OPS-23: OpenEdge® Performance Basics Adam Backman White Star Software adam@wss.com **E**keleniu **Agenda** Goals of performance tuning Operating system setup OpenEdge setup • Setting OpenEdge parameters Tuning APWs OpenEdge utilities Brekent **Goals of Performance Tuning** • Consistent performance despite load Why not "fast" People want consistency • Month end should not be different from the middle • People want their "TPS reports" to take the same amount of time each day Fast is relative

Excitation

When to Tune Performance? • Installation or upgrade of hardware • Installation or upgrade of software Change in workload Number of users Volume of data OPS-23: OpenEdge Performance Basics **अ**ल्लोनासु **Application Performance** The single largest component of performance tuning is application performance. A well written application will run well given the proper resources while a poorly written application will rarely run well despite resource allocation. Buchance **UPDATE STATISTICS** • If you are a SQL user you should use the UPDATE STATISTICS function within OpenEdge to ensure your queries are as efficient as possible • How Often? Weekly would be nice but I think monthly is more practical for most

Excellence

• Caution: This can take some time to run

Operating System Setup • Which operating system? Network Considerations Disks Yes, RAID 5 is still bad. Memory Use the memory for the common good first Then get creative Good versus bad CPU utilization OPS-23: OpenEdge Performance Basics **अ**ल्लोनासु **Which Operating System?** Consider the following: · Your needs and capabilities Uptime requirements Ability to self support • The ability of the vendor Local support Phone support Quality control Price/performance Brekent **Network contention** • The network is the slowest resource for client/server applications so you want to eliminate contention for this resource before moving on to the other resources. AppServer[™] applications reduce network utilization and improve performance • Moving large jobs to the server also reduces dependency on the network

Exchang

Networking tips · Keep things local No temp files on network drives Move the application "close" to the user • Use -cache to speed initial connection • Use -pls if you are using program libraries over the network Application issues are magnified over a network (field-lists, no-lock, indexes, ...) OPS-23: OpenEdge Performance Basics **Exchang Disks** • This is where to spend your money · Goal: Use all disks evenly • Buy as many physical disks as possible • RAID 5 is still bad in many cases, improvements have been made but test before you buy as there is a performance wall out there and it is closer with RAID 5 Byekane Causes of Disk I/O Database • User requests (Usually 90% of total load) Updates (This affects DB, BI and AI) • Temporary file I/O - Use as a disk utilization • Operating system - usually minimal provided enough memory is installed

Exciliang

Other I/O

Disks - General Rules • Use RAID 10 (0+1) or Mirroring and Striping for best protection of data with optimal performance for the database • For the AI and BI RAID 10 still makes sense in most cases. Exception: Single database environments OPS-23: OpenEdge Performance Basics **अ**ल्लोनासु **File Placement** • Think security of data first and then performance • The After Image files should always reside in a different location than the database AND before image files • Best if database and before image can be separated as well Excellence **Data Placement - Example 1** 16 disks total • Single database • 10 disks RAID 10 for the DB • 2 disks mirrored for OS • 2 disks mirrored for BI • 2 disks mirrored for AI

Data Placement - Example 2 • 16 disks • Multiple databases (let's say 5) • 10 disks RAID 10 for DB and BI • 6 disks RAID 10 for OS and AI OPS-23: OpenEdge Performance Basics **Exchang Memory** • Use memory to avoid disk I/O • Have enough to eliminate swapping • Excessive physical page faulting is a good indicator of a memory lean situation • If you are low on memory get more or reduce utilization (Yes, you paid to see this) Byelleni Memory • When increasing memory always increase broker parameters first and then increase client parameters • Buffer hit ratio in promon is a bad indicator of real performance but the goal is to reduce I/O and this ratio shows the "cost" of each request • If you increase -B buffers you should see a reduction in disk reads at the same workload

Memory hints • Increase -B in 10% increments until the point of diminishing returns or swapping, whichever comes first • Use Post-Version 9 private buffers (-Bp) for reporting · Use memory for the users closest to the customer first (developers increase last) • Use -Bt for temp tables - In OE10 they use a minimum of 9 blocks (1 Index + 8 Data) OPS-23: OpenEdge Performance Basics **E**xelence **CPU** • Buy a single fast CPU or multiple slower ones? • A Single fast CPU is good for single threaded operations (nightly report runs) Multi-CPU systems excel at running many small threads at the same time • Single core processors versus multi-core A dual core is approximately equal to 1.5 single cores (Source: IBM benchmark center) A quad core is approximately equal to 2.75 single cores (Source: IBM benchmark center) Excellent

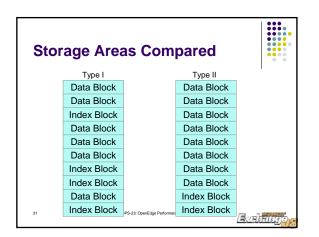
CPU contention

High CPU activity is not bad in and of itself but high system CPU activity is bad and should be corrected.

A host-based system will have a higher percentage of User time that client/server or n-tier

Components of CPU activity • USER - This is what you paid for • SYSTEM - This is overhead WAIT - This is waste • IDLE - This is nothing ;-) OPS-23: OpenEdge Performance Basics **अ**ल्लोनासु **CPU** activity goals The goal is to have as much USER time as possible with as little SYSTEM and WAIT. A practical split is USER: 70% 25% SYSTEM: WAIT: 0% 5% IDLE: This represents a good goal for a host-based system Byelleng **Eliminating high SYSTEM CPU** activity Always use -spin • Use a setting of 1 for single CPU systems • Use a higher setting for multiple CPU systems • Testing has shown that the optimal setting will vary significantly based on CPU clock speed Start at 2000 and work up (perhaps way up) from there

Exchang


Eliminating high WAIT CPU activity • WAIT = Waiting on I/O • If you still have IDLE time it generally is not a big problem Look at paging/swapping first • Next look at your disk I/O OPS-23: OpenEdge Performance Basics **Exchang OpenEdge Setup** Database block size • Storage Areas • Before image cluster size • File placement Brekent **Database Block Size** • Generally, 8k works best for Unix/Linux • 4k works best for Windows • Remember to build filesystems with larger block sizes (match if possible) • There are exceptions so a little testing goes a long way but if in doubt use the above guidelines

Storage Areas • Two types (Type I and Type II) • Allow you to split objects (tables and Indexes) into different physical locations Allow you to store more data as you increase the number of areas • Areas can be split into multiple extents OPS-23: OpenEdge Performance Basics **अ**ल्लोनासु **Type I Areas** Data blocks are social • They allow data from any table in the area to be stored within a single block Index blocks only contain data for a single index • Data and index blocks can be tightly interleaved potentially causing scatter Byelleni **Type II Storage Areas** · Data is clustered together • A cluster will only contain records from a single • A cluster can contain 8, 64 or 512 blocks • This helps performance as data scatter is

Exchang

reduced

• Disk arrays have a feature called read-ahead that really improves efficiency with type II areas.

What is the Before Image Log and How Does is Work?

- Keeps track of data intra-transaction to allow for transaction back out in case of user interaction or system malfunction
- The before image log is made up of clusters which are definable in size
- Transaction notes are written to the log sequentially and blocks can be reused
- It is automatic and cannot be turned off

32

OPS-23: OpenEdge Performance Bas

Exchange •

How the Al File Works FOR EACH customer: ← Transaction Begin UPDATE customer. ← BI Note Written ← Al Note Written END. ← Transaction End

Before Image Cluster Size

- This can have a dramatic effect on update performance
- Default is generally too low for most applications
- General rule: 2 minutes between checkpoints at high update times of the day
- This will equate to settings between 1 and 8 MB for most users.

OPS-23: OpenEdge Performance Basics

BI File - Reuse

- Clusters fill sequentially
- When the last formatted cluster is reached there is a reuse decision point
- The "oldest" cluster is examined to determine if it can be reused
- Then, either the oldest cluster is reused or another cluster is added, formatted and used

35

OPS-23: OpenEdge Performance Ba

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8 Cluster 9 Cluster 9 Cluster 10

OpenEdge Parameters • Which parameters are important How to set them • When to watch and change them OPS-23: OpenEdge Performance Basics **अ**ल्लोनासु Important OpenEdge **Parameters** • -B - Database buffers • -Bp - Private buffers • -Mn - Maximum number of servers • -bibufs - Before image buffers -aibufs - After image buffers Excellente **Private Buffers (-Bp)** • Not really private • Use different LRU chain • Good for read only clients (reports) • _MyConnection._MyConn-NumSeqBuffers to allocate or deallocate from the application level

Tuning APWs Start with 1 APW • Monitor buffers flushed at checkpoint on the activity screen (option 5) in promon • If buffers flushed increases during the "important" hours of the day add 1 APW OPS-23: OpenEdge Performance Basics **अ**ल्लोनासु **Tuning Page Writers** • Asynchronous page writer (APW) • Before image writer (BIW) • After image write (AIW) Brekent **OpenEdge Monitoring Utilities** • Database Analysis Can be run while the db is up Should be run at least once a quarter How to read it (see example) Promon Activity Screen Block Access Virtual System Tables (VSTs) VST-Based tools (Protop, OE Management, ProMonitor)

OpenEdge Management Utilities • Index compact Index rebuild Table move Index move OPS-23: OpenEdge Performance Basics **Exchang Index Compact** • Online reorganization of indexes • Rebalances B-Tree • Can increase but not decrease index utilization proutil <db> -C idxcompact [#] Buchance **Table and Index Move** • Much faster with type II areas Moving a 2GB index completed in 2 minutes • Good way to reduce scatter provided you have a fresh area as a target • Not totally online as the table is locked for the duration of the move

Exchange

Index Rebuild Offline way to rebuild indexes Provides better end indexes due to sorting capability Ability to specify packing factor can help avoid block splits proutil <db> -C idxbuild [-pfactor %]

Conclusion

- The application code still has the most effect on performance
- Work from slowest resource to fastest Network, Disk, Memory, CPU
- Change one thing at a time to know the effect of changes
- Performance tuning is an ongoing process as things constantly change

47

