and Years of Modifications
Documentation?

Many ABL systems are 10 or even 20 years old.
Many systems were purchased originally from a partner, but
• The partner may no longer be in business; or
• The system is heavily customized so the site cannot upgrade; or
• There is just a breakdown in the relationship with the partner.
The result is an orphaned system.
Whether the system was purchased or built entirely in-house, modifications
are typically patchwork, on demand, spot changes with no overriding
architectural vision.
Progress’ low cost of ownership ironically leads to low investment, minimal
changes, and limited staff resources.
PSC’s principle of upward compatibility means no need for periodic
architectural revisions such as are required in most other languages.
Many sites have minimal staff, who just get the work done, with no time or
budget for documentation, review, restructuring, etc.
I.e., most shops can go on and on happily for many years enjoying the low
cost of ownership.

4

© 2008 Progress Software Corporation4 DEV-35 Modeling Existing ABL Systems with UML

The Problem

And then Crisis!
Major subsystem rewrite
Desire/Need to change UI technology
Move to SOA
Supply chain integration
Web and other services integration

Many legacy systems work well and have rich functionality appropriate to the
business, but because many older systems are still ChUI, people become
dissatisfied with what is seen as old “clunky” interfaces. However, these
legacy ChUI architectures typically have UI, BL, and DA all mixed together,
making it difficult to just change the UI. This is also true for many older
client/server ABL GUI systems. The rewrite to separate UI and introduce a
more modern interface can seem like having to nearly rewrite the entire
application.
The accumulation of multiple systems in one business can result in near
duplication of functions and enormous maintenance burdens. Moving to a
SOA, which centralizes each service, is a solution, but a major architectural
change.
In the current world, there are many forces driving toward integration –
suppliers, customers, and various related services such as shipping, pricing,
credit, etc., particularly the increased range and complexity of expectations
for web services. But, legacy applications are rarely structured for easy
integration and so major architectural changes are required.
Even the need for major changes to a single subsystem can precipitate a
crisis because the work is far more extensive than the small modifications
which have traditionally been done by the in-house shop.

5

© 2008 Progress Software Corporation5 DEV-35 Modeling Existing ABL Systems with UML

Agenda

The Problem
Existing Tools and Their Limitations
Going Beyond
UML – What and Why?
The UML Profile for ABL
The UML Toolset for ABL
Sample Modeling Efforts
Where Do We Go From Here?

6

© 2008 Progress Software Corporation6 DEV-35 Modeling Existing ABL Systems with UML

Existing Tools

Only covers schema, not code
Need to create relationships manually
No information on actual usage
Often no information on deployment

ERD Tools

Many shops have used ERD tools to provide some help understanding their
applications since few programmers are likely to know and understand the
functioning of the hundreds of tables typical of many legacy ABL
applications.
Even if the tool supports OpenEdge enough to provide automated
initialization from the schema, the schema contains no explicit information
about foreign keys. So, relationships between tables have to be created by
hand. Moreover, long histories of patchwork development mean there is no
guarantee that indexes are currently in use or are good descriptors of how
tables are accessed. Individual fields and even entire tables may have fallen
into disuse.

7

© 2008 Progress Software Corporation7 DEV-35 Modeling Existing ABL Systems with UML

Existing Tools

Information on Code, not Schema
Index but no WHERE Clause
“Per each” analysis only
No Dynamic Call Resolution

Database can provide limited Where Used data

XREF Tools

To complement ERD tools, many shops have built tools which analyze the
output of COMPILE XREF, in many cases storing it in a database for later
queries and analysis. This is probably one of the most frequent tool
implementations in an ABL shop, although no standard tool has ever
emerged to become widely adopted.
This information includes table access and index usage, but not actual
WHERE clauses and information on what columns within a table are actually
being used or modified by the program is imprecise and limited to the
containing source file, not the internal procedure or function. This is the kind
of information one needs for procedure to service decomposition.
There is nothing in the XREF data which helps understand dynamic calls
such as RUN VALUE() or a RUN of a procedure in a SUPER, so information
on the linkage of program units is very fragmented at best.
One of the major limitations of these tools is that COMPILE XREF is an
analysis of a individual compile units, one by one. These tools can be
effective in answering questions like “which compile units access table X”,
but are not useful in describing the operational structure of an application.

8

© 2008 Progress Software Corporation8 DEV-35 Modeling Existing ABL Systems with UML

Agenda

The Problem
Existing Tools and Their Limitations
Going Beyond
UML – What and Why?
The UML Profile for ABL
The UML Toolset for ABL
Sample Modeling Efforts
Where Do We Go From Here?

9

© 2008 Progress Software Corporation9 DEV-35 Modeling Existing ABL Systems with UML

Going Beyond

Multiple sources of information not integrated
No Dynamic Call Resolution
No unified model
• Specialized queries not as accessible as a

model
• Standardized model needed for leverage

What are the big limitations?

While tools like Roundtable may have integrated several tools into a
coordinated whole, there is nothing about this integration which transcends
the limitations of the individual components.
One of the most conspicuous weaknesses relates to dynamic call resolution,
about which I will say more shortly, but any time it is not clear what program,
procedure, or function is being executed, the structural relationships in the
code are obscured.
Even such information as is available in any given tool set is generally
accessible only via limited methods such as queries or browsers, which are
far less rich than true modeling systems.
The diversity of tools built shop by shop also means that no leverage has
been gained such as would come from many people working on a common
standardized modeling tool.

10

© 2008 Progress Software Corporation10 DEV-35 Modeling Existing ABL Systems with UML

Going Beyond

The Problem
• RUN x (in superprocedure)
• RUN x IN handle
• RUN VALUE(…)
• FUNCTION … IN SUPER
• FUNCTION … [MAP TO …] IN handle
• DYNAMIC-FUNCTION … [IN handle]

Dynamic Call Resolution

Dynamic call mechanisms have added great power to ABL. Even in very
early systems, one saw RUN VALUE() with the value coming from a
database table, local list, or a computation being heavily used in ABL to
provide dynamic operation and simplify what would otherwise have been
extensive control logic.
Persistent procedures and later superprocedures have done a great deal to
enhance the capabilities of ABL programming, but have also often made it
unclear, without reading a lot of code, exactly which code is being executed
by which statement. Even when the link between one procedure and a
persistent or super procedure is clear, it is not obvious from that context
what other procedures might also be using that same code.
These same issues exist for function calls.

11

© 2008 Progress Software Corporation11 DEV-35 Modeling Existing ABL Systems with UML

Going Beyond

Joanju Analyst
• Built on Proparse and ProRefactor
• Resolves many types of calls automatically
• Produces an unresolved call report
• Provides for “hints” to resolve all calls
• Results in HTML pages with links
• Also produces a “bill of materials” XML output

The Solution

Many of you will be familiar with Proparse, which parses ABL code in a
fashion similar to what happens during compilation, but which makes the
results of that parsing available for analysis by tools such as ProLint, an
open source code quality tool originally created by Jurjen Dijkstra. These
capabilities were extended in ProRefactor to provide the basic structures and
tools for refactoring ABL code. Joanju Software, which created both
Proparse and ProRefactor has now built on this foundation to create Analyst,
which adds call graph analysis and other features.
Analyst is capable of automatic resolution of many kinds of dynamic calls
and provides reporting for those which cannot be resolved automatically.
The user can then provide “hints” which will allow Analyst to build a complete
call graph of the application. The result is a rich database from which one
can dynamically generate HTML pages showing the code with links which
allow following the call tree through all its branches. There is also a powerful
query tool for inspecting aspects of the structure.
As part of our cooperative effort, John Green of Joanju has provided Analyst
with the ability to also produce an XML “bill of materials” file which covers all
code components (procedures, classes, internal procedures, functions, etc.),
the call path between those units, access to tables, where clauses, and even
field-level information on the create, read, update, or delete operations
performed by any code component.

12

© 2008 Progress Software Corporation12 DEV-35 Modeling Existing ABL Systems with UML

Joanju Analyst

The Analyst search and browse facility can search for arbitrary strings, such
as shown here, or searches can be qualified to look specifically for includes,
calls, tables, or fields. The browse facility is used to look at specific compile
units.
The search facility will return a list of compile units containing the specified
search target. Clicking on those will open up a screen on the compile unit.
Because ProLint is open source and freely available from the OpenEdge
Hive (http://www.oehive.org/prolint) the examples which follow are based on
the analysis and modeling of the source code of ProLint. Further examples
will soon be published based on AutoEdge, PSDN’s Reference
Implementation.

13

© 2008 Progress Software Corporation13 DEV-35 Modeling Existing ABL Systems with UML

Joanju Analyst

Here you see Analyst dynamically rendering an individual compile unit.
This source is preprocessed, stripped of comments, and pretty printed.
Clicking on the link at the top, presents options to view the original source
and to open any procedures which call the current one. Opening those
procedures will open on the line where the call occurs. Both types of links
can use the facilities of tabbed browsers for optimum navigational ease.
Note that include files have been expanded in line and can be collapsed or
expanded dynamically, either individually or as a whole. One can also link to
the original source file for the include.

14

© 2008 Progress Software Corporation14 DEV-35 Modeling Existing ABL Systems with UML

Joanju Analyst

If one goes to the line containing our search string, which you can see
complete in the top image, one can see that this string is passed as an
argument to RUN PublishResult. Clicking on the run keyword, produces the
drop down shown below. Note that Analyst has figured out that
PublishResult is in a superprocedure and a link is provided to take one
directly to the code in the superprocedure.
This is only a very brief introduction to the capabilities of Analyst and I
encourage you to go try out the demo yourself at the link which will be
provided at the end of the talk. Analyst on its own is a very exciting addition
to our tool repertoire for ABL. But, we still don’t have the standardized
model we were looking for.

15

© 2008 Progress Software Corporation15 DEV-35 Modeling Existing ABL Systems with UML

Agenda

The Problem
Existing Tools and Their Limitations
Going Beyond
UML – What and Why?
The UML Profile for ABL
The UML Toolset for ABL
Sample Modeling Efforts
Where Do We Go From Here?

16

© 2008 Progress Software Corporation16 DEV-35 Modeling Existing ABL Systems with UML

UML – What and Why

UML = Unified Modeling Language
Developed to unify multiple modeling systems
Graphical display with underlying data structure
Very widely used for OO languages
Increasing use for modeling legacy systems
Large number of tools available
Lots of books and other expertise

UML – A standard unified model

UML was created to unify three different modeling schemes, each of which
had its strengths. It represents a rare case in which three competing
providers recognized that the absence of a standard weakened all their
efforts, so they worked together to create a single superset effort. Since its
introduction and broad acceptance, it has grown enormously in scope and
capability and is very widely used in object-oriented development. Tools for
UML are quite numerous, ranging from free open source efforts to quite
expensive proprietary systems, notably Rational.
While its primary use is in designing new applications, reverse engineering
of OO applications is quite standard and there is a small, but growing, body
of work and literature on its use for legacy, non-OO applications, although I
confess that I find myself something of an unexpected pioneer in that realm.

17

© 2008 Progress Software Corporation17 DEV-35 Modeling Existing ABL Systems with UML

UML – What and Why

Many different models for different purposes
Most are used in Analysis and Design
For legacy code, most interested in:
• Data models – “Class” Diagram for database
• Component models – Subsystems &

Components
• User Interface models – Use Structure (Menus)

and Functional Groupings

UML – Main Aspects

UML 2.0 and 2.1 have become a very rich field of modeling tools. A great
many of these are intended for use as part of the Object-Oriented Analysis
and Design process which begins with collecting Requirements and Use
Cases and proceeds through multiple steps before resulting in the design of
a specific system and actual code.
The problem here, however, is that we have the actual finished system
without any of the conceptual design material and it is that existing system
we want to model. Depending on the ultimate purpose, there may also be a
need at some point for traditional analytic models, but the first step is to
model the system as it has been built. For this, we will primarily use three
categories of model – Data Models, Component Models, and User Interface
models.
The Data Model is used for all aspects of the OpenEdge schema –
databases, tables, columns, indexes, triggers, etc. all properties of those
elements.
The Component Model is used for Program Units (.p, .w, and .cls files plus
Internal Procedures and Functions), Include Units (.i files), and Compile
Units (.r files).
The User Interface Model is used for Menus and Functional Units.

18

© 2008 Progress Software Corporation18 DEV-35 Modeling Existing ABL Systems with UML

UML – What and Why

Enterprise Architect
• Widely used in Progress
• Inexpensive, but highly capable
• Support for ABL with PSDN and OE Hive add-

ins
Tools for reading OpenEdge® dictionary and for
interface with OpenEdge Architect on PSDN

UML – Existing Tools

While UML is a standard, support for the full standard varies considerably
among the available tools and the tools vary widely in price. In the ABL
world, while there are some using Rational (the top of the line, but very
expensive), a large number of ABL sites working with UML have adopted
Enterprise Architect from Sparx Systems. It offers a very capable tool, very
close to Rational in many respects and perhaps even superior in some, but
at a very modest price. It supports the use of an OpenEdge database as a
repository and while the native product will not read an OpenEdge schema,
Phil Magnay of Progress has published a tool on PSDN which will read a .df
file and build an EA data model. There have also been some recent
publications of his on PSDN for limited reverse engineering in association
with OpenEdge Architect.

19

© 2008 Progress Software Corporation19 DEV-35 Modeling Existing ABL Systems with UML

Agenda

The Problem
Existing Tools and Their Limitations
Going Beyond
UML – What and Why?
The UML Profile for ABL
The UML Toolset for ABL
Sample Modeling Efforts
Where Do We Go From Here?

20

© 2008 Progress Software Corporation20 DEV-35 Modeling Existing ABL Systems with UML

The UML Profile for ABL

Provides a mapping from a particular domain
language or the language of a particular
methodology onto underlying UML constructs
A Combination of:
• “Stereotypes”, terms from the domain or

methodology equated to particular UML constructs
• Additional constraints
• Rules of “well-formedness”
• Standard “Tagged Values” to extend properties

What is a UML “Profile”

In UML, there is the concept of a “profile” which is a mechanism for
extending the intrinsic parts of UML to provide a vocabulary appropriate to a
particular domain or methodology. A profile consists of ‘stereotypes’ which
provide a map between UML elements and connectors to terms appropriate
to the domain or methodology. The profile can also include constraints and
rules about how the elements are to be used as well as tags which can be
used to assign properties to elements beyond those which are inherent to
UML. Other standard UML properties include the Alias, often used for a
descriptive name, and Notes, which can record more detailed information
such as might be extracted from comments, when these are available.

21

© 2008 Progress Software Corporation21 DEV-35 Modeling Existing ABL Systems with UML

The UML Profile for ABL

Stereotype «oeProgram» maps to UML
construct Component and has tags:

• PathName – location of source
• HasUI – includes user interface commands?
• HasDA – includes database access
Shared variables of the program map to

Attributes of the Component

Simple Stereotype Example

As a simple example of what goes into a UML Profile, consider
«oeProgram», the stereotype that we use for a .p file. The double brackets
called guillemets or angle quotes are used in UML to set off stereotypes. An
«oeProgram» is mapped onto the UML construct called Component.
Components can have associated Tagged Values and three of these for
«oeProgram» are PathName, HasUI, and HasDA. Shared variables in the
program are mapped to Attributes of the Component.

22

© 2008 Progress Software Corporation22 DEV-35 Modeling Existing ABL Systems with UML

The UML Profile for ABL

Goal is a comprehensive, standardized profile
Provides common vocabulary for ABL models
Promotes sharing of tools
Open source project hosted on OpenEdge Hive
• http://www.oehive.org/UMLProfile

UML Profile for ABL Project

Profiles are normally defined for a particular application domain, like
telephony, or for a particular form of analysis or methodology. They are not
normally used for a language. However, OO languages tend to map onto
UML components in a fairly simple way, but ABL, particularly legacy ABL,
does not have such an obvious mapping.
Therefore, I was decided that we needed a profile to facilitate modeling of
legacy ABL systems. My goal was to create a robust, complete profile which
would be suitable for adoption as a standard, thus providing all people
working with UML and ABL with a common vocabulary and the potential for
sharing of tools. This effort is being treated as an open source project
hosted on OpenEdge Hive. I encourage others working with ABL and UML
to contribute to and adopt this profile.

23

© 2008 Progress Software Corporation23 DEV-35 Modeling Existing ABL Systems with UML

The UML Profile for ABL

Standards for complete
OpenEdge schema
• Includes all properties and

physical layout
• Includes all indexes
• Logical structure for foreign keys

UML Profile for ABL

The stereotypes and tags for the data model cover all properties in the
schema, including physical layout of the database, although we have not yet
implemented the DataServer portions.
The tools Phil Magnay published include one that will “discover” foreign key
relationships by looking for field name matches. This might be helpful for
some databases, but fails on those which use table-specific field names or
those which have common auditing fields in many tables, resulting in false
keys. A structure for this information has been included in the profile, but I
have not provided code for this in the initial ABL to UML tool, since it shows
how the tables are actually used in the code.

24

© 2008 Progress Software Corporation24 DEV-35 Modeling Existing ABL Systems with UML

The UML Profile for ABL

Here is a quick look at a piece of the Data Model for ProLint as it is displayed
in the Project Browser panel of Enterprise Architect. As noted, all UML
examples in this presentation are taken from an analysis of ProLint. Here
one can see that a single database has been divided into packages for
Metaschema and the ProLint schema proper. Packages for pieces of the
Roundtable and Sports schema also exist, but do not show here. One can
see a table with its columns, primary key, and indexes. Of course, there are
a large number of details which don’t show in this view and but which are
available by looking at the details of the table object.

25

© 2008 Progress Software Corporation25 DEV-35 Modeling Existing ABL Systems with UML

The UML Profile for ABL

Standards for code
• Programs (.p) and Classes (.cls)
• Compile Units (.r)
• Internal Procedures, Functions,

Methods
• Include Files
• Shared variables

UML Profile for ABL

The stereotypes for code emphasize the structural units of the code, i.e.,
those subdivisions of the code from which and to which control flows. Thus,
there are stereotypes for programs, classes, and compile units at the top
level and internal procedures, functions, and methods for the internal
structures. Include files are treated separately since they may be used in
multiple places.
As a part of the analysis in building the model, internal procedures and
functions are classified as public or private based on whether any of the
references to them come from outside the compile unit.
All new shared definitions and references to shared variables are also
included in the Profile.
As tools evolve, I hope to include more aspects of the code as additional
stereotypes and tags. This will depend largely on what the market needs.

26

© 2008 Progress Software Corporation26 DEV-35 Modeling Existing ABL Systems with UML

The UML Profile for ABL

Within the Component Model there are packages for Compile Units, Include
Units, and Program Units. Compile Units cover all compiled code packages,
i.e. .r file. Include Units cover all .i files. Program Units cover all source
except Include Units. A portion of the Program Unit hierarchy from ProLint is
shown here, where you can see both private and public IPs under the
filterplugins.p program.

27

© 2008 Progress Software Corporation27 DEV-35 Modeling Existing ABL Systems with UML

The UML Profile for ABL

Standards for code to code links
• Superprocedure invocation and calls
• Run .p or IP
• Class and method invocation
• Function calls and forward references
• Summary links on enclosing program (.p or .cls)
• Summary links on compile unit (.r)

UML Profile for ABL

Stereotypes for control flow connections between code components cover all
types of possible relationships including simple run statements of programs
or internal procedures, new class statements, method invocations, function
calls and forward references, and the add of local or session
superprocedures. For all control flow links, there is both a detail link
between the actual code units in which the flow begins and end and there is
a summary link between the enclosing procedures or classes. A second
summary link is created between the compile units. This facilitates
diagramming at multiple levels.

28

© 2008 Progress Software Corporation28 DEV-35 Modeling Existing ABL Systems with UML

The UML Profile for ABL

Diagram of Code to Code Links

Here you can see a portion of a UML diagram illustrating a portion of ProLint.
• Blue boxes with solid boundaries are programs;
• Dashed boundaries are internal procedures;
• Dotted boundaries are functions;
• Blue IPs and Functions are public; and
• Green IPs and Functions are private.
Similarly, run program, run IP, and function calls are solid, dashed, dotted,
and colored correspondingly.
The standard stereotype definitions available on OpenEdge Hive include the
scripts to provide this coloration and line treatment in Enterprise Architect. A
key is available there describing the standards used.

29

© 2008 Progress Software Corporation29 DEV-35 Modeling Existing ABL Systems with UML

The UML Profile for ABL

Standards for code to data links
• Table reference and mode
• Column reference and mode
• WHERE clause
• Tied to internal procedure or function
• Summaries by program (.p or .cls)
• Summaries by compile unit (.r)

UML Profile for ABL

Detail links are created between the smallest containing source code unit,
e.g., program, class, internal procedure, function, or method and are
summarized at the level of the containing program and compile unit.
Stereotypes distinguish between read only links and those where create,
delete, or update activity occur and the type of activity is provided in a tag.
The actual WHERE clause for any query is also captured. Each field which
is explicitly read or written is noted in a tag along with the action which
occurs.

30

© 2008 Progress Software Corporation30 DEV-35 Modeling Existing ABL Systems with UML

The UML Profile for ABL

Diagram of Code to Data Links

Here is a simple UML diagram showing one of the database tables for
ProLint in pink in the center with the detail data access from internal
procedures and main program bodies. The two solid lines in the lower right
indicate modify access from those two internal procedures. All other links
are read only and are shown as dashed lines, although that may not be clear
in this reproduction. With diagrams like this, it is very easy and fast to see
what is going on in the relationship of the tables and programs.

31

© 2008 Progress Software Corporation31 DEV-35 Modeling Existing ABL Systems with UML

The UML Profile for ABL

Standards for logical structure
• Menu structure
• Functional units
• Links from menu selection to functional unit
• Links from functional unit to code

UML Profile for ABL

While implemented differently in different applications, a general set of
stereotypes for modeling menus are included in the Profile since they
provide an important functional structure to the way in which an application is
used. Each menu selection that causes the execution of something other
than a menu program is linked to a Functional Unit. The Functional Unit
serves as a container for all of the code which might be reached during the
execution of that function. The Functional Unit is in turn linked to the
Compile Unit which is the program first executed by that Functional Unit.

32

© 2008 Progress Software Corporation32 DEV-35 Modeling Existing ABL Systems with UML

The UML Profile for ABL

Diagram of Logical Structure

Here we see a fragment of the menu system of ProLint with the menu
selections leading to Functional Units. On the left in the dashed box is a
special stereotype called a Dynamic Set for menu-like sets which are
selected as a part of configuration rather than step-wise user interaction.

33

© 2008 Progress Software Corporation33 DEV-35 Modeling Existing ABL Systems with UML

Agenda

The Problem
Existing Tools and Their Limitations
Going Beyond
UML – What and Why?
The UML Profile for ABL
The UML Toolset for ABL
Sample Modeling Efforts
Where Do We Go From Here?

34

© 2008 Progress Software Corporation34 DEV-35 Modeling Existing ABL Systems with UML

The UML Toolset for ABL

Open Source ABL code
• Hosted on Open Edge Hive
• http://www.oehive.org/UMLFromABL
• Structured for easy site-specific customization
• Adheres to published profile

Tool for Building UML from ABL

Based on this profile, I have written ABL code which reads from a variety of
sources and builds a UML model by directly writing into an OpenEdge
repository for Enterprise Architect. This is an open source project based on
the principle that sharing tools and adhering to common standards such as
the published profile will get us all a lot farther than if each of us just builds
our own tools. I have taken special care in the writing to make the code
clear and easy to modify for the specifics of an individual site and will be
publishing multiple versions of the site-specific code to illustrate how
different schema and menu structures can be adapted to the common
stereotypes. Most of the code -- all the really hard parts -- should be
standard across all sites. Currently, the code has one dependency on
version 10.1A OO features, but this could be eliminated if it were necessary
to work on older versions. Most of the code intentionally uses a simpler
superprocedure approach in order to make it easy to understand and modify
for those unfamiliar with OO.

35

© 2008 Progress Software Corporation35 DEV-35 Modeling Existing ABL Systems with UML

The UML Toolset for ABL

Dictionary Tool
• Reads directly from OpenEdge database
• Simple procedure for creating packages
• Creates operations for all indexes and triggers
• Currently no foreign key “guessing”

– Code portion has actual use

Tool for Building UML from ABL

The schema portion of the tool reads directly from an OpenEdge database to
build the model. If one has a large number of tables and a mechanism by
which to group them into packages, there is a piece of the custom site code
for this purpose. All details about tables, all columns, all details about
columns, all indices, the primary key, and all triggers are captured. The
code doesn’t currently handle data server aspects, but this is an easy
adaptation with pre-existing stereotypes, if there is demand.
The related tool on PSDN has a component which will guess at foreign key
relationships between tables. This capability is currently omitted from the
current code since we are capturing actual use and WHERE clauses from
the code portion. Again, if there is demand, I will add a foreign key guessing
tool, written in ABL so that it is easily customized, and with structures to
make it easy to omit selected columns from comparisons, e.g., audit trail
fields, and to manipulate column names prior to matching, e.g., removing
table prefixes.

36

© 2008 Progress Software Corporation36 DEV-35 Modeling Existing ABL Systems with UML

The UML Toolset for ABL

Reads “Bill of Materials” from Analyst
Provision for multiple supplemental sources
• Program descriptions, menu structure, packages

Single superprocedure does all repository
updates
Uses an OpenEdge repository

Tool for Building UML from ABL

The code portion is primarily based on the “bill of materials” XML file
produced by Analyst, but the site-specific portion is easily tailored to fit local
menu systems, list of program descriptions, standard naming conventions, or
whatever might be available to assist in making the model more meaningful.
There is also the option of using additional custom stereotypes and custom
post-processing where needed.
The code stage consists of basically five phases:
1. Building components from the bill of materials;
2. Building connectors between the components from the bill of materials;
3. Postprocessing to identify private versus public access;
4. Optional custom additions; and
5. Optional custom postprocessing for analysis similar to private versus
public.

37

© 2008 Progress Software Corporation37 DEV-35 Modeling Existing ABL Systems with UML

The UML Toolset for ABL

Structure includes site-specific tailoring
• Menu structure
• Program descriptions
• Program path location on disk
• Module descriptions
• Special post-processing

Tool for Building UML from ABL

As noted, there is a separate program for custom processing with a skeleton
structure and multiple examples of how to adapt the usage to site-specific
implementations.

38

© 2008 Progress Software Corporation38 DEV-35 Modeling Existing ABL Systems with UML

Agenda

The Problem
Existing Tools and Their Limitations
Going Beyond
UML – What and Why?
The UML Profile for ABL
The UML Toolset for ABL
Sample Modeling Efforts
Where Do We Go From Here?

39

© 2008 Progress Software Corporation39 DEV-35 Modeling Existing ABL Systems with UML

Sample Modeling Efforts

Kal Tire – large, complex ERP and branch store
sales application
ProLint – Open source code quality tool
AutoEdge – Progress’ own OpenEdge Reference
Architecture reference implementation
Integrity/Solutions – large complex ERP suite
focusing on distribution

Real World Examples

These tools have been applied to a large, complex ERP application of nearly
2 million lines of ABL running at Kal Tire in Canada and are being used by
them to analyze subsystems and potential services. We have also applied it
to ProLint, a much smaller but quite complex tool whose source code is
freely available for download. We are well along in the process of applying it
to AutoEdge, Progress’ own Reference Architecture implementation, whose
code is also freely available. We will soon be applying it to
Integrity/Solutions, another large, complex ERP application of about 1.75
million lines of ABL and selected portions will be published on OpenEdge
Hive.
The sample UML diagrams you have seen earlier were taken directly from
the Enterprise Architect screen, i.e., this whole system is up and running and
in production today. Additional full-sized examples will be found on
OpenEdge Hive as well as sample model files.
Bottom line --- here today, in use and ready for you to use on your own
application.

40

© 2008 Progress Software Corporation40 DEV-35 Modeling Existing ABL Systems with UML

Agenda

The Problem
Existing Tools and Their Limitations
Going Beyond
UML – What and Why?
The UML Profile for ABL
The UML Toolset for ABL
Sample Modeling Efforts
Where Do We Go From Here?

41

© 2008 Progress Software Corporation41 DEV-35 Modeling Existing ABL Systems with UML

Where Do We Go From Here?

Before moving on to specifics, let me say a little about the general nature of
the problem of what we are trying to do. In traditional OO Analysis and
Design, we begin with diagrams and information which is very abstracted
from the system we hope to build – use cases and requirements. We then
refine and transform this information into progressively more concrete and
specific forms until eventually we end up with the actual finished system,
here in the lower right.
But, what we are doing here is starting with a concrete legacy system in the
lower left. Little of the design intent or purpose is recorded here. So, we
have two paths to a new system. One of these is to harvest business logic
and intuit design intent in order to build the kind of abstract information which
is the starting point for traditional OO A/D. This is extremely difficult and
poorly understood, although if successful, will result in a new system which
has the ideal architecture and form.
The alternative is to make a series of incremental, step-wise transformations
of the existing system with the goal of gradually making it more and more
like the system we would like to have. Such a transformation is unlikely to
ever be 100% complete or to produce as “clean” a new system as one
produced by the traditional OO A/D path, but it allows change to occur at a
slower pace, driven by short term returns.

42

© 2008 Progress Software Corporation42 DEV-35 Modeling Existing ABL Systems with UML

Where Do We Go From Here?

Localizations for additional sites
Additional model elements as needed
Open source Enterprise Architect plug-ins
• Link to Analyst pages
• Diagram generator

Additional tools
• Bulk diagram generator
• Connectedness tool

On-Going Open Source Project

With that background, let me say that this project is very much a work in
progress. While much has been accomplished, there is much more coming.
I hope to create localizations for additional sites as companies become
interested in the tool. As I and others develop additional tools for extracting
information from the code, I will extend the profile to cover additional tags
and stereotypes. One of the consultant developers at Kal Tire has been
developing add-ins for Enterprise Architect which we hope to make available
as they are finished. These include:
• A facility that allows a quick link from any element in the model to the
HTML page for the source code related to that element;
• A tool which will follow selected link stereotypes and selected element
stereotypes to automatically build a diagram relative to a given starting
element;
• A tool for automatically hiding or making visible links in a diagram by
stereotype; and
• An assortment of other convenient tools for selecting, deleting, and
manipulating diagram elements by stereotype.
I am also working on a ABL version of the diagram generator for bulk
generation of diagrams and a tool for analyzing connectedness for help in
identifying subsystems and potential services in an SOA.

43

© 2008 Progress Software Corporation43 DEV-35 Modeling Existing ABL Systems with UML

Where Do We Go From Here?

Roundtrip integration with OpenEdge Architect
• Reconcile Architect changes with existing model
• Code generation of revised model

Analytic Reporting and Diagrams
• Impact Analysis diagrams
• Subsystem and Service Identification

ProRefactor-based Super-”XREF” tool

On-Going Open Source Project

I am also looking at code generation from a revised model. Initially, this will
not be anything like full transformation, but simply being able to make small
changes in the model and then produce revised code. This will be
connected to roundtrip integration with OpenEdge Architect, not just for OO
code, but any code in a legacy system. While a primary target will be
OpenEdge Architect, I will be looking at ways to make this available to those
using other development tools as well.
I will also be working on various forms of impact analysis and subsystem and
service identification tools.
There is also a proposed project based on ProRefactor which would create a
sort of super-XREF database. This might provide additional code features
that could be included in the model.

44

© 2008 Progress Software Corporation44 DEV-35 Modeling Existing ABL Systems with UML

Where Do We Go From Here?

Transformations via Model Driven Architecture!
• Data Layer substitution
• Abstraction to design model
• UI layer separation?
• Others …

On-Going Open Source Project

Of course, this is only the beginning. For some sites, the UML modeling
alone will be a sufficient achievement because their goal is simply to gain
control over and analyze a large, mostly undocumented code base. That
certainly has significant value. But, for others, this is just a step toward
revising the architecture of their legacy application. The three most common
goals in such transformation are:
• Separation of UI and BL, usually with the goal of replacing the UI;
• Evolution toward OERA or similar layered architecture; and
• Evolution toward a Service Oriented Architecture.
Needless to say, these are not mutually exclusive goals. I have some ideas
I am working on related to service identification which should be applicable
without major architectural shifts. I also have some ideas on providing data
layer separation which might also be possible without major changes. UI
separation is definitely a harder problem, but a real hot button, so it is going
to get a lot of my attention.
I will note that most UML OO development starts with a model which is
highly abstracted from the actual code and then resolves toward a
progressively more concrete and specific structure. The need here is to go
in the opposite direction, which is a substantially harder proposition and one
on which far less work has been done … but I have ideas!

45

© 2008 Progress Software Corporation45 DEV-35 Modeling Existing ABL Systems with UML

In Summary

Automated generation of UML models directly
from ABL code and schema is a reality today
These models can greatly facilitate the analysis
of large, poorly documented bodies of source
code
Transformations have the potential for
substantial reduction in coding efforts.

Automated building of UML models from ABL code and schema is available
today and in production at a large site. This is more comprehensive and
complete tool than any prior efforts of which I am aware and is a tool that is
likely on its own to provide substantial value to anyone trying to come to
grips with a large legacy code base. This information will also provide
important information for any transformation project, shortening analysis time
and reducing costs. I invite anyone with these needs to contact me so that I
can help them figure out how to adapt the tools to their specific code and
how to move forward with their projects.
While this is itself an important milestone, it is only the beginning and there
will be many additional capabilities being made available in the coming
months. Stay tuned at the OpenEdge Hive for developments or contact me
for anything which is of particular interest.

46

© 2008 Progress Software Corporation46 DEV-35 Modeling Existing ABL Systems with UML

For More Information, go to…

OpenEdge Hive
• This project: http://www.oehive.org/UMLFromABL
• Enterprise Architect with OpenEdge

http://www.oehive.org/EA
• ProLint http://www.oehive.org/prolint
• ProRefactor http://www.oehive.org/prorefactor

Joanju Analyst
• http://www.joanju.com/analyst/

Sparxsystems
• Enterprise Architect

http://www.sparxsystems.com/products/index.html
• UML Tutorial

http://www.sparxsystems.com/resources/uml2_tutorial/

47

© 2008 Progress Software Corporation47 DEV-35 Modeling Existing ABL Systems with UML

Questions?

48

© 2008 Progress Software Corporation48 DEV-35 Modeling Existing ABL Systems with UML

Thank You

49

© 2008 Progress Software Corporation49 DEV-35 Modeling Existing ABL Systems with UML

Computing Integrity, Inc.
http://www.cintegrity.com

thomas@cintegrity.com

510-233-5400

